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Considering task dependencies, the balancing of the Internet of Health ,ings (IoHT) scheduling is considered important to
reduce the make span rate. In this paper, we developed a smart model approach for the best task schedule of Hybrid Moth Flame
Optimization (HMFO) for cloud computing integrated in the IoHT environment over e-healthcare systems. ,e HMFO
guarantees uniform resource assignment and enhanced quality of services (QoS). ,e model is trained with the Google cluster
dataset such that it learns the instances of how a job is scheduled in cloud and the trainedHMFOmodel is used to schedule the jobs
in real time. ,e simulation is conducted on a CloudSim environment to test the scheduling efficacy of the model in hybrid cloud
environment. ,e parameters used by this method for the performance assessment include the use of resources, response time,
and energy utilization. In terms of response time, average run time, and lower costs, the hybrid HMFO approach has offered
increased response rate with reduced cost and run time than other methods.
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1. Introduction

Networking devices at various levels of the network archi-
tecture deploy processing and storage capabilities in fog
computing. Data centers (DCs) in cloud have schedulers,
and the schedulers decide where to deliver requests. Such a
choice is frequently dependent on a number of factors,
including the requests themselves as well as the cloud re-
sources. ,e result is a reduction in latency and increased
proximity of services and computations to end users.

Data are getting increasingly voluminous as the number
of internet-connected devices grows and the Internet of
,ings (IoT) takes off. According to Cisco predictions, there
will be 50 billion Internet-connected gadgets by 2020 [1–4].
Large volumes of heterogeneous data, exchanged rapidly,
and, at high speeds, will be generated and exchanged by
these devices, which is known as “Big Data.” IoTapplications
create a lot of data that is latency sensitive, which means they
need a processing response in real time [5].

In cloud computing environment, Internet of Health
,ings (IoHT) is permitted to use cloud interactions. It
enables mobile users to achieve attractive characteristics
which make it marketable. In cloud, interaction between the
IoHTdevices can form a new environment, which is referred
as cloud-IoHT system [6–10].

Some IoHT devices generate data that expire in seconds
(the data expiry time) following the generating time. Because
of the time-sensitive nature of many applications, processing
this data in the cloud could become a performance issue. In a
fog and cloud computing architecture, each component
completes what the other is missing. It is hoped that the
connection between fog and cloud will enable low-latency
services for billions of IoT devices and applications in the
future. IoT devices generate enormous amounts of data,
which this tool greatly aids in monitoring and controlling.

,e jobs to transmit the data from IoHT to cloud servers
offer a variety of computational and storage requirements
that must be met in order to be accomplished. Offloading
IoHT duties to cloud resources requires consideration of
various quality of service (QoS). Not only from the per-
spective of IoHTapplications for end users but also from the
perspective of the system designer. ,e optimization
problem of task scheduling pertains to the process of
identifying optimal fog or cloud resources for allocating
IoHT jobs under specified constraints. ,ere are several
objectives for optimising QoS parameters for both end users
and system designers in designing a scheduler for dynamic
incoming IoT workloads. An integer linear programming
(ILP) [11–15] of NP-hard complexity can be used to for-
mulate the job scheduling optimization issue in this context.
It should be highlighted that conventional mathematical
methods cannot discover an optimal solution in polynomial
processing time for such issues [16–20].

When faced with NP-hard issues such as task scheduling,
population-based metaheuristic algorithms have been
shown to be successful optimization strategies. When ap-
plying these techniques, a random sample of the population
is created using a uniform distribution, and it is hoped that,
over time, the population will converge to an optimal

solution. In order to identify the best solution, the search
process should be divided into two phases: exploration and
exploitation. Starting with a varied population will allow us
to investigate all options in the search space and identify
areas with high potential. ,e study should then be able to
leverage the potential areas in search of a worldwide solution
that works perfectly. ,e shift from exploration to exploi-
tation, on the other hand, is not always smooth, especially if
the population becomes caught in the local optima too early
and premature convergence occurs.

For a long time, academics working on various het-
erogeneous computing systems have debated how to best
schedule tasks. In the context of fog computing, where
exponential IoT jobs are generated dynamically, there are no
acceptable specific solutions to the task scheduling problem
[21]. Due to the distinct restrictions of IoT activities and fog
resources, the search space for the IoT and cloud environ-
ment is really more complex than traditional computing
systems. IoT jobs are not always tolerant of delays, despite
the fact that task scheduling is notoriously difficult. So, the
task scheduling architecture should allow IoTapplications to
be handled quickly while avoiding the complexity of the IoT
infrastructure [22–26].

,is study provides a smart model approach for the best
task schedule of hybrid moth flame optimization (HMFO)
for cloud computing integrated in the IoHT environment
over e-healthcare systems. ,e HMFO guarantees uniform
resource assignment and enhanced QoS. ,e parameters
used by this method for the performance assessment include
the use of resources, response time, and energy utilization.

,e outline of the paper is given below. Section 2
provides the problem formulation. Section 3 discusses the
task scheduling in cloud using HMFO. Section 4 evaluates
the entire work in terms of various performance metrics.
Section 5 concludes the entire work with possible directions
of future scope.

2. Problem Formulation

,e problem formulation [25] is defined with the following
assumptions that includes past computational time over
each executing task and the knowledge of computational
overhead for scheduled task on the IoHT-cloud model in
e-healthcare systems.

,ese two constraints are modelled as in equations
(1)–(5):

ci �
ci

pi

, i � 1, 2, . . . N, (1)

rij(∀i) �
0, j � 1,

dij−1, j � 2, 3, . . . , ni,
􏼨 (2)

dij � rij + pij, i � 1, 2, . . . , N, j � 1, 2, . . . , ni, (3)

sij < si′j′ <fij, (4)

if p τi′( 􏼁>p ti( 􏼁&&ri′j′ ≥ rij∀i, j, i′, j′, (5)
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where i′is the task index, j′ is the executed index of jth task, p
is the priority, N is the total number of tasks, T is the total
time scheduled for carrying out the task, ni is the total
number of tasks executed, rij is the total release time (j) for a
specific task τi, sij is the start time (j) for a task execution τi, fij
is the finish time (j) for a task execution τi, and i is the
execution time τi.

3. Task Scheduling Using HMFO

A multiobjective optimization is considered as a conflicting
objective problem required to be optimized as defined in the
following equation:

MinF(x) � f1(x), f2(x), . . . fm(x)( 􏼁
T
, (6)

where x ∈X is regarded as the decision space.
,e objective function conflicts with each other. ,e

Pareto dominance performs an evaluation between the
obtained solutions. With v ∈X, the sample u dominates v iff,
equation (7) denotes the relationship:

∀i: fi(u)≤fi(v)∧∃j: fj(u)<fj(v). (7)

If a solution x∗ fails to dominate the other, the solution is
treated as Pareto optimal one.

Figure 1 shows the IoHT-cloud architecture for sensing
the environment, data acquisition, and data transmission
from the source IoHT node to the destination cloud server.
,ree different levels are used in IoHT-cloud e-healthcare
system architecture.

To address this issue, the suggested architecture makes
use of a control plane composed of an MFO model inte-
grated with a GA algorithm. So much responsibility is placed
on the deep sense model that it ensures the connection or
path is not overburdened with data packets. Heavy traffic can
be checked with optimum packet selection of routing paths
via optimum packet delivery in specific circumstances.

Massive amounts of IoHT data are subsequently trans-
ferred in packets to the destination node using the data
plane. ,e integration of an MFO [13] model with the GA
model aligns the purpose of the current model to improve
cloud scheduling, which governs cloud routing.

Variations in VM computing power can be found in
cloud data centers, meaning that even when performing
equivalent activities, VMs can perform significantly differ-
ently. Because workloads vary, different VMs have variable
levels of performance efficiency, allowing tasks to be dis-
tributed across them. Virtual machines with superior per-
formance capacity would be given additional jobs. ,e
aforementioned reason causes certain VMs to be overloaded
while the rest are inactive. ,is would be a waste of time and
money in the long run.

An unbalanced load on the virtual machines reduces the
cloud DC efficiency. Consequently, the goal of this research
is to better utilise resources under average load conditions
for VMs, according to the upgraded HMFO.

3.1.HMFO. ,is section provides the scheduling details that
combine HMFO [26] (Figure 1) with deep layers of neural

network (DNN).,e weight may influence the task selection
process; those who are unable to deal with the problem will
quickly be excluded. ,is is going to damage decent pop-
ulations. New people delivered by crossover and mutation
operations are very less. Although reductions in specific
weighing can increase likelihood of looking at the global
ideal, their mounting rate is lower.

,e optimization of swarm molecules can be applied to
the genetic algorithm in order to maintain great perfor-
mance. DNN and HMFO are supporting the hybrid algo-
rithm. ,e DNN can be used for a global investigation
within the underlying time frame. ,e HMFO can be
connected with the speed of themix rate over the later period
due to the reduced population size. In the latter years, after
usual cycles, people will thus become closer to the inter-
national ideal arrangement at moderately high assembly
rates.

,e framework is similar to other population-based
algorithms, where the initial step involves the generation of
random solution. ,e initial solution is a candidate solution
for the given scheduling problem in cloud space, and it is
assessed via a fitness function.,eMFO combines the fitness
solution in order to fit the requirement of job scheduling,
and this is iterated in repeated intervals to obtain optimal
solution.

3.1.1. Fitness Function. Fitness is used to measure the level of
intelligence of the population which could almost certainly
achieve or help to find the ideal solution. His choice is
therefore very important. ,e work process plans to achieve
lower flow times and efficiency. Here, DNN is employed for
finding the fitness of HMFO (Algorithm 1).

Multilayer perceptron (MLP) is an another form of
feedforward neural network architecutre with three different
layers including input, output, and hidden (Figure 2(a)).,e
MLP designed with a single hidden layer using the ap-
proximation theorem estimates the output with the reduced
error rate.

,ere are dropouts fitted to the DNN (Figure 2(b)) to
reduce data overfitting, and the neurons are eliminated
throughout training. As a result, the selected error function
(using cross entropy) reduces the error during DNN training
as

E � 􏽘
n

i�1
y log oN +(1 − y)log 1 − oN( 􏼁. (8)

,e MLP tends to vary its weights based on the error
function at the time of training and this reduces the probable
error. ,e input dataset size D, for the classification of MLP,
where the probability of errors P (y|x) at the output is
influenced by the hidden layers.

3.1.2. Crossover. Many characteristics such as average fitness
and diversity change in the evolutionary process. ,erefore,
the entire algorithm programming process cannot be
adapted to a fixed parameter. ,is algorithm is used for the
dynamic transverse operators. ,e process of early selection
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damages the diversity of the population. ,erefore, new and
optimal people must be searched hard. In the early pc period,
the likelihood of crossover is quite large. However, people
concentrated primarily on areas in the process of later
evolution near the optimal solution zone.

In order to reduce pc, certain well discovered genes are
now maintained. ,is algorithm sets a threshold t, which is
applied in the crossover process to calculate the average
progeny fitness. In addition, the fitness of populations is
used for minimum average.
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Figure 1: Architecture for time overhead minimization using hybrid HMFO.

For i� 1 :N
For j� 1 :N

M (i, j)� (ub (i)-lb (i)) ∗ rand () + lb (i);
End
End
OM� FitnessFunction (M);

ALGORITHM 1: Generation of initial solution using MFO.
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Start

Define the parameters of the algorithm

Generate initial months randomly

Calculate the fitness functions and tag the best positions by flames

Update flame number, t, and r

Calculate D for the corresponding moth

Update M (i, j) for the corresponding moth

Are termination criteria satisfied?
YesNo

Report the best position among the moths

End

(a)
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,e average fitness in procreation populations will be
below the minimum average fitness if it is maintained over
several generations. ,en, the value of pc lies between 90% of
pc and minimum probability of crossover.

3.1.3. Mutation. ,is paper adopts dynamic transmission
operators, such as crossover operators. Instead of convergent
algorithms in the population, the probability of mutation pm
can decrease according to rich genetic features. However, if
the algorithm is close to or converged, pm may be extended
according to the population rate constantly or slightly
changed. ,is algorithm sets a threshold for the calculation
of the mutation rate. Furthermore, the minimum progress
rate is determined for populations. If the evolution rate of
the population for t iterations is continued, the evolution
gets lowered than the minimum threshold limit. ,e value is
regularly updated as a lesser value with the maximum
probability of mutation.

3.1.4. Scheduling Using MFO. A task response time can be
defined as the time it takes from submission to receipt of an
answer in VM. VM responsiveness can be improved by
balancing the load across all of their resources, including the
CPU and RAM. A simple approach to reducing machining
time and reaction time requires transferring work from one
overburdened VM to another, which is known as the load-

balancing procedure here. It is critical that the VM com-
municates its load-balancing capacity in order to keep things
running smoothly.

Computer nodes, storage nodes, and schedulers will all
be hosted on management nodes. ,e scheduler selects
appropriate computing nodes for the VMs based on the
demands, and it keeps track of requests received to each one.
In order to store the fingerprints associated to the running
VMs, data centers are integrated. In a running VM, the task
of the scheduler is to create a map of the VM with the IoHT
node. ,e administration nodes are used to save the fin-
gerprints. ,e fingerprints would be adequately removed
from the management nodes once the process of the VM
meeting terminates.

3.1.5. Load Balancing. ,ere are two steps to the load
balance strategy, according to this research. To begin with,
the study employs a task planning technique that takes into
account the varying needs of each user while still maximising
resource use. In order to optimise the overall Cloud-IoHT
performance, load balancing is utilised to map IoHT tasks to
full VMs, followed initially by the VMs in resource hosting
tasks.

Certain investigations, such as the identification of CPU
uses and the assessment of memory requirements, must be
accomplished in the first phase itself with a determination of
the number of iterations in the first phase.,e next step is to
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Figure 2: (a) Moth flame optimization. (b) DNN architecture.
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determine the resources that are currently available and the
resources. Based on these resource requirements, instances
can be deleted or added, and the final prescribed status is
determined.

,e proposed technique wisely performs load checks on
VMs on a regular basis, and based on such checks, the
following strategy is utilised to determine load migration.
Identifying the loading conditions of VMs is the key purpose
of this algorithm, which differentiates between loaded VMs
and loaded VMs based on the differentiation of machines.
Once this is done, loads are transferred from loaded VM to
loaded VM.

As a result of this procedure, the loads are dispersed
equally. As a result, reaction time is cut in half, and resource
efficiency is improved, thanks to more evenly distributed
load. In a way, this duty of observation is similar to the moth
search for food. ,is task threshold value is still being
approached. A task minimum loaded VM is determined by
an optimization that stops when the threshold is achieved
(Pseudocode 1).

4. Results Analysis

In this section, the simulation is conducted to test the ef-
ficacy of the proposed model on job scheduling. ,e HMFO
optimization is verified using performance measures in-
cluding payload routing, delay, packet delivery ratio, and
network lifetime. ,e study uses Google Cluster Dataset
(https://github.com/google/cluster-data), where it is used to
train the HMFO for future scheduling of jobs. ,e pa-
rameters are chosen from the Google cluster dataset that
decides the number of VMs, cloud server, and the hardware
specifications. ,e entire system is implemented on a

CloudSim simulator. ,e simulation is validated in terms of
cost and delay and payload. ,e metaheuristic optimization
is compared with conventional models such as bees swarm
optimization (BSO) and ant colony optimization (ACO).

4.1. Simulation Results and Discussion. Figure 3 depicts the
PDR, which includes IoHTsource node packet transmission
and sink node packet reception. According to the findings,
when pause times are shortened, the PDR decreases sig-
nificantly. ,e PDR, on the contrary, decreases as the
number of session increases, and it is already higher than
that of a traditional ANN.

,e improved performance in the deep learning model is
attributable to the sink node improved ability to calculate
data transmission patterns. When data rates generated on
IoHTdevices do not match, typical systems do not calculate
alternate pathways. As a result, the HMFO model perfor-
mance is deemed stable, and the routing connection is
strengthened by improved route stability and decreased link
failure.

Figure 4 depicts the EAD results as the pause time in-
creases. In comparison to other methods, such as ANN and
reinforcement education, the EAD is significantly smaller.
,e choosing of lengthier routes may contribute to network
congestion if there is a growing delay.

Metaheuristic algorithm learning, on the contrary, has
no effect on distributing the workload. When it comes to
computing power, a smaller data transmission rate is better
because it enhances the model computational capability over
time. ,e NRP and NMP show results at various sessions,
where with increasing sessions, the results are found to get
lowered as in Figures 5 and 6.

Initialize the population using Moths
Initialize IoHT
Initialize VM
Assign the threshold value
While VMs are balanced with loads
if (load in VMs< threshold)
{

do
{
Assign a task to VM
Sort the task
Estimate the moth distance
Update the moth distance

} while (load in VMs< threshold)
}
else
Update the new solution onto the moths
Search similar neighborhood VM
Check if the load is balanced or not in VMs

PSEUDOCODE 1: VM ware analysis.
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Figure 7 depicts the average total timeline for various
scheduling approaches for various jobs. In comparison to
the HMFO strategy, the HMFO strategy uses less make up.
HMFO output has dipped by 13% from its peak.,e primary
reason for this is that the planned strategy takes on the
characteristics of the tasks, resulting in a total imple-
mentation time of the tasks’ characteristics.

While there are only a few activities to complete, there
are plenty of materials available (Figure 8).When comparing
the HMFO technique, the execution time is extremely long.
As more of the search region is uncovered, the HMFO al-
gorithm shifts into a better position. When compared to the
conventional technique, HMFO saves 8 to 16% of the time.
Many other measures show this to be the case, such as
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enhanced average reaction time (Figure 9), higher storage
capacity (Figure 10), reduced path load (Figure 11), and
decreased cost (Figure 12).

5. Conclusion

With HMFO, the routing performance in IoHT-Cloud is
improved while the stability of the routing is increased.
HMFO efficiently routes packets by adjusting to the data
acquisition pace of IoHT nodes. In order to capture and
transmit data without design flaws, IoHT-Cloud with
e-healthcare system architecture is successfully controlled.
Simulated results show that when EAD decreases, PDR
increases as stability improves, and the reverse is also true. In
contrast, HMFO minimises PDR on long routes, which
biases the samples and assures that the system scales equally
well. For shorter routes, the HMFO routing model scalability
is excellent. ,e HMFO performance on high-speed packet
routing provides reliable and increasing rate of packet
transmission thus increasing IoHT-Cloud longevity in
e-healthcare system architecture.

In future, the study may offer the mobile users with
improved flexibility and reduced deployment costs using the
deep learning training model. ,e cloud-IoHT technology
amended in e-healthcare systems suffers mainly from energy
balancing issues, and this should be addressed prominently
on IoHT sensors.
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