
Research Article
An Online Kernel Adaptive Filtering-Based Approach for
Mid-Price Prediction

Shambhavi Mishra ,1 Tanveer Ahmed ,1 Vipul Mishra ,1

Sami Bourouis ,2 and Mohammad Aman Ullah 3

1School of Engineering and Applied Sciences, Bennett University, Greater Noida 201310, India
2Department of Information Technology College of Computers and Information Technology, Taif University, Taif 21944,
Saudi Arabia
3Department of Computer Science and Engineering, International Islamic University Chittagong, Chittagong, Bangladesh

Correspondence should be addressed to Mohammad Aman Ullah; aman_cse@iiuc.ac.bd

Received 30 August 2021; Revised 25 October 2021; Accepted 27 November 2021; Published 15 February 2022

Academic Editor: Punit Gupta

Copyright © 2022 Shambhavi Mishra et al. +is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

+e idea of multivariate and online stock price prediction via the kernel adaptive filtering (KAF) paradigm is proposed in this
article. +e prediction of stock prices is traditionally done with regression and classification, thereby requiring a large set of batch-
oriented and independent training samples. +is is problematic considering the nonstationary nature of a financial time series. In
this research, we propose an online kernel adaptive filtering-based approach for stock price prediction to overcome this challenge.
To examine a stock’s performance and demonstrate the work’s superiority, we use ten different KAF family of algorithms. In this
paper, we take on this challenge and propose an approach for predicting stock prices. To analyze a stock’s performance and
demonstrate the work’s superiority, we use ten distinct KAF algorithms. Besides, the results are analyzed on nine-time windows
such as one day, sixty minutes, thirty minutes, twenty fiveminutes, twenty minutes, fifteenminutes, tenminutes, five minutes, and
one minute. We are the first to experiment with several time windows for all fifty stocks on the Indian National Stock Exchange, to
the best of our knowledge. It should be noted here that the experiments are performed on stocks making up the main index: Nifty-
50. In terms of performance and compared to existing methods, we have a 66% probability of correctly predicting a stock’s next
upward or downward movement. +is number clearly shows the edge that the proposed method has in actual deployment.
Furthermore, the experimental findings show that KAF is not only a better option for predicting stock prices but that it may also be
used as an alternative in high-frequency trading due to its low latency.

1. Introduction

Time-series prediction is prevalent in economics and in-
vestment research. Stock price prediction is one of the most
popular applications of time-series prediction. Its success
stems from its ability to reduce asset management costs,
market impacts, and volatility risks [1]. It is a commonly
held notion that stock markets are complex, volatile, and
chaotic [2].+emarkets, in our perspective, are made up of a
variety of factors that influence stock movement. Predicting
stock’s value at any given time in the future is, therefore, an
important problem of academia and industry. Previous

studies [3] have shown that the prediction of stock prices,
particularly with the nonstationary and the nonlinear nature
of the underlying asset, is challenging. In this regard, several
models have been proposed, but the problem is nowhere
near its end [4], and a substantial improvement is required.
In addition, studies have also extended the problem by
predicting option prices, volatility [5], and so on. +is
significant body of work demonstrates that stock price
prediction remains a significant issue requiring solutions to
a wide range of problems.

As discussed in the previous paragraph, stock price
prediction is a significant challenge. In this regard, a plethora
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of techniques have been used for predicting stock prices,
such as neural network (NN), support vector machine
(SVM), genetic algorithm, fuzzy logic, and Bayesian model
[6]. However, getting an optimal solution is still a long way
to go. During our literature review, we discovered that
current research has overlooked kernel adaptive filtering
(KAF) and has not thoroughly investigated this paradigm for
financial time-series forecasting, especially stock prediction.
Although there are a few introductory studies [7], a large-
scale comprehensive evaluation lacks literature. With this
shortcoming in mind, we would like to emphasize that KAF
can be an effective stock prediction tool. +e following
observations serve as the foundation for our argument: first,
KAF-based algorithms have a faster convergence rate; that is,
the algorithm requires fewer iterations. Second, KAF has
demonstrated excellent performance in nonstationary time-
series prediction [8]. +ird, KAF algorithms exhibit uni-
versal function approximation properties useful in highly
dynamic environments [9]. Lastly, KAF has been used ex-
tensively in chaotic time-series prediction [10, 11]. Hence, it
is also worth exploring the idea in financial time-series
prediction. +erefore, in this article, we use the concept of
KAF to examine and comprehend the real-time movement
of stock prices. In addition to KAF being one of the largest
unexplored paradigms in stock prediction, the literature
review revealed one more issue. It contains one of the
problems related to batch learning. We believe that se-
quential learning is the best tool rather than batch learning
for financial time-series forecasting. +is is mainly because a
financial time series is nonstationary. We further argue that
expecting a model trained on offline samples to perform
excellently in a real situation is a slippery slope.+e rationale
here is supported by the work presented in the literature,
which claims that online learning is the best way to un-
derstand and interpret nonstationary data behavior [12].
Consequently, studies have shown that online learning can
be an effective method [13]. It is based on the concept of
sequential measurement (training is performed sample-by-
sample and in real time). Various scenarios can easily be
added, and the algorithm adjusts the weight vector to
provide accurate predictions. As a result, in order to solve
the issue stated in the article, we enhance the KAF idea with
online learning.

With respect to the challenges and the ideas discussed in
this section, we present an online KAF algorithms to predict
the price of stock. +e use of KAF techniques to stock price
prediction is still limited [7, 14]. However, the concept is
based upon this study is precedent and builds upon it to
extend the application of KAF to a broader range of envi-
ronments and contexts. With data taken from Nifty-50, the
Indian Stock Index, we first build our dataset consisting of
prices collected at a time window of one day, sixty minutes,
thirty minutes, twenty five minutes, twenty minutes, fifteen
minutes, ten minutes, five minutes, and one minute. +ese
windows are chosen as they are some of the most common
windows looked at by day traders. It should be noted here
that the prices are collected for a total of fifty companies
(they make up the main index: Nifty-50). Subsequently, we
apply the ideas on each of the time windows and predict the

next potential number for the “mid-price” of the stock. With
comprehensive numerical investigation, we have found that
the proposed trading algorithm has an extra 16% edge in the
field, thereby making it an effective method capable of
generating good returns in the long run. +e following are
the paper’s key contributions:

(1) A novel KAF-based online method for forecasting a
stock’s mid-price is introduced. We look at two
situations in which the mid-price is measured as
(high + low)/2 and (open + close)/2, respectively.+e
main motivation for looking into mid-price was that
mid-price time series is less noisy than close-price
time series.

(2) With a comprehensive investigation performed on
nine different time windows. We discover the best
window for predicting stock prices. In the literature,
several authors have focused on predicting daily
prices [15, 16]. We, however, show that focusing
efforts on other time windows could also be optimal.

(3) In this article, ten different KAF algorithms are used,
and a detailed analysis is presented to validate the
work. To the best of our knowledge, an investigation
of this magnitude eludes literature.

+e following section has been divided into sections.+e
methods proposed by various researchers in the subject of
stock prediction are discussed in Section 2. Proposed
methodology is described in Section 3. +e experiments
performed with different KAF algorithm, and their results
are included in Section 4. Finally, in Section 5, the con-
clusions and future scopes are described.

2. Related Work

+e work of other authors in the field of stock prediction is
discussed in this section. Predicting stock has remained one
of the nontrivial issues of the literature [17]. Previous studies
have shown that the prediction of stock prices is difficult due
to the inherent nonstationary behavior in the data [18].
Several studies [5] have shown that stock prediction is
challenging and noisy. Various linear techniques such as
correlations, discriminating analysis, autoregressive models,
and moving averages have also been studied in the past [19].
Machine learning (ML) has been a popular field in time-
series prediction in recent years. ML-based techniques are
explored heavily as they can recognize complex patterns in
stock prices [20]. Due to the nonlinear and time-varying
nature of time-series, there has recently been a surge in
demand for online prediction algorithms [21]. Online al-
gorithms use the sequential calculation to achieve reliable
and faster outcomes [13]. In this regard, several techniques
have been developed, such as online support vector re-
gression (SVR), NN [8], and KAF algorithms [10]. NN
methods take a lot of processing power and have a slow
convergence rate [22]. SVR provides superior applicability;
however, it is not appropriate for huge datasets. Further-
more, the multifilter neural network (MFNN) is investi-
gated, and it is discovered that MFNN outperforms SVR,
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random forests, and other neural network-based ap-
proaches. +e use of convolutional neural networks (CNN)
has also been explored to predict the next-day prices [23].
CNN outperformed for multimodality images in the bio-
medical domain [24, 25]. Furthermore, for stock price
prediction, long short-termmemory (LSTM) is applied [26].
+e authors used an LSTM network with a single layer and
200 nodes in [27]. Furthermore, the network employs a
single-layer LSTMwith 140 nodes [28]. In contrast to using a
deep architecture with four LSTM layers and 96 nodes in the
hidden layers, each LSTM layer was further followed by a
dropout layer [29].

Adaptive filtering has been proven to be a preferable
choice for streaming data having nonstreaming behavior
[11, 30, 31]. For sequential stock prediction, KAF can be
used by exploiting market interdependence. Fast con-
vergence, low computational complexity, and nonpara-
metric behavior make KAF a preferable choice [10, 32].
One research [33] focuses on adaptive asynchronous
differential evolution with trigonometric mutation mod-
ified mutation operation, and adaptive parameters mod-
ified the convergence speed and diversity. In [34], the
authors proposed meta-cognitive recurrent kernel online
learning for multistep predictions of stocks. Although
these studies show the potential that KAF has, KAF has not
been investigated thoroughly in the context of stock price
prediction. +ough there are few studies in literature fo-
cusing on the area, large-scale investigation eludes liter-
ature. Nevertheless, we must point that the work presented
in [14] proposes a two-phase method for stock prediction.
First, sequential learning using KAF was applied to learn
the underlying model for each stock separately. In the
second phase, to improve prediction, real time models are
learned from different stock. In [7], the authors proposed
the idea of multikernel adaptive filters for online options
trading. +e method was applied to Taiwan composite
stock index. Garcia-Vega et al. [35] presented a multi-
kernel learning approach to overcome the two primary
concerns with KAF: kernel size and step size. Despite the
fact that these papers concentrate on using the KAF
paradigm to forecast stock prices, none of them validates
the paradigm’s effectiveness on a large-scale dataset.
Moreover, the impact of multiple time windows is not
considered. In our opinion, testing the method on multiple
time windows that are often looked at by traders is of
prime importance.

3. Methodology

3.1. Brief Discussion on KAF. We work with online learn-
ing-based KAF techniques, as discussed in Section 1. +e
purpose of KAF is to learn with well-known input-output
mapping f: S⟶ R, and it contains sequence of data such
as ((s1, d1), (s2, d2), . . . , (si, di)), where, S⊆RL is the input
space, si, i � 1, . . . , n, is the system input at sample time,
and di is known as desired response. In reproducing
kernel Hilbert space (RKHS) F, KAF transforms the data
into a set of points. Inner products can then be used to
solve the problem. +ere is no need to do expensive

computations in high-dimensional space, owing to the
famous “kernel trick.” In KAFs, generally, the computa-
tion involves the use of a kernel. +e following equation is
an example of a kernel:

κ< s, s′ > � exp
s − s′

����
����
2

􏼒 􏼓

σ2
,

(1)

where σ represents the kernel width.

3.2. Kernel Adaptive Filtering Algorithms. In this subsection,
we briefly describe the ten different KAF methods.

3.2.1. Least Mean Square (LMS). +e LMS algorithm,
according to [36] employs a finite impulse response (FIR)
filter, also known as a traversal filter, whose output is based
on a linear combination of the input presented in the fol-
lowing equation:

yi � ϖT
(i−1)si, (2)

where ϖ(i−1) represents the weight vector at iteration (i − 1).
+e following equation contains the main idea of the LMS
algorithm:

ϖ0 � 0,

ei � ti − ϖ(i−1)si,

ϖi � ϖ(i−1) + ηeisi,

(3)

where η and ei stands for step size and prior error. +e
weight-update equation findings were represented in the
following equation:

ϖi � η􏽘
N

i�1
eisi, (4)

+e following equation represents the inner product:

t � ϖi(s) � η􏽘
n

i�1
ei <si, s>,

ei � ti − η 􏽘
n−1

i�1
ei <si, s>.

(5)

3.2.2. Kernel Least Mean Square (KLMS). To derive KLMS
[36], the input (si) is converted into F as ϕ(si). Using LMS,
we can now rewrite the input and output mapping as
follows:

ϖ0 � 0,

ei � di − ϖT
(i−1)ϕ(i),

ϖi � ϖ(i−1) + ηeiϕ(i),

(6)

where ei is represented as the prediction error, η is the size of
every step, and ϕ(si) is defined as the transformed filter input
at a certain point in time or iteration i. Equation (7) compute
the result, where we can use the famous kernel tricks.
Consequently, the model now becomes
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f0 � 0,

ei � di − fi−1 si( 􏼁,

fi � fi−1 + ηeiκ<si, .>.

(7)

In KLMS, a new unit of the kernel is assigned to all new
samples points with ηei as the coefficient value. Following
the radial basis function (RBF) described in this section, the
system is represented as follows:

fi � 􏽘

i

j�1
oj(i)κ<sj, .>. (8)

+e coefficients o(i) and the centers C(i) � s(j)􏼈 􏼉
i
j�1 are

saved inside the storage during the training process.

3.2.3. Kernel Affine Projection Algorithm (KAPA). KAPA
[37] is used where we want to improve the performance
owing to the gradient noise. In KAPA, we estimate using the
weight vector ϖ and minimise the cost function with the
sequences d1, d2􏼈 􏼉 and ϕ(1),ϕ(2)􏼈 􏼉 as shown below

minϖemp d − ϖTϕ(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
. (9)

We replace the concept of covariance and cross variance
matrix-vector by local approximation directly from the data
using stochastic gradient descent summarized in

ϖi � ϖ(i−1) + ηψ(i) d(i) − ψ(i)
Tϖ(i−1)􏽨 􏽩, (10)

where ψ(i) � [ϕ(i − K + 1), . . . , ϕ(i)] and K is the obser-
vation and regressor.

3.2.4. Leaky Kernel Affine Projection Algorithm (LKAPA).
LKAPA [37] is the extension of KAPA as discussed in
Section 3.2.3.Based on the selected kernels, the feature space
can be infinitely dimensional, where the weight updation
task is difficult. In the common consideration, the solution is
the modification in equation (10) as follows.

+e weight vector in Equation (11) is calculated using the
following criteria:

ϖi � 􏽘
i

j�1
oj(i)ϕ(i), ∀i ≥ 0. (11)

Equation (12) is used to reduce the following objective
function from the perspective of empirical risk
minimization:

minϖemp d − ϖTϕ(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ Λ‖ϖ‖2. (12)

+en, we get the updated weight, and it is shown in

ϖi � (1 − Λη)ϖ(i−1) + ηψ(i) d(i) − ψ(i)
Tϖ(i−1)􏽨 􏽩, (13)

where ψ(i) � [ϕ(i − K + 1), . . . ,ϕ(i)].

Finally, coefficient oκ(i) is updated as

oκ(i) �

k � i, η di − 􏽘
i−1

j�1
oj(i − 1)ki,j

⎛⎝ ⎞⎠

for i − K + 1≤ k≤ i − 1{ }(1 − Λη)ok(i − 1) + η d(k) − 􏽘
i−1

j�1
oj(i − 1)κk,j

⎛⎝ ⎞⎠.

1≤ k< i − K + 1(1 − Λη)ok(i − 1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

3.2.5. Normalized Online Regularized Risk Minimization
Algorithm (NORMA). Similarly, the LKAPA [37] extension
comes in NORMA, and also it is related to KAPA discussed
in Section 3.2.3. It also includes the regularization and
nonfunctional approaches.

3.2.6. Quantized Kernel Least Mean Square Algorithm
(QKLMS). Quantization techniques are used in various
applications such as digitization, data compression, speech,
and image coding. QKLMS is a famous algorithm proposed
in [11], which deals with the issue of data redundancy. +e
computational complexity of QKLMS and KLMS is nearly
identical. +e main difference between the two algorithms is
that QKLMS uses redundant data to update the coefficient of
closest centre in real time.+e following equation represents
the main idea using the quantization operator:

ϖ0 � 0,

ei � ti − ϖT
(i−1)ϕ(i),

ϖi � ϖ(i−1) + ηeiQ[ϕ(i)],

(15)

where Q[.] signifies the quantization in feature space F. +e
following equation summarises the learning rule for
QKLMS:

f0 � 0,

ei � ti − fi−1 si( 􏼁,

fi � fi−1 + ηeiκ Q si􏼂 􏼃( 􏼁.

(16)

3.2.7. Fixed Budget Quantized Kernel Least Mean Square
Algorithm (FBQKLMS). +e FBQKLMS [38] deals with the
increasing popularity of online kernel approaches. +e
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suggested algorithm uses a significance measure-based
pruning criterion based on the weighted contribution of
existing data centres.

3.2.8. Kernel Adaptive Filtering with Maximum Correntropy
Criterion (KMCC). +e fundamental goal of the method is
to maximise the crossentropy between the desired di and
actual output yi [39]. Using the MCC technique [39] and
SGD, the algorithm can be written as follows:

ϖ0 � 0,

ϖ(i+1) � ϖi + η
zκσ ti,ϖ

T
i ϕ si( 􏼁􏼐 􏼑

zϖi

; � ϖi + η exp
−e

2
i􏼐 􏼑

2σ2
⎛⎝ ⎞⎠eiϕ(i)⎡⎢⎢⎣ ⎤⎥⎥⎦,

. . . � η􏽘
n

i�1
exp

−e
2
i􏼐 􏼑

2σ2
⎛⎝ ⎞⎠eiϕ(i)⎡⎢⎢⎣ ⎤⎥⎥⎦,

yi � η􏽘
n

i�1
exp

−e
2
i􏼐 􏼑

2σ2
⎛⎝ ⎞⎠eiκ< si, sn >⎡⎢⎢⎣ ⎤⎥⎥⎦, ei � di − yi,

(17)

where η is the step size and σ is the kernel width. +e entire
amount of error and prediction calculation can be sum-
marized in equation (17).

3.2.9. Multikernel Normalized Least Mean Square
(MKNLMS). According to [30], the KNLMS algorithm is
used to create dictionaries based on the coherence re-
quirement. Here, we explore at KNLMS through the per-
spective of MKNLMS-CS (multi-kernel normalised least
mean square algorithm with coherence-based sparsifica-
tion). Consider the empty dictionary at the initial stage
represented as (Jcs

0 :� ∅), by which the H0 is shown as an
empty matrix as M∗. Consider the Hilbertian unit for
simplification of κ(s, s) � 1,∀s ∈ s, which is satisfied by the
Gaussian kernel. n is added into Jcs

n in the case when the
defined condition holds in the proposed methodology
presented in equation (18)

‖κ‖max :� maxm∈Mmaxj∈Jcs
n
κm sn, sj􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, ≤ ϕ, n ∈ N, (18)

where η ∈ [0, 2] and Λ> 0 denotes the step size and regu-
larization parameter, respectively. δ > 0 is the threshold.

Considering

If equation (18) is satisfied,Jcs
n+1 :� Jcs

n ∪ n{ }. If equation
(18) is not satisfied, jcs

n+1 :� jcs
n ∪ n{ }:

Hn+1 :� Hn + η
tn − <Kn, Hn >

Kn

����
����
2

+ Λ
Kn,

Hn+1 :� Hn + η
tn − <Hn, Kn >

Kn

����
����
2

+ Λ
Kn,

(19)

where Hn :� [Hn0] and Kn :� [Knkn] with kn :� [κ1 (sn,

sn), κ2(sn, sn), κ3(sn, sn), . . . κM(sn, sn)]T where 0 ∈∈RM

is the zero vector. +e value of M for KNLMS is 1.

3.2.10. Probabilistic Least-Mean Square Filter (PROB-LMS).
PROB-LMS [31] gives adaptable step-size to the LMS al-
gorithm in Section 3.2.1. and also applied in the stationary
and nonstationary environment. +e LMS filter can be
approximated effectively using a probabilistic approach. It
includes a step-size LMS algorithm that may be modified as
well as a measure of estimation uncertainty. It also maintains
the standard LMS’s linear complexity.

3.3. Problem Formulation. Our main objective, is to predict
the stock’s mid-price as stated in Section 1. +e motive of
stock price prediction is to calculate stock’s future values
depending on historical values. For this, we measured the
percentage change in mid-price. As a result, we used the
concept of order n auto-regression to predict future stock
price changes. +e sample regression equation is shown in
Table 1. Multivariate financial time-series estimation often
employs this formulation [40, 41] to predict future values of
a time series. +e formulation shown in Table 1 is done by
considering daywise mid-prices. It should be noted here that
the same procedure was used for all time windows. As a
result, the problemwas rephrased as follows: autoregression-
based next percentage prediction. +e exact mid-price of the
stock may therefore be easily calculated using the percentage
change. Figure 1 depicts the proposed approach’s overall
methodology. +e Nifty-50 dataset was used in the exper-
iments. We consider two different aspects for the mid-price
prediction: (i) (high + low)/2 and (ii) (open + close)/2. As a
result of this calculation, we created the dataset and pre-
processed it using nine prediction windows (one-minute,
five-minutes, ten-minutes, fifteen-minutes, twenty-minutes,
twenty-five minutes, thirty-minutes, sixty-minutes, and one
day). Further, the percentage change was calculated for each
time windows, andmin-max normalization was applied.+e
selection of embedding dimension (M) is a difficult task.We
choose different M ∈ {2, 3, 4, 5, 6, 7} and set the maximum
dictionary size for required algorithms to 500 with Gaussian
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kernel for each time window. In Table 1, we have shown an
example considering the time window of 1 day (Stock-
TITAN). +e error estimation was performed with the
help of ten different KAF algorithms for each time win-
dow. For example, the performance of each algorithm is
analyzed to find which embedding dimension produces
the best result. After getting the best embedding di-
mension for each algorithm, the embedding dimension
that produces the best result and the corresponding al-
gorithm is selected.

4. Experiments and Results

4.1. Dataset Description. +is section explores into the
specifics of the dataset that was used to test the applicability
of the proposed method. For this study, we used data from
the National Stock Exchange of India. +e main index of
NSE, Nifty-50, has 50 stocks. Based on the average and total
daily turnover for equity shares, Nifty-50 is India’s largest

stock exchange. We collected data between January 01,
2021, and May 31, 2021, from 9:15 a.m. to 3:30 p.m. In
addition, experimentation data are available at https://
shorturl.at/lnvF2. +e original data included open, high,
low, and close (OHLC) prices and were available for one
minute. +e original data consisted of OHLC prices and
were available for one minute. +e dataset is generated and
preprocessed in accordance with the nine prediction
windows (one minute, five minutes, ten minutes, fifteen
minutes, twenty minutes, twenty five minutes, thirty
minutes, sixty minutes, and one day). Data samples range is
different according to their time window. As pointed out in
Section 1, we are trying to predict the mid-price with two
different scenarios: (high + low)/2 and (open + close)/2. For
this, firstly we calculated the percentage change of mid-
price. All data values were normalized between zero to one
range. Ten different KAF algorithms were used to the final
preprocess data and each stock and analyse the compar-
ative performance.

Table 1: A one-day time frame (Stock-TITAN).

Day High price Low price (high + low)/2 Change in price
1 day 1573 1555.95 1564.475 −0.765 4
2 days 1567 1538 1552.5 0.430 0
3 days 1576.85 1541.5 1559.175 2.079 6
4 days 1621.35 1561.85 1591.6 −2.456 6
5 days 1570 1535 1552.5 −0.908 2
6 days 155.3 1521.5 1538.4 NA
If we choose M� 3, then Input� [{−0.765 4, 0.430 0, 2.079 6}.], Output� [{−2.456 6}].

Nifty-50 Dataset
Open | High | Low | Close

Mid-Price Prediction

(High+Low)/2 and (Open+Close)/2

Perform percentage change and apply
min-max normalization

Selection of different embedding
dimension M ∈ {2,3,4,5,6,7}

Kernel adaptive filtering (KAF) algorithms

Predict and Evaluate the model

Figure 1: Proposed mid-price prediction framework.
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4.2. Evaluation Criterion. To measure and analyse the effi-
cacy of various KAF algorithms, standard assessment criteria
are used. In Table 2, yi and di represent the actual and
predicted output. n is the time step, and

Di �
0, otherwise,

1, yi − yi−1( 􏼁 di − di−1( 􏼁≥ 0,
􏼨 (20)

Calculating the evaluation metrics with Nifty-50.

(1) +e parameter listed in Table 3 were tuned manually.
+e parameter description for ten different algo-
rithms are presented in Table 3. +ese values were
found after multiple rounds of experimentation.

(2) For the error values, we applied the methods to all
stocks and tried to quantify the predictive perfor-
mance via the metrics discussed in this section. In
total, we get 50 × 3 (one for each stock) error values
for MSE, MAE, and DS, respectively.

(3) +en, for each of the 50 stocks, error estimation was
performed using nine different prediction windows
for ten different KAF algorithms.

(4) Finally, we used the average of all fifty-error metrics
for a single time window and a single stock to reach
the final value, which is presented in Tables 4 and 5.
On all 50 stocks, the provided number represents the
models’ overall predictive capacity.

4.3. Prediction, Convergence, and Residual Analysis. In this
subsection, we examined prediction, converge and residual
analysis with the help of KAF algorithms. Regarding this, we
have shown the prediction graphs with the KAPA algorithm
(discussed in Section 3.2.3) for one stock (TITAN). Figure 2
shows the results for (high + low)/2, while Figure 3 shows the
results for (open + close)/2. +e predictive curve suits well
against the original curve, as can be seen from the prediction
graphs. It is worth noting that we have only given results for
one prediction window (thirty-minutes) with one stock
(TITAN). However, we must note that other stocks in the
dataset produced similar result. +e prediction graphs
clearly show that the predictions are not exact, although they
are close. To be precise, the numbers for MSE and MAE are
presented in Tables 4 and 5. We must point out that getting
accurate value in financial time series forecasting is tough.
+e goal has always been to get close enough values.
+erefore, the result that we achieved shows the good
predictive capability of the work. Figures 4 and 5 show the
convergence graph for mid-price for (high+low)/2,
(open+close)/2, respectively. We have provided the results
using the KAPA algorithm with only one prediction window
(thirty minutes) and one stock (TITAN), similar to the prior
scenario. +e algorithm converges quickly, as evidenced by
the graphs, at the 1000th data point. We can see in KAF
algorithms capacity to adapt and converge quickly. One
more important point to note from the convergence graphs
is that although there is some fluctuation in the graphs, it is
nevertheless acceptable. +is is because there will be noise in
the new data and minor changes are inevitable. In addition

to the results discussed so far, we have complemented the
analysis by presenting the distribution of error residuals in
Figures 6 and 7. It can be seen from the figures that residuals
follow a normal distribution. Moreover, the outliers are also
less. Furthermore, the residual’s variance is low, demon-
strating the KAF algorithm’s superior prediction capability
and potential in predicting the next immediate, mid-priced
occurrence. Directional symmetry is used to determine the
continuity of actual and expected prices in terms of stock
movement. It is a measure for determining a model’s ability
to predict a stock’s direction. We examined the ten different
algorithms mentioned in Section 3 to better understand the
actions of a stock’s movement. +e experiment revealed that
using KNLMS, we have a 66% percent chance of accurately
predicting the next up or down movement. +is is shown in
Table 5. +e best result is obtained at the window of ten
minutes, and the worst result is obtained at the one-minute
window. From the table, it is also visible that there is a big
difference in the number obtained for the one minute
window and that for the rest of the windows.+is is expected
as there is much noise in a minute, which indeed affects
prediction. It should be noted here that literature often
ignores looking at these different time windows. Work
mostly focuses on predicting daily prices [42, 43]. We
discovered the perfect balance by playing with various time
windows. Furthermore, when trading, it is recommended to
strike a balance between error minimization and directional
symmetry.

4.4. Comparative Evaluation of KAF Algorithms. Since we
have used ten algorithms in our experimentation, it be-
comes essential to compare their performance. In this
context, we present the topic in two separate situations.
First, we analyze the results considering mid-price as
(high + low)/2 to find the best algorithm. In the next
scenario, we tried mid-price using (open + close)/2. Ta-
bles 4 and 5 show the outcome of this experiment. In
terms of MSE and MAE, the tables show that KAPA
outperforms other algorithms. When it comes to direc-
tional symmetry, we can see a contradiction. In direc-
tional symmetry, we see a conflict. Here, NORMA and
KNLMS give the best performance.

4.5. Comparison with Methods of a Similar Kind. We have
also compared the result with other existing techniques such
as [28, 29] and [44]. +ese are some of the most recent deep
learning (DL)-based algorithms for predicting stock prices.
It should be noted here that these methods were trained and
tested using 80:20 splits for 25 epochs. +e time taken to
train and make prediction was recorded. Specifically, these
methods [28, 29] and [44] were reimplemented based on the
architecture details and hyper-parameters setting found in
the respective papers. +e Nifty-50 dataset was used to train
all of the methods. To ensure consistency across different
methods for experimentation, we use sixty-minute time
periods, for fifty stocks. All of the methods’ results were then
compared to the proposed method. Table 6 contains the
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results. +e table’s data clearly demonstrate the proposed
method’s superiority over a number of other ways

4.6. Effect of Different Kernels. In Table 7, we can see the
effect of different kernel methods. For this test, we used a
thirty-minute time window (Stock-TITAN) with the algo-
rithm KAPA and analyzed the best performance of RBF

kernel in terms of MSE. +at is why, we have chosen RBF
kernel (gauss) for each algorithm.

4.7. Experimentation with Dictionary Size. We also con-
ducted experiments with various dictionary sizes. +e result
for this test is shown in Table 8. For this test, we used a thirty-
minute time window with the algorithm KMCC. It is visible

Table 2: Evaluation metrics.

MSE MAE DS
􏽐

n
i�1 (yi − di)

2 (1/n) 􏽐
n
i�1 |yi − di| (1/n) 􏽐

n
i�1 Di

Table 4: Result in terms of MSE, MAE, and DS for mid-price (high + low)/2.

Time window MSE Best algorithms out of ten
discussed (according to MSE) MAE Best algorithms out of ten

discussed (according to MAE) DS Best algorithms out of ten
discussed (according to DS)

1 day 0.030 6 KAPA 1.412 9 KAPA 0.537 8 NORMA
60 minutes 0.0091 KAPA 0.509 6 KAPA 0.559 2 NORMA
30 minutes 0.005 3 KAPA 0.359 5 KAPA 0.555 8 PROB-LMS
25 minutes 0.004 7 KAPA 0.331 4 KAPA 0.557 8 NORMA
20 minutes 0.003 8 KAPA 0.290 9 KAPA 0.555 0 NORMA
15 minutes 0.003 0 KAPA 0.253 4 KAPA 0.555 6 NORMA
10 minutes 0.0021 KAPA 0.201 9 KAPA 0.547 2 NORMA
5 minutes 0.001 2 KAPA 0.144 7 KAPA 0.534 2 PROB-LMS
1 minute 0.000 27 KAPA 0.059 0 KAPA 0.549 6 NORMA

Table 3: Parameter description of KAF techniques for NSE-50 dataset for mid-price.

Parameter KAPA KLMS KMCC KNLMS FBQKLMS LKAPA LMS NORMA PROB-LMS QKLMS
(σ) 5.0 7.0 4.0 7.0 5 6 — 3 — 4
(η) 1.5 1.7 1.7 1.7 0.2 0.03 — — — 0.2
(ϵ) 1E-4 — — 1E-4 0.4 — — 1.5 — 0.5
(β) — — — — 0.85 — — — — —
(Λ) — — — — — 1E-2 — 1E-2 0.4 —
(σ2n) — — — — — — — — 2 —
(σ2d) — — — — — — — — 3 —
mu0 0.2 — — 2 — — 0.2 — — —
(P) 20 — — — — 20 — — — —
τ — — — — — — — 5000 — —
tcoff — — — — — — — 4 — —
σ � kernel width, σ2n � variance of observation noise, σ2d � variance of filter weight diffusion, η� step-size, ϵ� regularization parameter, Λ�Tikhonov
regularization, tcoff � learning rate coefficient, τ �memory size (terms retained in truncation), mu0� coherence criterion threshold, P�memory length,
nu� approximate linear dependency (ALD) threshold, and β� forgetting factor for influence.

Table 5: Result in terms of MSE, MAE, and DS for mid-price (open + close)/2.

Time window MSE Best algorithms out of ten
discussed (according to MSE) MAE Best algorithms out of ten

discussed (according to MAE) DS Best algorithms out of ten
discussed (according to DS)

1 day 0.032 4 KAPA 1.298 9 KAPA 0.597 0 NORMA
60 minutes 0.009 0 KAPA 0.4541 KAPA 0.636 7 NORMA
30 minutes 0.004 8 KAPA 0.316 8 KAPA 0.654 7 NORMA
25 minutes 0.0041 KAPA 0.290 3 KAPA 0.659 2 NORMA
20 minutes 0.003 3 KAPA 0.254 3 KAPA 0.658 0 NORMA
15 minutes 0.002 6 KAPA 0.219 8 KAPA 0.665 2 KNLMS
10 minutes 0.001 7 KAPA 0.174 7 KAPA 0.666 6 KNLMS
5 minutes 0.000 9 KAPA 0.122 4 KAPA 0.662 8 KNLMS
1 minute 0.000 25 KAPA 0.055 2 KAPA 0.601 8 KNLMS

8 Scientific Programming



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

M
SE

200 400 600 800 1000 1200 14000
Instances

Figure 4: Error convergence for one stock (TITAN) using KAPA (high + low)/2.
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Figure 3: Prediction for one stock (TITAN) using KAPA (open + close)/2.
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Figure 2: Prediction for one stock (TITAN) using KAPA (high + low)/2.
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Figure 5: Error convergence for one stock (TITAN) using KAPA (open + close)/2.
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Figure 6: Error residuals for one stock (TITAN) using KAPA (high + low)/2.
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Figure 7: Error residuals for one stock (TITAN) using KAPA (open + close)/2.
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from Table 8 that increasing the dictionary size leads to an
improvement in the system’s performance. It should be
noted here that when the size is 1000, the performance has
fallen. +e reason for this behavior could be the erratic
behavior of the stock, the presence of noise, or too much
irrelevant data. +e exact reason is unknown. However, it is
worth noting that with a dictionary size of 500, for fore-
casting a single stock, execution time is 0.82 seconds. +is
low number clearly shows the advantage one can achieve in
high-frequency trading.

4.8. Important Note: Error Minimization and Profitability.
We obtain an MSE of 10–4 as the lowest error. We can
observe from Tables 4 and 5 that KAPA gives best results in
terms of MSE and MAE. It is important to note that, in the
one-minute time window, we reached a minimum error
value. From Tables 4 and 5, we can also see that going down
the column (for MSE and MAE only), the results are im-
proving with the one-minute time window giving the best
figures. However, because the time window is one minute,
the volatility is low enough that decreasing error will not
result in too much benefit. Moreover, there is too much
noise while trading at one-minute window. To look at it
another way, one-minute volatility is lower, resulting in very
close predictions. However, in a low-volatility environment,
the chances of taking a position and making a highly
profitable trade are also low.

5. Conclusion and Future Work

+is paper focuses on predicting a stock’s mid-price. Pre-
dicting a financial nonstationary time series is an open

fundamental and a nontrivial problem of literature. To
address this, we proposed a framework based on online
learning-driven KAF algorithms. In the proposed work, ten
different KAF algorithms were evaluated and analyzed on
Indian National Stock Exchange (Nifty-50). In contrast to
the existing methods, experiments are performed on nine
different time windows. +is was done keeping in mind the
method’s applicability in intraday and swing trading. Pre-
vious studies often underestimated the importance of in-
traday time windows. We, therefore, tried to bridge this gap
through the work presented here. +e experimental results
show the superiority and predictive capabilities of the work.
+e KAF class of algorithms was also discovered to be not
only efficiently working in execution time but also providing
best results of error minimization, demonstrating their
importance in high-frequency trading. +e goal of the re-
search was to propose a KAF-based method for the pre-
diction of stock’s mid-price. +e empirical results on Nifty-
50 dataset show that the proposed method achieved superior
performance over existing stock prediction methods. On
voting schema KAPA shown better prediction performance
with all-time windows, NORMA & KNLMS gave the best
performance in terms of directional symmetry. It is worth
noting that every KAF-based algorithm is hyperparameter-
sensitive. As a result, in the future, we will experiment with
various hyper-parameter optimization approaches in order
to enhance the framework’s predictive capabilities.

Data Availability

+e data used to support the findings of this study are
available from the corresponding author upon request.

Table 6: +e proposed research is compared to different state-of-the-art stock prediction approaches.

Method MSE Execution time (s)
LSTM [28] 0.6831 256.16
LSTM [29] 0.681 7 945.09
LSTM [44] 0.682 4 1770.40
KAPA (proposed method) 0.0091 2.132

Table 7: Effect of different kernel methods on time window of thirty minutes (Stock-TITAN) using KAPA for (high + low)/2.

(High + low)/2 (Open + close)/2
Kernel function MSE MAE DS MSE MAE DS
RBF kernel (Gauss) 0.008120 0.298 57 0.534 21 0.008 27 0.260 47 0.531 88
Anisotropic RBF kernel (Gauss-anis) 0.01919 0.40617 0.515 55 0.025 35 0.348 68 0.579 31
Laplace kernel (Laplace) 0.008128 0.298 72 0.533 43 0.008 28 0.260 61 0.531 10

Table 8: +e influence of dictionary size.

Dictionary size MSE MAE DS Execution time (s)
500 0.014 8 0.368 0.545 8 0.820 2
1000 0.032 3 0.530 2 0.614 3 0.853 3
5000 0.011 37 0.308 0 0.644 6 1.314
+e algorithm chose KMCC (30 minutes).
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