New Teaching Method of Body Training Course for Flight Attendants Based on Computer Multimedia Technology

Chao Jia

College of Cabin Attendant, Binzhou University, Binzhou 256600, Shandong, China

Correspondence should be addressed to Chao Jia; jiachao@bzu.edu.cn

Received 18 February 2022; Revised 26 March 2022; Accepted 28 March 2022; Published 15 April 2022

Academic Editor: Punit Gupta

Copyright © 2022 Chao Jia. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Physical training is a physical and mental training method with certain scientific basis and evaluation standards, and it is also one of the ways to cultivate comprehensive professionals for civil aviation. This paper attempts to incorporate multimedia computing systems into the teaching and learning of flight attendants from training classes, with the aim of tackling the issues that exist at this stage of the educational programme, promoting the standard and effectiveness of teaching and learning. Firstly, the paper explains the crew staff form training concept, including the professional requirements of flight attendants, the concept and characteristics of physical training, and the problems existing in the teaching process and then introduces the instruction system according to the multimedia computing system. Finally, this paper compares it using the classical teaching mode. The outcome of the investigation indicated that about 70% of the students achieved good grades and above with the assistance of multimedia computing devices, which verifies its effectiveness.

1. Introduction

With the advance of S&T and the accelerating rise of the global economic level, the growth status of aviation in the transportation market has become more and more important. The number of civil aviation enterprises has continued to expand, and at the same time, there have been higher requirements for the professional quality of flight attendants. Therefore, more and more colleges and universities have opened aviation majors to train high-quality flight attendants. An excellent flight attendant not only needs to master internal requirements, such as professional service skills, multilingual communication skills, and cabin safety management skills, but also meet strict external requirements (good image, good health, elegant temperament, decent behavior, etc.). As a core course for flight attendant students, the physical training course can not only improve the basic professional requirements of students’ personal appearance, temperament, appearance, etc. but also help students stand out in interviews. However, the current research on the practicality of physical training teaching is insufficient, and many pressing issues remain in the education program, such as the decline of students’ physical quality and lack of learning initiative, teachers’ teaching is too theoretical and simplistic. Due to the lack of practical experience, the course positioning is inaccurate, and the guidance of professional quality and the teaching training of practical training is neglected.

With computer multimedia technology as the core, teaching and training can effectively avoid such problems. It can take students as the main body, give full play to the dominant position of teachers in the teaching process, and transform the teaching focus of physical training from a general direction to individualized learning guidance for students according to their individual differences. It solves the difficulties and problems encountered in the course training through two-way and multidirectional interaction and communication between teachers and students and enables students to achieve a more satisfactory learning effect. It can not only give full play to the aesthetic education function of physical training courses but also help to improve teachers’ professional knowledge and skills, improve classroom teaching effect, cultivate students’ active learning ability, and enrich students’ learning life.
In the last few years, many scholars have conducted research on computer and multimedia technology. Liu discussed the elementary ways and common rules for the usage of multimedia computing devices in creative vision and interactive projects in the context of the Internet. He believed that computer multimedia technology summarizes elements such as text, page layout, animation, etc., in the context of the Internet. It can not only create innovative solutions for the contemporary vision and interactive design but also provide a modern forum for the classical vision and interactive design [1]. Zhu analyzed the advantages of computer multimedia technology in the field of news technology. And based on the wavelet transform theory, he discussed the more convenient methods of graphic image compression and coding in news technology. Through wavelet transform, he decomposed and compressed news graphic data hierarchically. It verifies that the technique can maintain convenient and efficient performance without changing the original data resolution [2]. Sun et al. studied the utilization of computer-aided multimodality teaching platforms in the innovation of university education. He believed that in teaching design, instructors had to consider adequate the reasonable selection and application of multimedia and comprehensively and systematically deal with the relationship between multimedia and other teaching elements [3]. Zhang et al. taught English virtual speech by using computer analysis and interactive methods. He believed that students’ engagement could be encouraged through creative and interactive scenarios that allow them to explore grammatical knowledge and establish better learning skills [4]. Li studied the problem of teaching equipment management. He integrated computer multimedia technology into the development process of teaching equipment management systems, carried out detailed planning and design, and finally verified its effectiveness through experiments [5]. Chen and Huang conceived an electronic instructional system incorporating integrated multimedia applications and conducted an investigation into the quality of the system with the help of a grey correlation analysis algorithm, which resulted in a significant improvement in students’ English exam results against the conventional system, demonstrating the usefulness of the system [6]. Amelia and Harahap believe that innovative methods of interactive multimedia education can help improve students’ motivation to learn maths. He used computers to analyze data from front and follow-up survey fractions in two classes and concluded that the integrated digital computing learning process had an influence on the students’ motivation to learn mathematics [7]. Simarmata et al. believed that the learning model based on computer and multimedia technology can not only reduce the cost of purchasing practical materials but also help students absorb the existing knowledge. Combined with multimedia, it contributes to an efficient learning process and simplifies the management of students’ learning speed [8]. Wirawan et al. used UML and CorelDrawX7 for a multimedia development approach to visual modeling, which was then computer-controlled to provide positive responses for teachers and students. Finally, it was verified through experiments that this application can attract students’ interest in learning mathematics [9].

Chenguang et al. analyzed the research results and current situation of the fusion of teaching and learning of information technologies and maths and proposed a specific maths education pattern based on the multimedia application of information tools. Finally, he tested the presented education format and verified the effectiveness of the proposed mode [10]. To sum up, after several years of exploration, the application of computer multimedia technology has been deeply studied by many scholars, but there are not many pieces of research on it and the teaching of physical training courses for flight attendants.

Therefore, with the purpose of furthering the growth of air flight attendant physical training course teaching, this paper integrates computer multimedia technology. It studies the current situation, problems, practical teaching strategies, and sustainable development of physical training in the current physical training process and proposes a novel teaching research direction. It can effectively enhance the teaching level and educational effect, provide a perfect and improved suggestion for the body training of aviation flight attendants, and can also offer new thoughts towards the research of body shape teaching.

2. Physical Training Teaching Based on Computer Multimedia Technology

2.1. Overview of the Concept of Physical Training for Flight Attendants

2.1.1. Professional Requirements for Flight Attendants

(1) Comprehensive Quality Requirements. The professional characteristics of flight attendants determine the professional characteristics of flight attendants. In terms of professional settings, the flight attendant major belongs to the civil aviation transportation major, and its technical content is significantly lower than that of civil aviation transportation, flight technology, and aircraft manufacturing technology. Flight attendants have essentially applied talents. In order to improve their competitiveness and build their brand image, civil aviation enterprises continuously improve the service quality of flight attendants and have higher and higher requirements for the comprehensive quality of flight attendants. Culturally, it requires proficiency in one or two foreign languages and the ability to communicate with people in foreign languages. At the same time, its body shape, appearance, age, and temperament have become necessary subjects, and even key subjects, for the recruitment of major airlines.

(2) Physical Fitness Requirements. Aviation service profession is a special service industry. When flying at a high altitude, the phenomenon of low pressure and high cold will appear from time to time. For the flight attendants who work at heights all year round, they will be harmful to their bodies. This puts forward very strict requirements on the physical fitness of flight attendants. In the process of work, flight attendants must have enough energy and physical strength to adapt to the differences in the environment and support the body to complete the work perfectly [11]. Therefore, good physical training and physical fitness are the professional requirements for flight attendants. Therefore, due to
the particularity of the working environment, the physical fitness requirements for flight attendants are much higher than those in the general industry.

(3) Image and Temperament Requirements. Image temperament is a comprehensive and concentrated expression of a person’s internal and external cultivation, and a good image has become a more important aspect of the investigation in contemporary social employment. The flight attendant industry, like other service industries, has high requirements for the image of service personnel, and even the flight attendant industry has higher image requirements than other service industries. As shown in Figure 1, flight attendants are required to have outstanding appearance, good figure, and good posture, as well as elegant temperament, decent etiquette, and elegant sentiment.

2.1.2. The Concept of Physical Training. Body is an art that mainly refers to the shape of the body. The body should achieve the harmonious and unified beauty of posture beauty, body beauty, and line beauty. It requires a reasonable match of the human body’s limbs, torso, head, and facial features. The physical beauty of men and women is different. Since ancient times, women have taken curves as their beauty, emphasizing softness and beauty. Men regard strength as beauty, emphasizing roughness, strength, and majesty, as shown in Figure 2. Everyone wants to be fit, graceful, and graceful, which is why people continue to pursue physical beauty. It is mainly composed of the following three aspects. The first is physique, which refers to the basic elements including a person’s height, weight, chest circumference, etc. The second is the body shape, which refers to the proportions of various parts of the body, and the last is posture, which refers to the postures of various basic activities of people.

Cultivating compound talents with good physique, civilized etiquette, and high professional quality is the teaching goal of physique teaching for flight attendants. The flight attendant body training course is a process of all-around professional standard education for the physique, body shape, posture, and etiquette skills of flight attendant majors. Shaping the professional image of flight attendants, cultivating an elegant temperament, and improving the ability to appreciate beauty and create beauty are all inseparable from the study and practice of physical training, such as standing, sitting, walking, etc.

2.1.3. Characteristics of Physical Training. Physical training has a variety of characteristics. Under the guidance of scientific theories such as human anatomy, sports psychology, and aesthetics, the scientific and normative nature of body training is indisputable, and the content and methods of body training are rich and diverse. For example, there are different training methods according to age, gender, training purpose, and training level. If the gender is different, the training method is different. As shown in Figure 3, girls focus more on online training, focusing on bodybuilding, while men focus on strength training focusing on muscle training, and the training intensity is also greater than that of women. The content is also rich and varied, including fitness training for fitness, etiquette training for improving posture, and body sculpting and fat-reducing training for weight loss. In the project, there are exercises for local body parts, such as leg training and waist training, and there is whole body training for the whole body. There are also subdivided exercises such as single, double, and group exercises, freehand and equipment exercises, and fast and slow rhythm exercises. If the physical training is divided into equipment, the content is even more numerous. In short, the physical training content is rich and diverse.

Physical training is artistic. The content of physical training is rich and colorful, and it has its unique role in artistic expression and appeal, which is reflected in the changeable formation, graceful dance, and body shape. On the other hand, music is the soul of physical training, and the action and content of physical training depend on the style of music. Under the influence of music, it can not only improve students’ ability to appreciate music but also cultivate students’ elegant temperament and self-cultivation. As a comprehensive art, physical training has an artistic expression that cannot be replaced by other educational disciplines and cannot be achieved by other art forms in improving people’s quality [12].

Physical training has practical features. It is not limited by climate, venue, and time and has high physical training and exercise value. Physical training such as aerobics, rhythmic gymnastics, and other dynamic learning has the following characteristics: simple and easy to learn, the amount of exercise can be adjusted at will, and the meridians of the whole body can be activated. At the same time, its practical characteristics are also reflected in the following: First, it is conducive to cultivating correct posture, coordination, and accuracy of movements. Second, it promotes the formation of a beautiful posture and elegant demeanor and promotes friendly exchanges among students.

2.1.4. Problems Existing in Physical Training and Teaching of Flight Attendants

(1) Decreased Physical Quality and Learning Initiative of Students. The physical training class has a relatively large amount of exercise and a large amount of learning, and there are individual differences in the physical quality of each student. Faced with unified standards and no scientific and quantitative physical training for a long time, students’ training pressure will increase, and their physical quality and learning initiative will inevitably decline.

(2) Simplified Teaching form. The simplification of teaching forms can be seen from two aspects. On the one hand, teachers’ teaching is still in the traditional teaching mode, resulting in little interest in students’ learning. Instead of using the action-oriented teaching method to improve students’ interest in learning, we can even use the method of situational introduction to let students use their imaginations and let students experience from why to do it to how to...
do it better. Therefore, the first is to change the teaching mode. Once again, in terms of teaching content, the teaching content of aviation service majors is not fully reflected, and the physical training teaching content is not closely related to the flight attendant service career, resulting in a lack of motivation for students to learn. On the other hand, most of the physical training teachers in the flight attendant profession have no work experience in the flight attendant industry. Most of them came from colleges and universities, and they received professional dance education. They had little contact and understanding of body training for flight attendants. In addition, body training for flight attendants did not have a set of suitable body training materials. In such a physical training class, it is either too difficult or too simple.
and there is a very simple and boring mode of progress. These situations are not conducive to the development of students’ professional quality.

(3) Teaching Lacks Practicality. Course content setting and actual work need to be derailed. The trained personnel cannot meet the job requirements of the primary occupational standard of civil aviation flight attendants and cannot meet the actual needs of the airlines for talents [13]. Aviation service is very practical, and physical training should implement the principle of practice into the whole teaching and each teaching link so as to build a perfect practical teaching system.

2.2. Teaching System Based on Computer Multimedia Technology. The teaching system based on computer multimedia technology adds a series of application extension frameworks to the traditional teaching system. It delivers diversified content to students in classroom teaching through computer and multimedia means, including text, video, animation, vocal music, electronic lecture notes, etc. In the teaching process, teachers can use these diversified contents to show students the contents of physical education in an all-around and intuitive way. The system has rich multimedia teaching resources and can interact with students in real time. In a relaxed and entertaining way, students can fully learn the key points of training movements in the simulation training, which helps to understand the characteristics of their own body structure and master the coordination and laws of the body and movements. The teaching system can also store the physical information of each student. According to the individual differences of students’ physical quality, the training content of different difficulties is formulated, which promotes the students to establish a strong interest in physical training in the scientific training teaching system. It mobilizes the enthusiasm of students for physical training and the enthusiasm to cooperate with physical training.

The computer multimedia technology teaching system adopts a three-level client-server system. As shown in Figure 4, on the multimedia server-side, it mainly includes a computer multimedia teaching management subsystem and a computer multimedia real-time interactive subsystem client side. It is mainly composed of the media player and browser. The computer multimedia teaching management subsystem mainly provides functions such as management, query, download, and update of multimedia teaching software.

The frame structure of the computer multimedia teaching management subsystem is shown in Figure 5. Its main function is to manage users, manage multimedia teaching software, and provide online playback, query and update of multimedia teaching software [14].

The energy consumption model of the subsystem is the same as most traditional energy consumption models, the receiver consumes energy to run the receiving circuit, and the transmitter consumes energy to run the transmit amplifier and transmit circuit [15]. According to the different distances between the receiver and the transmitter, the energy control module works in the multipath fading channel model or the free space channel model, as shown in Figure 6:

The distance that the transmitter sends bit data travels, and the energy that the node needs to consume is as follows:

$$E_{TX}(l, d) = E_{elec}(l) + E_{amp}(l, d) = \begin{cases} l \times E_{elec} + l \times \epsilon_{fs} \times d^2, & d \leq d_0, \\ l \times E_{elec} + l \times \epsilon_{mp} \times d^4, & d > d_0, \end{cases}$$

(1)

When selecting clusters and cluster heads, fully consider the relationship between the state of the network and the remaining energy and distance of nodes. For the sink node (base station) located inside the sensing area, according to the network model defined in this paper, it is assumed that in the r round election, k cluster heads are selected, and each cluster contains (N/k) – 1 member nodes and one cluster head node. According to the energy consumption Formula, we can get the energy consumed by the cluster head node in a round as follows:

$$E_{CH} = \left(\frac{n}{k} - 1 \right) l E_{elec} + \frac{n}{k} l E_{DA} + l E_{elec} + l \epsilon_{fs} d_{toBS}^2,$$

(4)

where k is the number of cluster head nodes, E_{DA} is the energy consumed by the cluster head node for data fusion, d_{toBS} is the average distance between the cluster head node and the base station, and

$$d_{toBS} = \frac{1}{2} \sqrt{\sum x^2 + y^2} \frac{1}{A} dA = 0.765 \frac{M}{2}.$$

(5)
The energy consumed by a noncluster head node in a round is as follows:

\[E_{\text{nonCH}} = l \times E_{\text{elec}} + l \times \varepsilon_f s \times d_{\text{toCH}}^2, \]

(6)

where \(d_{\text{toCH}} \) is the average distance from the nodes in the cluster to the cluster head. Assuming that the nodes in the cluster are uniformly distributed and the distribution density is \(\rho(x, y) \), there are the following:
\[d_{toCH}^2 = \int_{x=0}^{x_{max}} \int_{y=0}^{y_{max}} \left(x^2 + y^2 \right) \rho(x, y) \, dx \, dy = \frac{M^2}{2nk} \] \hspace{1cm} (7)

So the energy consumption in a single cluster is approximately as follows:

\[E_{\text{cluster}} = E_{\text{CH}} + \frac{n}{k} E_{\text{nonCH}}. \] \hspace{1cm} (8)

In one round of operation, the energy consumption of the entire network is as follows:

\[E_r = I \left(2nE_{\text{elec}} + nE_{\text{DA}} + \varepsilon f_s k^2 d_{\text{toBS}}^2 + nd_{\text{toCH}}^2 \right). \] \hspace{1cm} (9)

We take the derivative of \(E \) with respect to \(k \) and let the result be 0, that is,

\[E_r = l \varepsilon f_s \left(d_{\text{toBS}}^2 - \frac{N}{2\pi} \frac{M^2}{k^2} \right) = 0. \] \hspace{1cm} (10)

It can be obtained as follows:

\[k_0 = \sqrt{\frac{n}{2\pi}} \frac{M}{d_{\text{toBS}}}. \] \hspace{1cm} (11)

Substituting \(d_{\text{toBS}} \) into formula (11) yields

\[k_0 = \sqrt{\frac{n}{2\pi}} \frac{2}{0.765} \] \hspace{1cm} (12)

It can be seen that in the set scenario, the optimal number of cluster heads is only related to the number of nodes in the cluster. With the operation of the network, the number of clusters in the monitoring area needs to be dynamically adjusted to prolong the survival time of the network. In addition, the information of the nodes (such as remaining energy, location, etc.) in the cluster can be sent to the aggregation point in a piggyback way so as to obtain accurate information without increasing the overhead of the system.

In the cluster-based topology control method, the size and number of clusters have a great impact on the system performance. Whether the number of clusters is too large or too small, it will cause an imbalance of energy consumption in the network and an increase of system energy consumption. Considering that the wireless sensor energy is limited, the optimal number of cluster heads in each round of operation should minimize the total energy consumption of the network in this round, which is defined as follows:

\[f(k) = (k - k_0) \times E_r'. \] \hspace{1cm} (13)

We can know that

\[(k - k_0)^2 \times (k + k_0) \geq 0. \] \hspace{1cm} (14)

It can also be converted to the following:

\[\left(k - \sqrt{\frac{N}{2\pi} \frac{M}{d_{\text{toBS}}}} \right) \times \varepsilon f_s \left(d_{\text{toBS}}^2 - \frac{N}{2\pi} \frac{M^2}{k^2} \right) \geq 0. \] \hspace{1cm} (15)

Suppose \(k \neq k_0 \), so \(f(k) > 0 \), satisfies the sufficient condition for the existence of the minimum value of the continuous function, and \(k_0 \) is the optimal number of cluster heads.

After the network nodes are divided into several clusters, the cluster head needs to consider tasks such as collecting data in the cluster and communicating with the sink node. It requires the cluster head to have sufficient energy, and the probability function of constructing the cluster head is as follows:

\[f(i) = \alpha f_1(i) + \beta f_2(i) + \gamma f_3(i), \] \hspace{1cm} (16)

\[f_1(i) = \frac{E_i}{(1/m) \sum_{i=1}^{m} E(i)}, \] \hspace{1cm} (17)

\[f_2(i) = \frac{(1/N) \sum_{i=1}^{N} d(i,k)}{(1/m) \sum_{i=1}^{m} d(i,k). \] \hspace{1cm} (18)

\[f_3(i) = \frac{(1/N) \sum_{i=1}^{N} d_{\text{toBS}}(i)}{d_{\text{toBS}}(i)}, \] \hspace{1cm} (19)

\[\alpha + \beta + \gamma = 1, 0 \leq \alpha, \beta, \gamma \leq 1. \] \hspace{1cm} (20)

The definition of each parameter of formulas (16) to (20) is shown in Table 2.

Among them, a larger \(f_1(i) \) value indicates that the node has sufficient energy and is more competent to act as a cluster head node. The larger the \(f_2(i) \) value, the smaller the Euclidean distance between nodes in the cluster, the smaller the energy consumed during intracluster communication, and the more suitable this stage is to act as the cluster head node. The large the \(f_3(i) \) value is, the closer the node is to the sink node, the more suitable it is to act as the head node.

3. Comparative Experiment of Computer Multimedia Technology Teaching and Traditional Teaching

This paper takes the first-year aviation students as the experimental objects, and the sample size is 100. Among them, there are 50 students in class A and 50 students in class B. A uses the computer multimedia technology teaching system to assist in the physical training course, and B uses the traditional teaching mode to carry out the physical training course. The students of the two classes had never participated in the physical training course before the experiment, so their understanding of the theoretical knowledge and practical skills of physical training was basically the same, and they were at the same starting point.

3.1. Experiment Preparation. In order to improve the accuracy of this experiment and reduce the error, a statistical survey was carried out on the body shape of the students in class A and class B who participated in the experiment before the experiment started. The statistical results are shown in Tables 3 and 4.

It can be seen from Tables 3 and 4 that the \(P \) values (parameters for judging test results) at the significant level of the boys and girls in classes A and B are all greater than 0.05
in terms of age, height and weight. It shows that the body shape of the students in the two classes is not significant and the difference is small.

3.2. Teaching Assessment. The teaching assessment tests the teaching effect and students’ physical training results from three aspects: body shape, limb coordination, and muscle strength. The assessment results are shown in Figures 7–9.

As shown in Figure 7, there are 18 students with excellent grades, 16 students with good grades, 13 students with passing grades, and 3 students with unqualified grades in the body shape teaching assessment of Class A assisted by computer multimedia technology. Under the traditional teaching mode, there are 12 students with excellent grades, 18 students with good grades, 13 students with passing grades, and 10 students with failed grades.

As shown in Figure 8, there are 15 students with excellent grades, 20 students with good grades, 11 students with passing grades, and 4 students with unqualified grades. Under the traditional teaching mode, there are 11 students with excellent grades, 20 students with good grades, 8 students with passing grades, and 11 students with failed grades.

As shown in Figure 9, there are 20 students with excellent grades, 18 people with good grades, 9 people with passing grades, and 3 people with unqualified grades in the muscle strength teaching assessment of Class A assisted by computer multimedia technology. Under the traditional teaching mode, there are 14 students with excellent grades, 17 students with good grades, 8 students with passing grades, and 11 students with failed grades.

3.3. Teaching Satisfaction Survey. The teaching satisfaction survey means that after a semester of teaching practice, students rate the curriculum form, teacher demonstration level, training difficulty, and quantity under the teaching mode. There are 5 grades in total, which are dissatisfied, general, relatively satisfied, satisfied, and very satisfied. The comprehensive statistical results are shown in Figure 10.

As shown in Figure 10, the number of students who are dissatisfied with the curriculum form, teacher demonstration level, training formulation difficulty, and quantity under the computer multimedia technology-assisted teaching is 2. The average number is 3 people, the number of people who are relatively satisfied is 8 people, the number of people who are satisfied is 11 people, and the number of people who are very satisfied is 26 people. The number of students who are dissatisfied with the curriculum form, teacher demonstration level, training difficulty, and quantity under the traditional teaching mode is 10. The general number is 18, the relatively satisfied number is 10, the satisfied number is 7, and the very satisfied number is 5.

4. Discussion

The following conclusions can be drawn through the comparative experimental data of the computer multimedia technology-assisted teaching mode and the traditional teaching mode and the comparative experimental data of the satisfaction survey:

(1) In terms of students’ assessment results, the number of students with good grades and above in the body shape assessment based on computer multimedia technology-assisted teaching accounted for 68% of the whole class. 70% of the class members have good grades and above in the physical coordination assessment. 76% of the whole class have a good grade and above in the muscle strength assessment.
However, under the traditional teaching mode, the number of students with good grades and above in the physical shape assessment only reached 60% of the whole class. Only 62% of the whole class had good grades and above in the examination of body coordination and muscle strength.

(2) In terms of teaching satisfaction, 90% of the students are satisfied with the teaching mode based on computer-based multimedia technology-assisted teaching. General and dissatisfied people accounted for 10%. In the traditional teaching mode, only 44% of the students are satisfied with the teaching mode.
and above, and 56% of the students are not satisfied with the teaching mode.

While keeping other experimental conditions the same, the entire comparative experimental data shows that, through the teaching practice of different technical modes, both in terms of students' assessment performance and teaching satisfaction, the teaching assistant mode under the perspective of computer multimedia technology is more superior. Compared with the traditional teaching mode, the physical training performance of flight attendants based on computer multimedia technology can be significantly improved. Diversified teaching materials also enhance students' interest and initiative in learning.

5. Conclusion

With the progress of the times and the high-level development of society, the market needs more and more high-quality flight attendants. Physical training can improve people's posture and temperament from the inside out and is a compulsory course for cultivating high-quality flight attendants. Physical training based on computer multimedia technology can not only scientifically enhance the physical quality of students but also improve students' posture and temperament.

There are still many deficiencies in this study. The depth and breadth of the research in this paper is not enough, some interfering factors involved in the teaching practice process are not considered, and the evaluation of the teaching mode is also restricted by many factors. And the author's academic level research is also limited. In this paper, the research on computer multimedia technology teaching aid systems is still in the preliminary stage. In future work, the system performance will be improved from more perspectives based on the existing technology and level, and the teaching method of the body training course for flight attendants will be continuously optimized.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare no conflicts of interest.

Authors’ Contributions

The authors have seen the manuscript and approved it for submission.

Acknowledgments

This work was supported by the Key Projects of Art and Science in Shandong Province in 2020 (No. ZD202008105).

References

