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With the reform of the education system, the society today raises higher requirements for college teachers, which cause immense
psychological stress among them. To enhance the quality of teachers, it is important to analyze the relationship between teaching
pressure and self-e�cacy.  erefore, this paper tries to analyze and evaluate the relationship between teaching pressure and self-
e�cacy of college teachers based on arti�cial neural network. Firstly, a grey correlation analysis (GRA) model was established for
the teaching pressure and self-e�cacy of college teachers, and the analysis procedure was detailed.  en, the possible multi-
collinearity of the GRA model was tested. In addition, a linear regression model was established based on Lasso variable selection
model and ridge regression variable selection model, aiming to eliminate the multicollinearity between various teaching pressure
factors in the GRAmodel. Finally, a multilabel learning algorithm was proposed based on neural network and label correlation. In
this way, the correlations between the various teaching pressure factors and teachers’ self-e�cacy were mined automatically.  e
proposed model proved valid through experiments.

1. Introduction

With the reform of the education system, the society today
raises higher requirements for college teachers: a college
teacher needs to play multiple roles at the same time,
namely, knowledge imparter, students’ psychological tutor,
class leader, and pioneer of advanced teaching method [1–5].
Many college teachers �nd it di�cult to strike the balance
between being an ordinary person and acting as a role
model, and thus face an immense psychological stress
[6–10]. Survey results show that college teachers of the same
level, although faced with the same pressure in the same
period, could be optimistic or pessimistic. When a teacher
perceives a low teaching pressure, he/she will work actively,
have a high self-e�cacy, and improve his/her qualities
rapidly.  erefore, it is important to analyze the relationship
between teaching pressure and self-e�cacy [11–13].

Chung and Chen [14] compared the self-e�cacy, job
satisfaction, and pressure of teachers in application-oriented

colleges in Fujian and Taiwan and discussed the role of self-
e�cacy in this context. Considering the importance of
science and educational psychology in education system,
Kuo et al. [15] treated learning motivation as the predictor
variable and self-e�cacy as the evidence variable and tried to
discover the important correlation of the learning motiva-
tion and self-e�cacy of teachers and students with the
principle of educational psychology. Hamedi [16] pointed
out that education informatization is an inevitable trend of
higher education reform; identi�ed teachers as the key to
advancing and applying information education; attributed
the psychological stress of college teachers to subjective and
objective sources under education informatization; and
suggested that teachers should adjust their cognition,
emotions, will, and behaviors tomeet the needs of education.
Wang and Wang [17] revised the technology acceptance
model to focus on three individual di�erences (self-e�cacy,
personal innovation ability, and sensitivity to environmental
pressure).
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+e above is a brief review of the research into the
teaching pressure and self-efficacy of college teachers. It can
be seen that the studies at home and abroad have achieved a
lot of results, but some defects are yet to be solved. In terms
of research contents, the relevant research is immature,
failing to fully consider the various indices of teaching
pressure. In terms of research methods, most studies rely on
questionnaire survey and qualitative research. +e scientific
level and rigor must be improved by introducing artificial
intelligence (AI) strategies. +erefore, this paper tries to
analyze and evaluate the relationship between teaching
pressure and self-efficacy of college teachers based on ar-
tificial neural network [18–20]. Section 2 establishes a grey
correlation analysis (GRA) model for the teaching pressure
and self-efficacy of college teachers and details the analysis
procedure. Besides, the possible multicollinearity of the GRA
model was tested with Pearson correlation coefficient and
variance inflation factor (VIF). +en, a linear regression
model was established based on Lasso variable selection
model and ridge regression variable selection model, aiming
to eliminate the multicollinearity between various teaching
pressure factors in the GRA model. Section 3 proposes a
multilabel learning algorithm based on neural network and
label correlation and relies on the algorithm to automatically
mine the correlations between the various teaching pressure
factors and teachers’ self-efficacy. +e proposed model
proved valid through experiments.

2. Multifactor Correlation Analysis Model

2.1. Model Construction. In recent years, domestic and
foreign scholars have achieved fruitful results on the cor-
relation analysis of different variables. +e main tools used
for correlation analysis are GRA, least squares regression,
etc.

+e foreign research of self-efficacy began with the
American psychologist Albert Bandura, who created the
concept of self-efficacy in 1977. Seven years later, he defined
self-efficacy from the angle of social cognitive theory as an
individual’s belief in their capacity to execute behaviors
necessary to produce specific performance attainments. +e
self-efficacy is mainly influenced by six factors: performance
experience, vicarious experience, imaginal experience, social
persuasion, physical arousal, and psychological state. To
derive the correlation between college teachers’ teaching
pressure and self-efficacy, it is important to exclude the
unimportant factors and sort the influencing factors by the
degree of correlation. For this purpose, the study constructs
a GRAmodel.+e analysis procedure of the proposed model
is as follows.

Step 1. To reflect the systematic correlations and fully
consider the possible multicollinearity, it is necessary to set
up the reference series and comparative series for correlation
analysis. +is paper takes the quantified self-efficacy of
teachers as the reference seriesQ and the quantified values of
teaching pressure factors as the comparative series Wi. Let l
be the calculation moment and i be the number of rows of

influencing factors. +en, the reference series and com-
parative series can be, respectively, expressed as

Q � Q(l) l � 1, 2, . . . , m,

W � Wi(l) l � 1, 2, . . . , m, i � 1, 2, . . . n.
 (1)

Step 2. Preprocess the collected sample data; i.e., take the
average of the series data of each teaching pressure factor:

wi(l)′ �
wi(l)

wi

. (2)

Let τ ∈ [0, 1] be the resolution coefficient that determines
the difference of correlation coefficients. +en, the corre-
lation coefficient between self-efficacy of college teachers and
each teaching pressure factor can be calculated by

δi(l) �
(min/i)(min/l) w0(l) − wi(l)


 + τ(max/i)(max/l) w0(l) − wi(l)




w0(l) − wi(l)


 + τ(max/i)(max/l) w0(l) − wi(l)



.

(3)

Step 3. Compute the correlation degree between self-efficacy
of college teachers and each teaching pressure factor. Here,
correlation coefficient is introduced to measure the degree of
correlation between the two concepts. +e correlation co-
efficient has various values, which correspond to the
influencing factors. To reduce the effects of dispersion of
sample data on overall correlation comparison, this paper
takes the average of the correlation coefficients corre-
sponding to different influencing factors at different mo-
ments. +e correlation degree can be calculated by

ei �
1
n



n

l�1
δi(l). (4)

When the correlation degree e falls in [0, 0.25], teachers’
self-efficacy has a low correlation with teaching pressure
factors.When e falls in [0.25, 0.5], teachers’ self-efficacy has a
medium correlation with teaching pressure factors. When e
falls in [0.5, 0.75], teachers’ self-efficacy has a relatively
strong correlation with teaching pressure factors. When e
falls in [0.75, 1], teachers’ self-efficacy has a highly strong
correlation with teaching pressure factors.

Step 4. After computing the correlation degree of each
teaching pressure factor, rank the various factors by the
correlation degree with teachers’ self-efficacy.

To test the possible multicollinearity of the GRA model,
the teaching pressure factors selected by the model were
tested based on Pearson correlation coefficient.

+e author firstly calculated the covariance XF(w, q)�

HO(W,Q)-HO(W)HO(Q) between each influencing factor
and teachers’ self-efficacy and then computed the standard
deviation εw of the influencing factors and that εq of teachers’
self-efficacy. Let HO be the expectation. +en, the Pearson
correlation coefficient φwq between each teaching pressure
factor and teachers’ self-efficacy can be calculated by
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φwq �
XF(w, q)

εwεq

�
HO w − λw(  q − λq  

εwεq

. (5)

If φwq � 0, the teaching pressure factor is not linearly
correlated with teachers’ self-efficacy; if φwq > 0, the two have
a positively correlation; if φwq < 0, the two have a negative
correlation; if φwq > 0.8, the two have a very strong linear
correlation.

Next, the VIFs were calculated for the teaching pressure
factors.+e first step is to compute the coefficient of multiple
determination E2

i of the current teaching pressure factor
relative to the other influencing factors. +e VIF can be
calculated by

VIF �
1

1 − E
2
i

. (6)

If the VIF> 100, the GRA model faces a severe multi-
collinearity between the various teaching pressure factors. If
the VIF is greater than 10 and smaller than 100, the model
factors have a relatively strong multicollinearity. If the VIF is
greater than 0 and smaller than 10, the model factors have a
negligible multicollinearity. Figure 1 shows the execution
flow of the multifactor correlation analysis model, which
consists of model construction and multicollinearity test.

2.2. Variable Selection. Our regression model was con-
structed based on Lasso variable selection model, aiming to
eliminate the multicollinearity between the various teaching
pressure factors of the GRA model.

Let Q be teachers’ self-efficacy, W be the matrix of
teaching pressure factors, α be the parameter to be estimated,
and σ be the error term. For a general linear regression

model, there is Q�Wα+ σ. After centralizing Q and nor-
malizingW, the least squares estimation can be expressed as

min 
m

i�1
qi − 

n

j�1
αwij

⎛⎝ ⎞⎠

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦. (7)

+e parameter to be estimated satisfies

αLAS � W
T

W 
−1

W
T
q. (8)

Under the constraint 
n|α|≤ p, the Lasso regression can

be derived from formula (7):

αlasso � argmin 
m

i�1
qi − 

n

j�1
αwij

⎛⎝ ⎞⎠

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

s.t. 
n

j�1
|α|≤p.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(9)

Let μ be a positive penalty parameter controlling the
number of influencing factors. +e value of this parameter
can be computed through cross validation. Based on La-
grangian duality, the above formula can be converted into

αlasso � argmin 
m

i�1
qi − 

n

j�1
βwij

⎛⎝ ⎞⎠

2

+ μ
n

j�1
|α|⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦. (10)

+e greater than penalty parameter, the closer the re-
gression coefficient of teaching pressure parameters to zero.

+is paper also constructs a ridge regression variable
selection model, aiming to eliminate the multicollinearity
between influencing factors and form a contrast against
Lasso variable selection model. For a general linear re-
gression model, there is
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Figure 1: Model flow.
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Q � Wα + σ. (11)

By least squares method, the regression coefficient α can
be estimated as

α � W
T
W 

−1
W

T
W. (12)

+e regression coefficient of ridge regression can be
solved by

α � W
T
W + lJ 

−1
W

T
Q. (13)

Let l ∈ [0, 1] be the ridge regression coefficient. +e
greater the value of l, the smaller the stability of the re-
gression parameter to be affected by the multicollinearity
between influencing factors, and the larger the variance of
the predicted correlation. To mitigate the influence of
variable dimensionality on predicted correlation, the
teaching pressure factors of the model must be normalized
before ridge regression. Let oij and eij be the values of original
and normalized factors, respectively, and λj and εj be the
arithmetic mean and standard deviation of variable j, re-
spectively. +en, we have

eij �
oij − λj

εj

. (14)

Figure 2 shows the flow of constructing linear variable
regression models based on Lasso variable selection model
and ridge regression variable selection model.

3. Multilabel Correlation Analysis

To automatically mine the correlations between teaching
pressure factors and teachers’ self-efficacy, this paper pro-
poses a multilabel learning algorithm based on neural
network and label correlation. +e algorithm design mainly
includes making reasonable use of the underlying

correlation between teaching pressure factors, pruning ad-
ditional features, exploring the correlation degree of the
labels corresponding to the influencing factors, and
reconstructing the feature set of factor attributes. Figure 3
shows the flow of the multilabel learning algorithm.

During the training of the learning algorithm, a binary
classifier is firstly trained for the label corresponding to each
influencing factor, to obtain the predicted label Bi

′(1≤ i≤ x) of
each sample.+en,Bi

′ is combined with each sample feature to
form the augmented feature sets of training samples and test
samples (CAF

TR and CAF
TE). Based on CAF

TR , the classAi(1≤ i≤ y) is
obtained through label training. Finally, label Bi

′(1≤ i≤ x) is
predicted for CAF

TE based on Ai. +e additional feature in-
formation of each label can be expressed as

Rj � B − bj . (15)

+e additional feature information of each influencing
factor is pruned to lower the probability of noise of the
additional information, reduce the dimensionality of label
information, and simplify the entire algorithm. Figure 4
shows the flow of pruning. Out of the 249 teachers selected
for this research, 205 provided effective responses.

Firstly, the original training samples are divided into a
training set CTR and a verification set CVE in a ratio of 8 : 2.
Next, a binary classifier is trained on the training set CTR,
and the binary classifier corresponding to the label kj of the
j-th factor is denoted as Aj. +en, the label set of CVE is
verified. F1 is introduced to measure the hardness of the
label:

F1 �
2 · PR

PR + RE
. (16)

+is paper adopts the following pruning formula to
judge whether the label is prone to prediction failure:

b
d

� kj|F1 Aj, C
VE

 ≥Ψ, 1≤ j≤y . (17)
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Figure 2: Flow of variable selection and linear regression.
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Let Ψ be the preset threshold of F1; F(Aj,, CVE) be the F1
of kj; andΨj be the threshold. IfΨi>Ψj, the label kj of the j-th
factor has a high confidence; if Ψi<Ψj, kj is error-prone and
should not be adopted as additional information.

Considering the inconsistency between the labels cor-
responding to different factors, this paper directly uses the
predicted labels of these factors to train the label learning
algorithm. +e additional feature set of the influencing
factors is constructed on RBF neural network.

As shown in Figure 5, the RBF neural network contains
three layers: an input layer, a hidden layer, and an output
layer.+e hidden layer is activated by an RBF. Let o and ω be
the center and expansion constant of the RBF, respectively.
+en, the main forms of the RBF can be expressed as

ψ at(  � exp −
1

2ω2g
2

 , (18)

ψ at(  �
1

1 + exp g
2/ω2

 
, (19)

ψ at(  �
1

�������

g
2

+ ω2
 . (20)

Formulas (18)–(20) are Gaussian function, inverse sig-
moid function, and quasi-multi-quadratic function, re-
spectively. Note that g � ||at-o||; the smaller the value of ω,
the narrower the function, and the higher the selectivity.
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Training a multilabel learning model requires a lot of
distinguishable information. To acquire more distinguish-
able information, the feature set containing the label attri-
bute of each factor needs to be reconstructed, and the
essential attributes of each label should be extracted from the
original data on the corresponding teaching pressure factor.
Fully considering the binary features of factor labels, this
paper denotes the sample instances belonging to label bl as
Hw and those not belonging to that label as Xl. +en, Hl can
be defined as

Hl � ai| ai, Bi(  ∈ C, bl ∈ Bi . (21)

Xl can be defined as

Xl � ai| ai, Bi(  ∈ C, bl ∉ Bi . (22)

Next, k-means clustering is adopted to capture the at-
tributes of Hl and Xl. Hl is divided into fl

′ nonintersecting
clusters with the cluster heads of {hl

1, hl
2, . . . , hl

f}, while Xl is
divided into fl

″ nonintersecting clusters with the cluster
heads of {xl

1, xl
2, . . . , hl

f′}. Among the multilabel learning
samples of teaching pressure factors, |Xl|<< |Hl| normally
holds. +is leads to the imbalance between positive and
negative labels among the learning samples. To solve the
problem, it is assumed that the number of positive labels
equals that of negative labels:

fl � fl
′ � fl
″. (23)

Let η ∈ [0, 1] be the ratio parameter controlling the
number of clusters.+en, the number of clusters ofHl and Xl
can be configured by

fl � η · min Hl


, Xl


  . (24)

+e augmented feature sets CAF
TR and CAF

TE are imported to
the neural network. +e number of nodes on the hidden

layer is set to 2fl. +e original vector of the basis function for
label yk is denoted as Dl � {hl

1, hl
2, . . . , hl

f+, xl
1, xl

2, . . . , hl
f′},

i.e., the center of radial basis. LetDIS(A-Dl) be the Euclidean
distance from the eigenvector to the original vector. By
taking Gaussian function as the activation function, the
activation function of the hidden layer can be expressed as

u(A) � exp −
DIS A − Dl( 

2

2Φ2j
⎛⎝ ⎞⎠. (25)

+e formula of the expansion parameterΦj(k≤ k≤ y) can
be rewritten as

Φ �
2 · 

y−1
i�1 

y
j�i+1 DIS Di, Dj 

y(y − 1)
⎛⎝ ⎞⎠. (26)

Formula (26) shows thatΦj is the mean distance between
the original vectors of two basis functions. +us, the
mapping from the additional feature set of the original
influencing factors to the feature set of labels can be de-
termined, once the center and the expansion parameter of
the radial basis are confirmed. Let RVi

l be the true value of
the i-th sample Ai on label bk. +en, the mapping from a
specific feature set to the output layer can be given by

sl(A) � 

fl

l�1
vlul(A), (27)

where V� [v1, v2, . . ., vfl] is the weight matrix calculated by
the minimum quadratic sum of squares:

GQ �
1
2



f

i�1

fl

l�1
sl Ai(  − RV

i
l 
2
. (28)

If RVi
l � 1, Ai belongs to label bl; if RVi

l � 0, Ai does not
belong to label bl.

4. Experiments and Result Analysis

To facilitate subsequent modeling and data description, this
paper defines nine independent variables for teaching
pressure: overload pressure W1, working duration pressure
W2, further education pressureW3, title evaluation pressure
W4, pressure of changing teaching method W5, pressure of
conflict between personal life and work W6, interpersonal
interaction pressure W7, pressure from personal quality
defects W8, and student management pressure W9.

+e nine teaching pressure factors were organized into a
comparative series, and the quantified values B of teachers’
self-efficacy were grouped into a reference series. By the
averaging method, the sample data on the teaching pressure
and self-efficacy in a fixed period were nondimensionalized,
to facilitate comparison and eliminate the influence of di-
mensionality. Table 1 shows the difference series between
reference and comparative series. Further, the correlation
coefficient and correlation degree between the two series
were computed. +e maximum and minimum absolute
differences of the matrix were 0.513 and 0.003, respectively.
Table 2 ranks the correlation degrees.

u1 (A) u2 (A) un (A)

sl (A)

a1 a2 am

Input layer

Hidden layer

Output layer

bl

…

…

…

Figure 5: Structure of RBF neural network.
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When the correlation degree is greater than 0.8, the
teaching pressure factor is very highly correlated with self-
efficacy; when the correlation degree is between 0.8 and 0.75,
the two have a relatively high degree of correlation; when the

correlation degree is between 0.75 and 0.7, the two have a
general degree of correlation; when the correlation degree is
between 0.7 and 0.65, the two are barely correlated; when the
correlation degree is smaller than 0.65, the two are weakly
correlated. As shown in Table 2,W5,W3,W4,W6, andW1 are
main influencing factors, while W2, W7, W8, and W9 are
barely correlated factors.

+e ridge variable selection model was constructed by
ridge trace method and cross validation. Figure 6 presents
the ridge traces of main influencing factors. From top to
bottom, the five curves represent the regression curves of
W5, W3, W4, W6, and W1 generated with different values of
the ridge regression parameter. As the parameter increased
continuously from zero, the regression linearity of W5 in-
creased temporarily and then declined continuously, while
the regression curves of W3, W4, W6, and W1 remained
stable. +e standard regression coefficient only oscillated
very slightly.

+e correlation degree between teaching pressure factors
and teachers’ self-efficacy was predicted by the constructed
model, with the data samples of 2014–2017 being the
training set and those of 2018–2021 being the testing set.
Tables 3 and 4 present the correlation analysis results based
on multiple linear regression and RBF neural network, re-
spectively. +e two tables display the error, relative error,
and MRE between the training set results and the test set
results.
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Figure 6: Ridge traces of main influencing factors.

Table 1: Difference series between reference and comparative series.

Year 2008 2009 2010 2011 2012 2013 2014
W1 0.1358 0.0265 0.1254 0.0956 0.2561 0.0524 0.0365
W2 −0.3254 −0.3325 −0.4251 −0.3126 −0.3265 −0.3142 −0.3326
W3 0.1325 0.1246 0.0352 0.1264 0.1052 0.0562 0.0751
W4 −0.185 −0.172 −0.212 −0.118 −0.105 −0.106 −0.145
W5 −0.3625 −0.4526 −0.2514 −0.3625 −0.3514 −0.2875 −0.2956
W6 −0.362 −0.195 −0.254 −0.324 −0.156 −0.236 −0.152
W7 −0.3625 −0.1542 −0.5214 −0.3261 −0.2517 −0.3625 −0.4582
W8 −0.3625 −0.3624 −0.1652 −0.2547 −0.3185 −0.2674 −0.2854
W9 0.2145 0.3614 0.1247 0.2851 0.0147 0.1504 0.0536
Year 2015 2016 2017 2018 2019 2020 2021
W1 0.0395 0.1625 0.1524 0.1326 0.1254 0.1145 0.1025
W2 −0.2315 −0.1958 −0.1625 −0.0325 0.0254 0.2685 0.3965
W3 0.0856 0.0625 0.1132 0.1052 0.2514 0.3251 0.1025
W4 −0.131 −0.102 −0.045 −0.006 0.028 0.165 0.153
W5 −0.2415 −0.1958 −0.1925 −0.1746 0.1634 0.2135 0.0195
W6 −0.241 −0.362 −0.251 −0.162 0.125 0.256 0.482
W7 −0.1362 −0.2574 −0.3615 −0.1625 0.1254 0.2856 0.3471
W8 −0.3846 −0.1824 −0.2851 0.1358 0.3541 0.1254 0.2614
W9 0.0471 0.0851 0.1246 0.0258 0.0214 0.0254 0.0362

Table 2: Correlation degree ranking.

Factor W1 W2 W3 W4 W5

Correlation degree 0.7528 0.5712 0.8124 0.7846 0.8328
Ranking 5 8 2 3 1
Factor W6 W7 W8 W9

Correlation degree 0.7656 0.6943 0.5482 0.6814
Ranking 4 6 9 7
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To verify its effectiveness, our model was compared with
six other multilabel learning algorithms through simulation,
namely, binary relevance, classifier chains, calibrated label
ranking, random k-labelsets, machine learning–k-nearest
neighbors (ML-KNN), and machine learning–decision tree
(ML-DT).+e performance was evaluated by five metrics: A:
ratio of difference; B: error ratio of top-ranking label; C:
mean distance between predicted label set and actual label
set; D: error ratio of the ranking of error-prone labels; E:
correct ratio of the ranking of high confidence labels. +e
simulation results of different models are displayed in Ta-
ble 5. It can be seen that ourmodel performed better than the
6 contrastive algorithms on all five metrics. Hence, the al-
gorithm performance can be improved by fully utilizing the
label correlations corresponding to the influencing factors.

Table 6 compares the runtime before and after pruning.
Before the operation, the algorithm was highly complex.
After the operation, the runtime was greatly shortened and
was linearly correlated with the scale of the labels

corresponding to the influencing factors. Because of the
rising prediction accuracy of correlation degree, the pro-
posed algorithm has an ideal overhead of time complexity.

5. Conclusions

+is paper mainly analyzes and evaluates the relationship
between teaching pressure and self-efficacy of college
teachers based on artificial neural network. Firstly, the au-
thor created a GRAmodel for the teaching pressure and self-
efficacy of college teachers and detailed the analysis pro-
cedure. Next, the possible multicollinearity of the GRA
model was tested in two steps: computing the Pearson
correlation coefficient and calculating the VIF.+en, a linear
regression model was established based on Lasso variable
selection model and ridge regression variable selection
model and used to eliminate the multicollinearity between
various teaching pressure factors in the GRA model. Finally,
a multilabel learning algorithm was developed based on
neural network and label correlation to automatically mine
the correlations between the various teaching pressure
factors and teachers’ self-efficacy.

+rough experiments, the difference series between
reference and comparative series, as well as correlation
degree ranking, were obtained. +e results show that
overload pressure W1, further education pressure W3, title
evaluation pressure W4, pressure of changing teaching
method W5, and pressure of conflict between personal life
and work W6 are the main influencing factors, while
working duration pressure W2, interpersonal interaction
pressureW7, pressure from personal quality defectsW8, and
student management pressure W9 are barely correlated
factors. After that, the ridge traces were plotted for the main
influencing factors. +e correlation analysis results were
obtained based on multiple linear regression and RBF neural
network. Moreover, the error, relative error, and MRE be-
tween the training set results and the test set results were

Table 5: Simulation results of different models.

Algorithm number A B C D E
1 0.201 0.345 0.452 0.162 0.674
2 0.202 0225 0.452 0.172 0.758
3 0.203 0.225 0.554 0.254 0.721
4 0.208 0.255 0.462 0.185 0.754
5 0.198 0.275 0.465 0.185 0.752
6 0.185 0.265 0.462 0.178 0.756
7 0.195 0.254 0.462 0.162 0.758

Table 6: Runtime before and after pruning.

Dataset number 1 2 3 4 5
After 10.7524 6.5241 5.2682 0.3527 96.2548
Before 31.0214 13.2547 12.5846 1.0245 231.5648
Ratio 2.95861 2.04562 2.32641 3.01542 2.52162

Table 3: Correlation analysis results based on multiple linear regression.

Year 2014 2015 2016 2017
True value 5887.2 6025.2 5986.1 5968.4
Predicted value 5748.5824 5864.2548 5896.2547 5869.3251
Error −28.2 −235.1 −96.2 −149.2
Relative error (%) 0.5 3.6 1.7 2.3
MRE (%) 2.2
MAE 125
RMSE 148
Note. MRE: mean relative error, MAE: mean absolute error, RMSE: root mean square error.

Table 4: Correlation analysis results based on RBF neural network.

Year 2018 2019 2020 2021
True value 6652 6694 — —
Predicted value 6724 6958 7223 7452
Error 74 253 — —
Relative error (%) 1.2 4.2 — —
MRE (%) 2.56 — —
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displayed, and the runtime before and after pruning was
summarized. +e experimental results fully demonstrate the
effectiveness of our model.

Data Availability

+e data used to support the findings of this study are
available from the author upon request.
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