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Intelligent robots are a key vehicle for artificial intelligence and are widely employed in all aspects of everyday life and work, not
just in the industry. One of the talents required for intelligent robots to complete their jobs is the capacity to identify their
environment, which is a crucial obstacle to be overcome. Deep learning-based target identification algorithms currently do not
fully leverage the link between high-level semantic and low-level detail information in the prediction step and hence are less
successful in recognizing tiny target objects. Target recognition via vision sensors has also improved in accuracy and efficiency
because of the development of deep learning. However, due to the insufficient usage of semantic information and precise texture
information of underlying characteristics, tiny target recognition remains a difficulty. To address the aforementioned issues, we
propose a target detection method based on a jump-connected pyramid model to improve the target detection performance of
robots in complex scenarios. In order to verify the effectiveness of the algorithm, we designed and implemented a software system
for target detection of intelligent robots and performed software integration of the proposed algorithm model with excellent
experimental results.(ese experiments reveal that, when compared to other algorithms, our suggested algorithm’s characteristics
have higher flexibility and robustness and can deliver a higher scene classification accuracy rate.

1. Introduction

Intelligent robots have become widely employed in many
industries as a result of the fast expansion of the economy in
recent years, as well as the rapid emergence of artificial
intelligence [1]. (e use of these technologies has increased
the efficiency of automated manufacturing while also sat-
isfying the demand for services in a variety of sectors, hence
improving human life quality [2]. Intelligent robots’ “in-
telligence” is based on their capacity to detect their sur-
roundings and interact with people and objects [3]. Robots
can utilize machine vision systems to grasp information in
the same way that humans rely largely on their eyes to
understand the world and their environment. (e capacity
to swiftly and reliably locate and distinguish things in
pictures is one of the most significant areas of research.

Coverage, surveillance, search, patrolling, monitoring,
and pursuit-evasion are only a few of the decisional issues
that target detection and tracking involve. (e use of

intelligent robotic target detection technology offers a wide
range of applications [4]. In the sphere of security, security
robots may undertake real-time video monitoring of public
locations [5] such as residential neighborhoods, super-
markets, banks, and junctions. Tour guide robots [6] in the
service industry may detect and identify targets in real time,
such as automobiles traveling on campuses or scenic places,
pedestrians arriving and exiting, and attraction signs and
signage, to provide guests with prompt politeness and ad-
vice. In industry, target detection technology [7] for in-
dustrial robots may be utilized for tasks like workpiece
identification and component damage detection, which not
only saves time but also enhances productivity. Figure 1
depicts an intelligent power inspection robot that replaces
manual labour to accomplish automatic detection and in-
telligent analysis of the state of power equipment, therefore
enhancing the grid’s and equipment’s safety. (is has en-
hanced the grid’s and electrical equipment’s dependability
significantly.
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(e objective of target detection entails both identi-
fication and localization [8]. (is signifies that all of the
target categories to be detected in the image have been
recognized, and their locations have been computed. It is
critical to verify that the target is fully and precisely
recognized and that the target’s position is exact enough.
In general, the target’s class must be recognized, the label
must be identified, and the target’s position box must be
defined by the top left and bottom-right coordinates.
Although there are usually just a few target instances in a
picture, the number of alternative places and sizes to
examine is tremendous. In some detection tasks, the
bounding box of the target must be established [9] and
also the position of pose information or certain tiny local
targets must be detected [10]. Once the location of a water
glass has been determined, features such as the orientation
of the handle must be sought to offer the positional pose
information required to grasp the target.

Many classic target detection approaches [11] work well
for fixed targets of a given kind or detection tasks in specific
settings, but they are ineffective for detecting many targets in
complicated surroundings. At the same time, detection
speed is a crucial measure, and real-time target detection is
required in many applications, which classical target de-
tection algorithms are unable to satisfy. Deep learning’s
superior performance in image identification, particularly
convolutional neural networks, has made deep learning-
based target detection and recognition a prominent study
issue in recent years. A deep neural network-based target
identification system for robot situations has been developed
to provide outstanding target recognition performance and
universality. (e following are some of the contributions:

(i) Firstly, we address the problems in the application
of target detection algorithms for mobile robots

(ii) Secondly, we propose a target detection method
based on a jump-connected pyramid model to
improve the target detection performance of robots
in complex scenarios

(iii) (irdly, we design and implement a software system
for target detection of intelligent robots and per-
form software integration of the proposed algorithm
model with excellent experimental results

(iv) Finally, we verify the effectiveness of the algorithm,
experiments were carried out on several different
datasets, and the results confirmed the effectiveness
of the algorithm

(e remainder of our work is organized as follows:
Section 2 shows the related works, Section 3 represents the
methodology that we have adopted for our work, Section 4
explains the experimental work and graphical representa-
tion, and in Section 5, we conclude our work.

2. Related Work

In this section, we discuss works of researchers related to our
proposed work.

2.1. Current Status of Research on Target Detection Methods.
Target detection has been a major research topic in the field of
computer vision. Target detection is used to determine where
targets are in space and which category they belong to: pe-
destrian detection [12], face detection [13], vehicle detection
[14], intelligent surveillance [15], and autonomous driving [16];
among other applications, target detection is nowwidely used in
our daily lives [17]. Traditional target identificationmethods are
divided into three parts, as shown in Figure 2: According to this
figure, potential regions in a given picture, also known as
candidate windows, are selected, and then features from the
targeted area of the image are extracted using a features ex-
traction procedure. After that, other categorization methods are
used.(ey categorize the targeted region based on the results of
focused detection. (ese classifiers are also used to train a
classifier for classification using the obtained information.

2.1.1. Candidate Area Selection. Targets can appear in any
area in the image and be huge or little, and their forms and
dimensions are not set in the image in the real world. To
traverse the entire image without missing any possible lo-
cations, a sliding window approach is used, in which dif-
ferent sizes and aspect ratios are assigned to the windows,
causing them to slide across the image from left to right and
from top to bottom, and then these windows are used for the
subsequent feature extraction work.

Figure 1: Electric power intelligent inspection robot.
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2.1.2. Feature Extraction. (eprocess of translating raw data
into numerical features that can be processed while keeping
the information in the original dataset is known as feature
extraction. It produces better outcomes than applying
machine learning to raw data directly. Many great feature
operators have been extracted throughout years of study,
such as Scale Invariant Feature Transform (SIFT), Histo-
gram of Oriented Gradient (HOG), and others, in addition
to typical features such as color, texture, shape, and gradient.

2.1.3. Classifiers. (e technique of guessing the class of given
data points is known as classification. Targets, labels, and
categories are all terms used to describe classes. (e job of
estimating a mapping function (f) from input variables (X)
to discrete output variables is known as classification pre-
dictive modeling (y). In machine learning, a classifier is an
algorithm that automatically sorts or categorizes data into
one or more “classes.” Support Vector Machine (SVM),
AdaBoost, and other classifiers are commonly utilized.

2.2.(eCurrent State of Research inDeepLearning forRobotic
Target Detection. At present, deep learning-based target
detection algorithms fall into two main categories: one is the
R-CNN family of target detection frameworks based on
combining candidate regions (region proposal); the other is
an algorithm that converts target detection into a regression
problem.

(e two-stage strategy is another name for the candidate
region-based approach. (is is because the whole network is
split into two stages: first the extraction of candidate frames
from the region of interest and then regression on the
target’s class and position. CNNs (convolutional neural
networks) are an important part of candidate region-based
algorithms. Since then, ResNet [18] and Inception v4 [19]
have lowered target detection classification error to less than
4%. (e two-stage based target detection method has
demonstrated considerable gains in speed and accuracy for
the job of picture classification using the new feature ex-
traction model. Because of the completely connected layer of
the CNN, the App-Net algorithm model developed by He
et al. [20] overcomes the problem that the input pictures
must be of the same size. Ross Girshick et al. [21] introduced
the R-CNN algorithm concept in 2014.(is algorithm is also
the heart and soul of the R-CNN algorithm family. (e
R-CNN method calculates the candidate area input frame
for the network model using the selective search [22] al-
gorithm and utilises it as the input for the network model

after normalisation. However, while collecting features from
candidate frames in candidate areas, the R-CNN method
performs a lot of duplicate calculations, slowing down the
network model’s overall detection performance. Ren et al.
[23] introduced the Faster R-CNN target identification
method based on the R-CNN, which is a network model that
contains an RPN (Region Proposal Network), to address this
problem. Instead of using the selective search technique, the
RPN maps the candidate frames to the input picture,
speeding up the detection process. Target detection has
always followed the “region proposal + classification” con-
cept, from R-CNN to Faster R-CNN [24], and this family of
algorithmic models has effectively increased the detection
accuracy and speed of convolutional neural networks for
target detection.

Another method is the regression-based method, also
known as the single-stage method. (e regression-based
detection method divides the feature map into S∗S grids and
performs direct bounding box prediction in each grid,
followed by category prediction and position regression.(e
YOLO algorithm [25] is the first algorithm to propose the
idea of “single stage.” (e YOLO algorithm uses a regres-
sion-based approach. Unlike the two-stage algorithmmodel,
the YOLO algorithm slices the image into S∗S grids and
detects the possible target objects in the center of each grid.
Each grid predicts two scales of bounding box information
and the corresponding object class information. Instead of
using a two-stage candidate region approach, the YOLO
algorithm slices the image into a grid format and predicts the
target object at the center of the grid at multiple scales.
Compared with the candidate region-based target detection
method, the YOLO algorithm significantly improves the
detection speed of the network model while ensuring the
accuracy and basically achieves the requirement of real-time
detection. However, although the YOLO algorithm signif-
icantly improves the detection speed, the grid mechanism
used in the YOLO algorithm is less effective in detecting
small targets that fall in the center of the grid in complex
scenarios with multiple targets. Moreover, compared to the
two-stage target detection based on candidate regions, the
localization of bounding boxes is poor, and the accuracy of
localization is much lower than that of the Faster R-CNN
algorithm model. Moreover, the detection effect is not as
good as expected for objects with more regular shapes of the
target objects. In response to the problems of the YOLO
algorithm model, SSD algorithm model [26] is based on the
YOLO algorithm, by combining the ideas of RPN algorithm
[27], using the prediction on multiscale feature layers, and
using the idea that different scales of the feature map feel
different fields, respectively, on the high-level and low-level
feature map prediction. (e algorithmic model effectively
improves the shortcomings of the YOLO algorithm,
achieving detection accuracy (mAP) of 73.2% and a de-
tection speed of 59 frames per second. However, SSD does
not take small targets into account sufficiently, so detection
of small targets is unsatisfactory, and region regression is
difficult to converge when there are no candidate regions.

In conclusion, despite the rapid advancement of target
detection algorithms, the problem of low detection accuracy
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Figure 2: Traditional target detection flow chart.
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of tiny targets frequently encountered during the work of
deep learning-based target detection techniques when ap-
plied to real-world settings such as robots requires more
investigation.

2.3. Deep Learning Approach. Deep learning’s success in
picture classification and semantic segmentation [28–30]
prompted scientists to apply it to RGB-D data processing.
However, the techniques differ in terms of how depth data is
sent into the network. (e first method is to transmit the
depth stream to the neural network as a fourth channel
alongside the RGB. (e benefit of this technique is that a lot
of work has already been done on 2D RGB picture cate-
gorization. For this application, converting three-channel
input to four channels is pretty simple. As a result, the
challenge of how to encode depth data arose. (e Horizontal
Height Angle (HHA), for example, stores depth information
in three channels [31]. (e HHA is made up of data derived
from depth horizontal disparity, height above ground, and
the angle between the pixel’s local surface normal and
gravity’s direction.

Deep neural networks are used in the work in [32] to
extract features and categorize RGB-D photos. As a feature
extractor, the suggested architecture employs a pretrained
convolutional neural network (CNN).(e network structure
of [33] is as follows: five convolutional layers, three max-
pooling layers to minimize the output dimensionality of the
first, second, and fifth convolutional layers, two fully con-
nected layers at the network’s conclusion, and a softmax
layer for classification. As an activation function, the Rec-
tified Linear Unit (ReLU) is utilized. (e network was
trained for 1000 category classification tasks using the
ImageNet dataset [34]. To adapt RGB-D pictures to Caffe-
Net, Schwarz et al. preprocessed RGB images by merging
them with segmentation masks given with the dataset. (is
method converts RGB pictures to the fixed 227 by 227 di-
mensions that CaffeNet requires. (e same approach is used
to process depth pictures. (e authors offer a unique ap-
proach for depth picture colorization that CaffeNet may use
to transform it to a three-channel representation. (e data
from the RGB and depth photos are thenmerged and used to
classify objects using a Support Vector Machine (SVM).

(e work of [35] takes an approach similar to that of [32]
and enhances performance only via the use of neural net-
works. (e concept of starting with a pretrained model
remains the same, but its design combines two models to do
classification. Similarly, the network is divided into two
streams, each of which is based on CNN that has been
pretrained. (e first channel is used to extract features from
an RGB picture. (e second extract is another collection of
characteristics from the same data frame’s depth data. To
achieve classification, the two sets of features were combined
and fed to a fully connected neural network. SafeNet is also
used in both streams. Unlike earlier research, however, the
authors fine-tune both streams on the RGB-D dataset [36].
(e training process starts with the initialization of two
streams using pretrained weights from CaffeNet, which was
trained on the ImageNet dataset. On the RGB-D dataset, the

second step is to train two streams separately. Combining
the two streams and training the final classification layers
represent the final phase.

2.4. Current State of Research in Small Target Detection.
Although deep convolutional neural networks have made
great progress in target detection, the detection of small
targets still suffers from low detection accuracy. In response,
some scholars have proposed new detection network
models. In 2016, Bell et al. proposed an Inside-Outside Net
(ION) detection model based on the inside and outside
information of the region of interest [37]. In 2017, based on
the Faster R-CNN network, Lin et al. [38] proposed a
Feature Pyramid Network (FPN) with lateral connections,
which utilises multiscale features and a top-down structure
to achieve target detection. However, FPN only uses the top-
level features for detection, ignoring the detailed informa-
tion that is important for small target detection. To address
the problems of the SSD algorithm for small target detection,
Fu et al. [39] proposed a Deconvolutional Single Shot De-
tector (DSSD) algorithm, which changed the base network of
the SSD algorithm to ResNet-101 [40], to enhance the feature
extraction capability of the network. By combining multi-
scale information, the detection accuracy of the model is
improved. However, the above network ignores the con-
nection between low-level features and high-level features
and does not consider the perceptual field size of the con-
volutional operation, so that the convolutional operation
with the same size of convolutional kernels for objects of
different scales cannot extract the object information well.

3. Methodology

3.1. Target Recognition Algorithm for Robot Scenes Using a
Deep Neural Network. Mobile robots must be able to
properly navigate in complicated situations, detect and track
items, avoid obstacles, establish their location, and rebuild
3D visual representations of their surroundings using
cameras and other sensors. (ey may also be asked to
provide humanitarian assistance and conduct industrial
inspections. A service robot would often be expected to
undertake search and rescue, give humanitarian aid in the
care of the elderly via monitoring, and deliver timely in-
formation about their activities. Another possibility is the
growing interest in unmanned aerial vehicles (UAVs) and
vision-assisted driving. Traditionally, these functions have
been provided by vision-based systems using stereovision or
multiview coding. 14 tracking filters such as the Kalman
filter, probabilistic data association filter, and multiple
sensor fusion and state estimation are commonly used.
Simultaneous localization and mapping (SLAM) provide a
means of creating an environmental map identifying im-
portant obstacles, 3D surface reconstruction, and navigation
and understanding the external world for indoor localization
and navigational tasks with no external reference support
like GPS or wireless location support. (e authors of [41]
described a real-time approach for reconstructing 3D sur-
faces from a set of known perspectives using an event-based
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camera. Although visual-inertial/odometry (VI/VIO) relies
on cameras and inertial measuring units (IMUs) to assess a
robot’s state (position, orientation, and velocity), it may also
be used for other tasks including control, obstacle detection,
and avoidance, as well as path planning. References [42, 43]
are excellent resources for a thorough examination of SLAM.

3.2. A Small Target Detection Method Based on a Jump
Connection PyramidModel. Because of the camera distance
and angle, intelligent mobile robots are in the process of
moving, resulting in a large number of small target items that
must be identified while moving. For example, the inspec-
tion robot must gather information on failure locations,
instruments, and equipment, among other things,
throughout the inspection process, which necessitates the
exact recognition of tiny targets in the picture through
implementation. As a result, improving the identification of
tiny targets by intelligent service robots in environmental
awareness is critical. Target detection based on convolu-
tional neural networks has reached great detection accuracy
and detection speed thanks to the widespread usage of deep
convolutional neural networks for target detection. Small
target identification, on the other hand, remains a hurdle.
Small targets are frequently neglected during feature ex-
traction, since they make up such a small amount of the
image. Furthermore, conventional deep convolutional
neural network target identification methods in the network
prediction phase do not fully exploit the link between the
semantic information of higher-level features and the de-
tailed information of lower-level features.

We present a tiny target identification approach based
on the jump-connected pyramid model to overcome these
issues. (e majority of the innovation is in two areas: To
begin, a jump-connected pyramid model is presented as a
way to combine the semantic information of high-level
characteristics with the detailed information of low-level
features in the network. Different steps of deconvolution are
used to downscale the disconnected high-level features to the
same size as that of the low-level features, and a 1× 1
convolution layer is employed to minimize the dimen-
sionality of the high-level features. Finally, the fused features
are subjected to classification and position regression.
Second, three parallel transversal network topologies are
employed in the network model to better extract feature
information corresponding to varied sizes of objects.

3.3. Convolutional Neural Network Fundamentals. (e
technique in this paper’s deep network model is mostly
based on convolutional neural networks. As a result, before
we go over the overall structure of the proposed network
model, as well as the detailed structure of each part and the
training of the model, we will go over the principles and
composition of convolutional neural networks, forward and
backward propagation of convolutional neural networks,
and the basic loss function principles. Deep neural networks
are built on the foundation of convolutional neural networks
(CNNs), which are widely utilized in computer vision,
speech recognition, natural language processing, and

bioinformatics. Convolutional neural networks, in partic-
ular, for computer vision, combine convolution and pooling
to efficiently minimize the number of weight parameters,
even with the direct input of multidimensional pictures,
without requiring a large amount of processing effort.
Furthermore, several types of transformation, such as
translation, angle, and scale transformation scaling, are
extremely invariant to convolutional neural networks. As a
result, the target detection technique proposed in this study
uses a convolutional neural network structure.

Convolutional neural networks work by mimicking the
way humans process information, combining underlying
features of an image through multiple layers of convolu-
tional pooling to form higher-level features that represent
more abstract information such as categories. Convolutional
neural networks consist of a convolutional layer, a pooling
layer, and a fully connected layer. (e network structure
consists of a convolutional layer, a pooling layer, and a fully
connected layer. In detail, a convolutional neural network
generally starts with alternating convolutional and pooling
layers, with the last few layers near the output layer being the
fully connected layers, as shown in Figure 3.

Because the layers of the convolutional neural network
are completely linked, there are a lot of training parameters,
which restricts the depth and complexity of the network
model.(e information links in each space of the picture, on
the other hand, are confined. To obtain global information
about an image, it is not necessary to have information about
the perceptual field of the entire image but only about a
portion of it, and then the global information can be ob-
tained by combining the information of all the local per-
ceptual fields, reducing the number of training parameters
even further.

3.4. General Framework of the Model. To solve the current
problem of low accuracy of small target detection based on
deep learning, we propose a small target detection method
based on the jump-connected pyramid model, whose overall
structure is shown in Figure 4.

Our model uses VGG16 as the feature extraction net-
work and adds a global receptive field (GRF) module to the
feature extraction structure to extract the global feature
information of the network. In the prediction stage of the
network model, a Skip Feature Pyramid Network is used to
fuse the higher-level semantic feature information with the
lower-level feature detail information, and nonmaximum
suppression is used to obtain the final prediction results. As
shown in the figure, the input of the network model is a fixed
size color image, and convolution 4_3, convolution 5_3,
convolution 6_2, and fully connected layer 7 are the con-
volutional layers of the VGG16 based network at different
scales.

3.5. Jump Connection Pyramid Module. Figure 5 depicts the
proposed jump pyramid paradigm in this work. Figure 5(a)
depicts the YOLO algorithm’s model structure, which
predicts using just the final layer of feature layers, with the
benefit of increased detection speed but the downside of
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poorer detection accuracy. Figure 5(b) is an enhancement to
the single-layer feature layer predictionmodel in Figure 5(a),
which predicts higher-level feature layers and hence im-
proves detection outcomes. A top-down pyramid model
with distinct feature layers is shown in Figure 5(c). (is
algorithmic approach takes into account information from
nearby feature maps but overlooks the link between higher-
level semantic information and lower-level specific feature
information. Figure 5(d) shows a jump-connected pyramid
model that employs different levels of deconvolution for
upsampling and a pixel-by-pixel summation approach to
fuse the information between nonadjacent feature maps to
address these issues.

In deep convolutional neural networks, the deeper the
network model is the more abstract feature information is
contained in the image feature layers. For the detection of
small targets, the detailed features contained in the lower
layer feature maps are equally important for target pre-
diction. (erefore, a jump-connected pyramid model is
proposed to fuse the information from the upper and lower
feature maps. Furthermore, this allows the use of scale in-
formation from different feature layers.

(e specific fusion method is shown in Figure 6. First, the
high-level feature maps in the selected feature extraction net-
work are passed through a 256-channel 3× 3 convolution
kernel, changing the number of channels in the different feature
layers to the same to facilitate subsequent fusion calculations.
After obtaining the same number of feature layers, the adjacent
feature maps are upsampled using a 2× 2 deconvolution op-
eration with a step size of 2. Nonadjacent feature maps are also
upsampled using a 4× 4 deconvolution step. (e specific
deconvolution operation is shown in the following equation:

o �
i − f + 2p

s
  + 1, (1)

where i is the size of the input feature map; f is the size of the
convolution kernel; s is the step size of the deconvolution; and
p is the number of pixels filled. (e resulting feature map is
used as the fused feature map by summing over each pixel.

3.6. Global Feel Wild Module. (e top-down network
structure is commonly used in current models based on deep
convolutional neural networks. (is structure neglects the
different perceptual fields for different sizes of objects. To
address the above problem, a parallel aggregation structure
is proposed to enhance the global feature extraction of the
overall model by using different step sizes of null convo-
lution and different sizes of convolution kernels. (e

structure of the global perceptual field module is shown in
Figure 7, which can effectively extract features from objects
of different scales and sizes.

In the network model, we use the structure of null
convolution to improve the perceptual field of the con-
volutional neural network. Assuming an input feature map
of x, a filter of w, and a sampling step of r, for each co-
ordinate i of the output feature map y, the expression for the
null convolution is as follows:

y[i] � 
k

x[i + r · k]w[k]. (2)

For a null convolution with a sampling step of r and a
convolution kernel size of k × k, the perceptual field size is
calculated as follows:

ke � k +(k − 1)(r − 1). (3)

(e change in perceptual field size can be seen as
k × k⟶ ke × ke.

(e global perceptual field module’s detailed structure is
as follows. To begin, by altering the number of channels in
the feature map, a 1 × 1 convolutional layer is utilized to
lower the computational burden of the feature model. (e
visual feature information is then retrieved at various scales
utilizing convolution kernels of 1, 3, and 5 sizes, as well as
cavity convolution of 1, 3, and 5 sizes. (e feature maps are
stitched together in channels after that. Using a 1 × 1
convolution kernel, the number of channels is altered to the
same as that of the original feature map, and the corre-
sponding pixels of the original feature map are overlaid.(is
not only enhances the feature extraction of tiny target ob-
jects but also increases the information in the global per-
ceptual field.

3.7. Loss Functions. To balance the problem of large dif-
ferences in the number of positive and negative samples in
the dataset, this section uses negative sample mining to solve
the problem of imbalance in the extreme foreground-
background categories. In the training process of the net-
work model, instead of using all negative sample bounding
boxes and randomly selecting negative sample bounding
boxes, the loss of negative samples is ranked and the ratio of
positive to negative samples is 3 :1. Before the final pre-
diction, the bounding boxes generated by the network
prediction are bifurcated to filter out the foreground and
background. (is reduces the number of negative samples.
(e loss function of the network is shown in the following
equation:

L pi , xi , ci , ti (  �
1

Nconv


i

lb pi, l
∗
i ≥ 1 (  + 

i

l
∗
i ≥ 1  · lr xi, g

∗
i( ⎛⎝ ⎞⎠

+
1

Np


i

lm ci, l
∗
i(  + 

i

l
∗
i ≥ 1  · lr ti, g

∗
i( ⎛⎝ ⎞⎠,

(4)
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where i is the index of the bounding box in each training
batch of the training set; l∗i is the corresponding category
label of each image annotation in each batch of images; g∗i is
the coordinate label information corresponding to each
image annotation; pi and xi denote the presence and absence
of the target object and the corresponding coordinate in-
formation in the bounding box predicted by the network; ci

and ti are the classes of the objects in the predicted target
bounding box and the corresponding coordinate

information; Nconv and Np are the numbers of positive
sample enclosing boxes in the feature extraction network
and the prediction network, respectively; lb is the cross-
entropy loss of the binary classification of the output of the
feature extraction network, that is, the determination of
whether there is a target in the enclosing box; lm is the
confidence level for the multiclassification task. Similar to
the Fast R-CNN algorithm, lr is the smoothed L1 regression
loss.(e corresponding loss of the model is only calculated if
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the prediction is true when l∗i ≥ 1 in the enclosing box. (e
specific loss function for one of the position loss functions lr
is as follows:
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(5)

where (cx, cy, w, h) are the predicted center coordinates of
the bounding box and the corresponding width and height,
respectively. (gcx, gcy, gw, gh) denote the center coordinates
of the image annotated coordinates of the center of the
bounding box and the corresponding width and height, (dcx,
dcy, dw, dh) denote the center coordinates of the default
bounding box as well as the width and height, and (xcx, xcy,
xw, xh) denote the center coordinates of the predicted
bounding box as well as the width and height.

4. Experiments and Analysis of Results

(e algorithmic model in this research was pretrained on the
ILSVRCCLS-LOC dataset and employed the VGG16 net-
work as the basis feature extraction network. (e method in
this part was tested on the PASCAL VOC and MS COCO
datasets, respectively, to ensure that the algorithm model
was effective. (e PASCAL VOC and MS COCO databases
provide 20 and 80 categories, respectively, with each cate-
gory having its own category information and location label
information.

4.1. Experimental Analysis of the PASCAL VOC Dataset.
(e network model was trained on the PASCAL VOC2007
and PASCAL VOC2012 datasets and tested on the PASCAL
VOC2007 dataset. Figure 8 shows some example images of
the PASCAL VOC dataset. (e algorithm model presented
in this section was trained for a total of 140K iterations. (e
learning rate was set to 10− 3 for the first 80K iterations,
decreasing to 10− 4 for 80K to 100K iterations, 10− 5 for
100K to 120K iterations, and 10− 6 for 120K to 140K
iterations.

As shown in Table 1, the experimental results of the
algorithm model in this section on the PASCAL VOC2007
dataset are compared with those of themainstreammethods.
As can be seen from the table, the final detection results vary

depending on the size of the input images. (e algorithm
model obtained the detection accuracy on the PASCAL
VOC2007 dataset by calculating the average accuracy of the
test set. When the input image size is 320× 320, the accuracy
of the algorithm model in this section is 80.1%, with a speed
of 31.2 frames per second. When the input image is 512× 52,
the average accuracy of the detection is 81.9% and the speed
is 18.2 frames per second. Our algorithmic model is 1%more
accurate than the STDN algorithm with the highest accu-
racy, but the speed of detection is 10.4 frames per second
lower. (e accuracy of the algorithm model and the speed of
detection of the algorithm model are highly dependent on
the size of the input image. When the size of the input image
is large, the number of corresponding pixels in the image will
increase, and the corresponding targets in the image will
occupy more pixels, which will increase the computational
consumption of the feature extraction phase of the network
model and affect the detection efficiency of the network
model. (e algorithm model in this section improves the
detection accuracy of the network model with less reduction
in rate and also validates the effectiveness of our proposed
algorithm model in improving the accuracy of small targets.

Table 2 shows the results of this part for the PASCAL
VOC2007 test set. (e average accuracy rates for each of the
20 categories are shown in the table. (is method’s detection
rate for tiny targets is substantially higher than that of other
standard detection methods, as seen in the table. For all
categories, the average accuracy is 1% greater than the best
algorithm. Small objects such as birds, sheep, and plants had
greater accuracy than other networks by 2.5 percent, 3.2
percent, and 2.7 percent, respectively. (e experimental
findings in this study demonstrate the algorithm’s
usefulness.

4.2. Design of a Target Detection System for Intelligent Mobile
Robot Scenarios. Intelligent mobile robots perform the task
of target detection through three main processes: sensing,
decision-making, and control. (e intelligent mobile robot
uses sensors on its body to obtain information about the
external environment, which is then processed and trans-
mitted to the robot’s decision-making system, where the
decision-making process makes the appropriate decision
and the final decision command controls the mobile robot to
complete the corresponding task.

In order to better validate the effectiveness of the pro-
posed scene target detection algorithm for mobile robot
environment awareness, we have developed and designed a
prototype software system for realistic scene detection using
C++MFC and Python technology.(e software is organized
as follows: firstly, a requirements analysis is carried out to
determine the specific functions to be implemented; then, a
prototype target detection system based on the C++ MFC
software environment is designed and implemented.
Compared to MATLAB and Java, the MFC development
environment is more efficient and allows for simpler and
more user-friendly programming of the window interface
while still meeting the design requirements.(e flow chart of
the system is shown in Figure 9.
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4.3. Recognition of the Target. We use the RTX 2080ti as the
equipment, TensorFlow as the experimental framework, and
the COCO database to test the improved YOLO approach.
Because the experimental scenario is an office, the COCO
dataset was used for a thorough examination. If you need to
add a specific target for identification, just upload the rel-
evant information and change the network structure as
needed. Figure 8 displays the implementation’s final result.
(ere are 90 categories in the dataset, with many small
targets, many single-picture targets, and noncentral distri-
bution for the bulk of the items. It is better suitable for daily
usage andmore difficult to detect. Despite the poor quality of
the experimental apparatus, as illustrated in Figure 8, good
experimental results are obtained.(e algorithm can analyze

416× 416 images at 29 frames per second with up to 55.3
percent mAP@0.5, which is similar to RetinaNet but four
times faster.

4.4. Experimental Analysis of theMSCOCODataset. (eMS
COCO dataset tests were undertaken to further evaluate
the efficiency of the algorithmic model presented in this
section. (e MS COCO dataset offers more categories and
training pictures than the PASCAL VOC dataset, and it
contains data from a variety of complicated scenarios.
Table 3 shows the detection results for the MS COCO
dataset. (e findings for the underlying feature network
and several picture sizes are shown. For an input picture

Figure 8: Example image of a PASCAL VOC dataset.

Table 1: Detection results of different network models for PASCAL VOC2007.

Methods Basic network Accuracy Detection speed Image size
Faster VGG16 73.2 7 1000× 600
Faster Residual-101 [10] 76.4 2.4 1000× 600
R-FCN Residual-101 80.5 9 1000× 600
DSOD300 DS/64-192-4 77.7 17.4 300× 300
YOLOv2 Darknet-19 78.6 40 544× 544
SSD300 VGG16 77.5 46 300× 300
DSSD32 Residual-101 79.5 9.5 321× 321
STDN321 DenseNet-169 79.2 41.5 321× 321
Ours320 VGG16 80.1 31.2 320 × 320
SSD512 VGG16 78.6 19 512× 512
DSSD513 Residual-101 81.5 5.5 513× 513
STDN513 DenseNet-169 80.9 28.6 513× 513
Ours512 VGG16 81.9 18.2 512 × 512
Bold values represent the experimental results of our method.
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Table 2: PASCAL VOC2007 test results for different categories.

Methods category Faster ION MR-CNN YOLOv2 SSD300 SS512 STDN321 STDN513 Ours320 Ours 512
Aero 76.5 79.2 80.3 86.3 79.5 84.8 81.2 86.1 84.5 88.5
Bike 79 83.1 84.1 82 83.9 85.1 88.3 89.3 85.4 86.4
Bird 70.9 77.6 78.5 74.8 76 81.5 78.1 79.5 80.1 84
Boat 66.5 65.6 70.8 59.2 69.6 73 72.2 74.3 73.8 75.8
Bottle 52.1 54.9 68.5 51.8 50.5 57.8 54.3 61.9 60 69.4
Bus 83.1 85.4 88 79.8 87 87.8 87.6 88.5 87.7 88.9
Car 84.7 85.1 85.9 76.5 85.7 88.3 86.7 88.3 88.2 89.2
Cat 86.4 87 87.8 90.6 88.1 87.4 88.7 89.4 89 89.5
Chair 52 54.4 60.3 52.1 60.3 63.5 63.5 67.4 63.8 66.7
Cow 81.9 80.6 85.2 78.2 81.5 85.4 83.2 85.5 84.7 86.4
Table 65.7 73.8 73.7 58.5 77 73.2 79.4 79.5 77.2 73.2
Dog 84.8 85.3 87.2 89.3 86.1 86.2 86.1 86.4 86 87.6
Horse 84.6 82.2 86.5 82.5 87.5 86.7 89.3 89.2 86.4 88.2
M. bike 77.5 82.2 85 83.4 83.9 83.9 88 88.5 86.7 87.5
Person 76.7 74.4 76.4 81.3 79.4 82.5 77.3 79.3 82.5 84.9
Plant 38.8 47.1 48.5 49.1 52.3 55.6 52.5 53 56.1 58.3
Sheep 73.6 75.8 76.3 77.2 77.9 81.7 80.3 77.9 81.3 84.9
Sofa 73.9 72.7 75.5 62.4 79.5 79 80.8 81.4 80.4 78.3
Train 83 84.2 85 83.4 87.6 86.6 86.3 86.6 88.5 87.8
Tv 72.6 80.4 81 68.7 76.8 80 82.1 85.5 79.8 80.8
mAP 73.2 75.6 78.2 76.8 77.5 79.5 79.3 80.9 80.1 81.9

Begin

End 

Input Image

Feature Extraction

Global Perceptual Field Module

Jump Connection Pyramid Structure

Detection Network

Figure 9: Flow chart of small target detection for robot scenes.
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size of 320 × 320 and an evaluation metric of AP0.5 : 0.95,
the detection method in this section has a 28.2% accuracy.
(e detecting algorithm’s accuracy is 33.1% when the
input picture size is 512 × 512 pixels. (e detection al-
gorithm in this section has a recall and accuracy of 2.4
percent and 1.2 percent, respectively, greater than the
STDN algorithm model, where APS denotes the detection
accuracy of tiny targets. (e MS COCO dataset has more
categories and more sophisticated visual information than
the PASCAL VOC dataset. As a result, the detection
accuracy is quite poor on average, and there are disparities
in the detection results based on different criteria. (e
maximum detection accuracy was likewise attained for the
metrics examined for the detection of tiny objects. As a
consequence, the experimental findings support the effi-
cacy of the method presented in this study.

Figure 10 compares the accuracy and detection of all of the
approaches we tested for PASCALVOC2007.(e accuracies of
Ours320 and Ours512 are 80.1% and 81.9%, respectively,
according to this graph, which are the greatest accuracies of all
approaches. Similarly, these two approaches had the greatest
detected speed among the chosen methods, with 31.2 and 18.2
seconds for Ours320 and Ours512, respectively.

Figure 11 shows the comparison among our selected 10
methods, that is, Faster, ION, MR-CNN, YOLOv2, SSD300,
SSD512, STDN321, STDN513, Ours320, and Ours512, re-
spectively, against method categories. From this figure, it is clear
that Ours512 is better than othermethods that we have selected.

Figure 12 depicts a comparison of the results obtained
from the MS COCO dataset test. It is obvious from this
figure that Ours320 and Ours512 are superior to the other
approaches we considered.

Table 3: MS COCO dataset test results.

Methods Basic network AP0.5 : 0.95 AP0.5 AP0.75 APS APM APL AR1 AR10 AR100 ARs ARM ARL

Faster VGG16 21.9 42.7 — — — — — — — — — —
ION VGG16 23.6 43.2 23.6 6.4 24.1 38.3 23.2 32.7 33.2 10.1 37.7 53.6
R-FCN Residual-101 29.2 51.5 — 10.3 32.4 43.3 — — — — — —
DSOD DS/64/192/4 29.3 47.3 30.6 9.4 31.5 47 27.3 40.7 43 16.7 47.1 65
YOLOv2 Darknet 21.6 44 19.2 9 28.9 41.9 24.8 37.5 39.8 14 43.5 59
SSD300 VGG16 25.1 43.1 25.8 6.6 25.9 41.4 23.7 35.1 37.2 11.2 40.4 58.4
DSSD321 Residual-101 28 46.1 29.2 7.4 28.1 47.6 25.5 37.1 39.4 12.7 42 62.6
STDN321 DenseNet 28 45.6 29.4 7.9 29.7 45.1 24.4 36.1 38.4 12.5 42.7 60.1
Ours320 VGG16 28.2 47.7 29.1 10.3 31.4 43.7 25.8 38.9 41.2 16.9 47.2 61
SSD512 VGG16 28.8 48.5 30.3 10.9 31.8 43.5 26.1 39.5 42 16.5 46.6 60.8
DSSD513 Residual-101 33.2 53.3 35.2 13 35.4 51.1 28.9 43.5 46.2 21.8 49.1 66.4
STDN513 DenseNet 31.8 51 33.6 14.4 36.1 43.4 27 40.1 41.9 18.3 48.3 57.3
Ours512 VGG16 33.1 52.3 32.4 15.6 34.6 42.7 28.3 42.6 45.6 25.9 50.8 60.1
Bold values represent the experimental results of our method.
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5. Conclusion

Target detection and placement based on deep learning al-
gorithms has been a popular issue in the field of pattern
recognition in recent years. People not only want to be free of
easy and repetitive tasks, but they also want robotic intelligence
to be able to satisfy the needs of humans autonomously,
lessening the load on families and society and enabling a variety
of intelligent services.We examine challenges in the application
of target identification algorithms for mobile robots in this
research, with the goal of improving intelligent mobile robots’
perception of external environmental information and making
intelligent inspection robots more suited to actual surround-
ings. A jump-connected pyramid model is used to suggest a
target detection approach.(e high-level feature map semantic
information in a deep learning-based target algorithmmodel is
extremely abstract for the target’s features, but the low-level

feature map information includes comprehensive information.
To merge many layers of high-level semantic feature infor-
mation with the detailed information of low-level featuremaps,
a jump-connected pyramid structure is proposed. Further-
more, the global feature information is recovered utilizing
different sizes of convolution kernels and varied step sizes of
complete convolution in the network model to better extract
feature information related to objects at different scales. Ex-
periments were carried out on numerous different datasets to
validate the algorithm’s performance, and the findings verified
the algorithm’s effectiveness. Furthermore, these findings
suggest that the proposed model performs much better than
previous algorithmmodels in terms of tiny target identification
accuracy.
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(e datasets used in this study are available from the cor-
responding author upon reasonable request.
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