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Intelligence is gradually becoming an important tool for solving difficult problems with the development of computers.*is article
takes the design of university teaching systems as the research context to establish an artificial intelligence network research and
learning platform. A probabilistic process neuron network model is proposed, which combines the Bayesian probabilistic
classification mechanism with the dynamic signal processing method of process neuron networks, and achieves dynamic
classification based on Bayesian rules by adding a pattern unit layer to the feed-forward process neuron network as well as
adopting a normalised exponential excitation function. Artificial intelligence prediction based on probabilistic neural networks is
verified byMATLAB as having good convergence and fault tolerance as well as data processing capability.*e article also analyses
the functions of the university intelligent teaching system and realises the optimal design of the university intelligent
teaching system.

1. Introduction

With the continuous improvement of science and tech-
nology, intelligent management has become one of the
future development directions of universities, and the design
and implementation of intelligent systems in universities can
not only enable universities to carry out better education
work but also effectively improve their own management
level and achieve more efficient cultivation of talents.
Among the many scientific technologies, artificial intelli-
gence algorithms lay a profound foundation for the design
and implementation of intelligent systems in colleges and
universities. *rough the application of this technology in
the intelligent system of colleges and universities, it can
realise the integrated management of various management
functions in colleges and universities and strengthen the
information interaction between various departments in
colleges and universities. *e artificial intelligence algorithm
creates good conditions for the scientific design of the in-
telligent system in colleges and universities, realizes the
optimal choice for the design of the intelligent system in

colleges and universities, and improves the operation per-
formance of the system.

Online learning is gradually penetrating into various
industries. In the learning exchange process, network
teaching breaks through the bottleneck on time and space. At
the same time, e-learning systems allow students to transition
into the systemwithout additional learning by virtualising real
campus facilities and resources. In the Internet era, using
artificial intelligence technology, the intelligent teaching
system can automatically diagnose the learning level of stu-
dents according to their cognitive ability, identify problems in
the learning process, propose solutions in the context of the
current learning situation, and finally provide targeted
feedback and suggestions. *e system overcomes the short-
comings of traditional education. *e system provides stu-
dents with various teaching resources and shares good
teachers, which greatly improves the quality of teaching and
learning. It allows students to be taught and learn randomly
on the system. *e ITS provides a highly personalised and
intelligent learning experience for students based on their
cognitive development level and learning style.

Hindawi
Scientific Programming
Volume 2022, Article ID 4131058, 10 pages
https://doi.org/10.1155/2022/4131058

mailto:tsl_2022@hynu.edu.cn
https://orcid.org/0000-0003-2921-2253
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4131058


Probabilistic neural networks were proposed by Specht
[1] is closely related to many concepts. We know that
probabilistic neural networks are based on Bayesian decision
theory and are gradually gaining widespread attention due to
their unique form of uncertainty knowledge representation
and the incremental learning of integrated prior knowledge,
among other properties. Its basic idea is to estimate the
known class conditional probabilities and prior probabilities
by Bayesian formulae to obtain the posterior probabilities
and then classify the decisions [2]. Many studies have shown
that probabilistic neural networks are easy to train, converge
quickly, and their judgment surfaces are close to the optimal
Bayesian criterion surfaces. At present, probabilistic neural
networks have been widely used in pattern classification [3],
signal processing [4], target tracking [5], and other fields.

Process neuron networks can directly use time-varying
processes as input and output signals, which is an extension
in the time domain [6–8]. For the simulation modeling,
system identification, process simulation, and generalized
function approximation of complex nonlinear dynamic
systems that lack prior knowledge and models, process
neuron networks have shown obvious advantages and have
been successfully applied in pattern recognition [9], fault
diagnosis [10], and prediction [11]. A process probabilistic
network model is proposed and built by fusing the time-
varying (function) with the probabilistic neural network in
the literature [12], and the corresponding learning algorithm
is designed.

In the era of big data, the technology and theories of
artificial intelligence are getting better and better, and its
application areas are expanding, integrating into almost all
walks of life. *e development of artificial intelligence is an
important factor in leading various fields to the forefront,
and the Internet plus education has become a trend in
society, with machine learning becoming the most impor-
tant application of artificial intelligence technology in ed-
ucation [13–15]. In 21st century, with the development of
machine learning, knowledge representation, processing of
natural language, and computer visualisation and other
technologies continue to face new challenges. *is study
combines the current situation of teaching systems in ed-
ucation with data mining techniques combined with student
behaviour analysis to design a personalised cognitive student
model and develop an intelligent, personalised, educational
environment.

*is article predicts learners’ interest in learning by
analysing their learning behaviours. It is mainly based on
learner behaviours, such as browsing, saving, downloading,
printing, and favouriting. *e study uses keyword lists and
topic searches to construct learner interests and uses key-
word lists and topic searches to construct models of learner
interests. *e teaching system design simulation develop-
ment process is divided into three phases: the first phase is
the primitive phase, which is simply processing; the second
phase is the development of test technology and sensing
technology, which focuses on signal processing; and the
third phase is the intelligent simulation technology, pro-
cessing, and prediction data phase, which enables the rapid
development of simulation [16] for various systems. In this

study, data mining techniques are used to obtain data on
learners’ learning behaviour, model students, and develop an
intelligent system by designing a personalised cognitive
student model, which provides learners with more valuable
learning resources. *is article is aimed at university stu-
dents and teachers and provides a reference communication
simulation for modern university media from the per-
spective of political culture.

2. Introduction to Relevant Theories

2.1. Artificial Intelligence Techniques. With the introduction
of artificial intelligence, a multidisciplinary science, it has
been used to study, develop, simulate, and extend the the-
oretical techniques of human intelligence and has led to the
creation of probabilistic neural networks [17]. According to
Deyi Li, the study of how to make intelligence to complete
complex problems that humans need to solve, theories, and
technologies that mimic human intelligent behaviour, and
the intelligent systems built that can incorporate human
needs, think like humans, and further enhance human in-
telligence [18]. In the field of artificial intelligence, it usually
uses machine learning for algorithmic computing, and deep
learning is an algorithm or method to implement machine
learning [19]; therefore, the academic community regards
artificial intelligence, machine learning, and deep learning as
an approximate inclusion relationship.

In the context of big data, the development of infor-
mation technology in schools is receiving a lot of attention in
the education sector, which is trying to adopt a “problem-
oriented” approach to teaching and learning, so that stu-
dents can receive new knowledge outside of the “tutorial
learning” process. *e main focus of education in the 21st
century will be on intelligent learning, using technology to
optimise teaching and learning. *erefore, the combination
of AI technology and teaching systems is a hot topic of
research in the education sector. *e use of AI technology in
teaching can develop students’ problem-solving skills, per-
sonalise online education, meet individual learners, and
realise the meaning of teaching according to their abilities.
Based on a review of the literature, the study summarises the
shortcomings of traditional education and uses AI tech-
nology to combine the design principles and objectives of
intelligent teaching systems to provide students with a highly
personalised and intelligent teaching system [20–22]. *e
study also aims to provide a highly personalised and in-
telligent teaching system for students.

*e use of online teaching resources and the prerequisite
of basic theoretical knowledge has effectively increased the
“gold standard” of the physical classroom, reflecting the
advanced, innovative, and challenging nature of teaching.
On the one hand, students have familiarised themselves with
the process of producing different types of television news
through a number of well-designed practical training
projects and are now able to produce different types of
television news independently, thus achieving the objective
of linking with the actual workplace. On the other hand, the
self-reflection and summary after the practical training, the
mutual evaluation of the group, and the teacher’s comments
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have made the teaching and learning interactive and ef-
fective, so that the students’ learning initiative is obviously
enhanced. *e teaching and learning activities have been
enhanced.

Using artificial intelligence algorithms to abstract the
design tasks of university intelligent systems, the interfer-
ence caused by surface phenomena to the system design is
avoided, so that the root of the system design problems can
be identified, and a normative representation of the overall
functions and conditions of use of university intelligent
systems can be achieved.

2.2. Intelligent Teaching and Learning Systems. *e concept
of intelligent teaching and learning systems originated in
1982 from computer-assisted instruction, which is an
adaptive teaching system that uses artificial intelligence
technology to allow computers to take on the role of teachers
to deliver individualised instruction to learners and provide
guidance [23]. “Intelligent teaching” means that the teaching
provided is personalised to meet the needs of the learner.
Based on this, the intelligent teaching system can provide
learners with suitable learning resources and teaching
strategies, expand teaching time and space, and improve
teachers’ teaching effectiveness by combining learners’
cognitive level and learning interests. It can also improve
teachers’ effectiveness and students’ learning efficiency [24].
*e intelligent system is designed to provide learners with
personalised teaching guidance through question formula-
tion and answer analysis, providing learners with a per-
sonalised and intelligent learning experience. It provides an
effective teaching approach for the cultivation of 21st cen-
tury core talents in education effectively cultivates students’
problem-solving skills, realises individualised teaching and
learning, and provides personalised guidance and feedback
to students.

*is article combines the current state of research on the
application of AI in education and teaching systems, along
with the principles of system design, to design an intelligent
and personalised learning environment. *e research in this
study includes the following aspects:

(1) Using data mining technology to analyse student
behaviour information in the e-learning platform,
design and implement a learning interest submodel
and a learning-style submodel and propose a per-
sonalised cognitive student model containing two
submodels of learning interest and student learning
style.

(2) Design and implement a triple randomized auto-
matic question building algorithm based on a unitary
knowledge domain and also design and implement a
testing algorithm that incorporates an expert ques-
tion bank and a self-built question bank by com-
bining the authority of a specific expert question
bank.

(3) Design and implement a simple web-based intelli-
gent teaching system, use the personalised cognitive
student model to model students, use the expert

question bank and self-built question bank to test
students’ learning, and provide the system with a
basis for students’ next steps in learning.

2.3. Bayes’ �eorem. Bayes *omas, in his article “On the
solution of the doctrine of chance problem,” proposed a
theory of inductive inference in which the “Bayes’ theorem
(or Bayes’ formula)” gives the formula for calculating the
conditional probability (posterior probability) of all causes C
after the outcome E is known [25, 26], which can be regarded
as one of the earliest statistical inference procedure. *e
basic element is that the posterior probability P(A | B) is
estimated from the prior probability P(A) and the condi-
tional probability P(B | A).

P(A | B) �
P(B | A)P(A)

P(B)
. (1)

2.4. BayesianDetermination Strategy. *e accepted criterion
for a decision rule or strategy for pattern classification is that
it minimizes the expected risk in some sense [27]. Such a
strategy is called a Bayesian strategy. As an example, let the
mode state P be PA or pB. Based on a set of measurements
described by the n dimensional vector X � x1, x2, . . . , xn ,
the Bayesian decision rule for decision p � PA or p � PB

becomes

d(X) �
PA, hAiAfA(X)> hBiBfB(X)

pB, hAiAfA(X)< hBiBfB(X)
 , (2)

where fA(X) and fB(X) are the probability density
functions for A and B, respectively. lA is the loss function for
determining d(X) � pB at p � PA. lB is the loss function for
determining p � PB at p � PB (loss at correct determination
equals 0). hA is the prior probability at p � PA and hB �

1 − hA is the prior probability at p � PB.
*e bound between the region of Bayesian decision rule

d(X) � pA and the region of Bayesian decision rule d(X) �

pB can be found by the following equation:

fA(X) � KfA(X), (3)

where K � (hBlB/hAlA).
*e key to using equation (3) is the ability to estimate the

probability density function based on the sample pattern.
Usually, the prior probability is known or the loss function
can be estimated accurately requiring a subjective estimate
[28]. However, if the probability density function of a
pattern is unknown and a set of training patterns (training
samples) is given, the only clues to derive the probability
density function are these samples.

2.5. Probability Density Function Estimation Methods.
*e accuracy of the discriminant boundary depends on the
accuracy of the probability density function estimation.
Parzen proposed a cluster valuation formula for f(X).

Scientific Programming 3



fn(X) �
1
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n

i�1
ω

X − XAi

λ
 . (4)

At the same time, Parzen proves that lim
n⟶∞

|fn(X)

−f(X)|2 � 0.
Cacoullos extends Parzen’s results, and in the special

case of the Gaussian kernel, the multivariate estimate can be
expressed as follows:

f1(X) �
1

(2π)
P/2σp

·
1
m


m

i�1
exp −

X − XAi( 
T

X − XAi( 

2σ2
 , (5)

where i denotes the sample number, andm denotes the total
number of training samples. XAi denotes the ith sample of
category pA. σ denotes the smoothing parameter, and p
denotes the dimension of the metric space.

3. Probabilistic Process Neuron Networks

3.1. Probabilistic Process Neuron Model. In many time-
varying dynamic signal processing problems affected by a
variety of nonlinear perturbations, coupling between signals
and noise, the results of a comprehensive evaluation cannot
give a completely accurate answer of yes (taking the value of
1) or no (taking the value of 0); instead, there is often some
degree of yes or no, i.e., the evaluation results show a certain
degree of probability or ambiguity. *e solution to such
problems awaits the emergence of a new model [29].

*e probabilistic process neuron (PPN) proposed in this
paper is similar to the ordinary process neuron model. *e
model is composed of time-varying signal inputs, spatio-tem-
poral weighted aggregation, and stimulated output operations.
*e model is shown in Figure 1.

*e x1(t), x2(t), . . . , xn(t) is the process input at time [0,
T], w1(t), w2(t), . . . , wn(t) is the weighting function for
each dimensional input, and y is the output. In contrast to
the Sigmoid-type excitation function used by ordinary
process neurons, this model uses an exponential excitation
function with probabilistic statistical properties.

g(x) � exp
x

− 1

σ2
 , (6)

where σ is the distribution of g(x) for the smoothing pa-
rameter σ � 0.4 and is shown in Figure 2.

From Figure 2, it can be seen that when x ∈ [−1, 1],
g(x) ∈ (0, 3]. *erefore it has the significance of calculating
probability for the independent variable x. *e input-output
relationship of the probabilistic process neuron is given as

y � exp


T

0 W(t)X(t)dt − 1

σ2
⎡⎢⎢⎣ ⎤⎥⎥⎦ � exp


T

0 
n
i�1 wi(t)xi(t)dt − 1

σ2
⎡⎢⎢⎣ ⎤⎥⎥⎦.

(7)

3.2. Probabilistic Process Neuron NetworkModel. *e PPNN
model is shown in Figure 3.

*e training speed of PPNNwill be much faster than that
of ordinary feed forward neural networks [30]. However,

due to the summation of the pattern layers, the outputs
corresponding to the pattern layers have large values and are
guaranteed to be clearly distinguishable from each other. In
this way, there is no “rejection” of the sample at the output,
thus ensuring that the PPNN has a strong discriminatory
power.

If we let the input be X(t) � x1(t), x2(t), . . . xn(t) ,
then the formula for the hidden layer output
H � h1, h2, . . . hK  is

hj � exp


T

0 
n
i�1 wij(t)xi(t)dt − 1

σ2j
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (8)

where δj is the parameter of the jth neuron; then, the initial
value can be

x
1 (t)

x
2 (t)

x
n (t)

. .
 . 

3 (t)


2 (t)


1 (t)

P
∼ y

Figure 1: Probabilistic process neuron model.
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σ �
dmax��

H
√ , (9)

where dmax is the maximum Euclidean distance between
each cluster centre vector of the training sample, andH is the
number of centres. *e output layer is

pk � 
j∈Ωk

hj(k � 1, 2, . . . , m), (10)

wherem is the actual number of class patterns of the sample
andΩk is the set of hidden node serial numbers contained in
the kth pattern.

*e final output of the network is

yk � 

m

j�1
vjkpk

� 

m

j�1
vjk 

s∈Ωj

exp


T

0 
n
i�1 wis(t)xi(t)dt − 1

σ2s
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ k � 1, 2, · · · , m,

(11)

where vjk is the output layer connection right.
*e probabilistic process neuron uses the exponential

function defined in (1) as the excitation function, and the
network structure is similar to that of a general probabilistic
neural network. *erefore, the classification mechanism of
this network is consistent with Bayesian decision theory. In
fact, the nonlinear process of the model is mainly done in the
hidden layer, if we let Wj(t) be equal to some X(t) in the
training set, and both Wj(t) and X(t) have been specified
into unit lengths.
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i
wij(t) xi(t)dt ≤ 1.

(13)

According to the excitation function, the summation
unit simply accumulates the outputs of the hidden layer and
then, after weighted aggregation, gives real values in the
interval [0, 1] at the output layer to determine the final mode
class, which obviously presents a certain probability of the
output results.

4. Experimental Analysis

As the knowledge base of functional carriers has many eco-
nomic technical parameters, when building this knowledge
base, we need to ensure the integrity of the functional carriers
so that the knowledge can be searched by function and name.
*e knowledge can be retrieved by function and name. In order
for the AI algorithms to generate solution solutions, it is
necessary to retrieve the corresponding functional vectors
according to the subfunctions of the functional structure and
binary encoding of the subfunctions, and then, linking the
function carriers of the different subfunctions codes are joined
first and last to construct individual chromosomes. In this way,
randomly generate a group of chromosomes so that each
chromosome can have a separate solution and use genetic
manipulation to evolve these populations of solutions until the
best solution. In addition, from the perspective of the genetic
algorithm of the AI algorithm from the perspective of genetic

algorithms for artificial intelligence algorithms, each solution in
each chromosome needs to be evaluated for fitness.*e genetic
manipulation is used to evolve these solutions. *e evaluation
of each chromosome solution is carried out by means of
economic and technical evaluations.

*ere are a number of problems with neural network
modeling; it is important to include sufficient information
in the features. A learning system is built into the neural
network to incorporate quantification of data processing
so that a reasonably quantifiable understanding of social
relationships, modern rationality, knowledge systems,
and values can be achieved through training. *en predict
trends based on the information results, anticipate their
development, and then propose appropriate counter-
measures. *e 33∗4 dimensional matrix data collected was
used as network training samples before selecting multiple
samples and some samples as validation samples, and the
simulation type codes corresponding to as in Table 1.

*e results of the data clustering used are shown in
Figure 4.

After a modern media perspective on the creation of a
bionic algorithm for a classification prediction model for
university instructional design systems, a two-layer network
algorithm was created through MATLAB-a classification layer
(cluster) and a competition layer. PPNNnetworkwas created; a
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threshold is set to pre-process the input vector, and the pre-
processed vector is fed into the function for calculation.

*e algorithm is robust to the problems and the pre-
diction results are shown in Table 2.

*e predicted results for the target data can be displayed
directly in Figure 5.

Details of the training process for neural network
classification are shown in Figure 6.

*e following grid search algorithm (GS_PPNN) was
used to optimise the classification results, and the optimized
classification accuracies are shown in Table 3 and compared
with the unoptimized results.

Histograms of the classifier results for the three prob-
abilistic neural networks are shown in Figure 7.

*e grid search algorithm uses cross-validation to find
the best pair of parameters for the PPNN and finally uses the
best pair of parameters to bring into the model for classi-
fication, thus improving the classification results. Although
the grid search algorithm can find the optimal combination
of parameters by searching all parameter pairs, this process
usually takes a lot of time, which greatly reduces the effi-
ciency of classification. In the article, PCA is used to reduce
the dimensionality of the data and extract the most repre-
sentative low-dimensional features for classification. *e
effects of different principal components on classification
time and classification accuracy are given in Tables 4 and 5.

A comparative graph of the effect of different prin-
cipal components on classification accuracy is given in
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Figure 4: 2D raw data and clustering result display. (a) 2D data display. (b) Image clustering.

Table 1: Category labels for the type of simulation.

Forecast type Category
Worst 1
Less favourable 2
Commonly used 3
General 4
Excellent 5

Table 2: Prediction results for target data.

Sample number Classification results Actual classification Actual results
1 5 5 5
2 1 1 1
3 4 4 3
4 5 5 5
5 3 3 3
6 3 3 3
7 4 4 3
8 3 3 3
9 3 3 3
10 1 1 1
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Figure 8, and the effect of classification time with different
principal components is shown in Figure 9. *e infor-
mation in Tables 4 and 5 shows that the highest classi-
fication accuracy is achieved with a principal component
of 50% and the classification time is acceptable at this

time, so the article uses a principal component of 50% for
the optimisation of the grid search algorithm in the data
for the teaching system design study, which in turn gives
the best classification results and a higher classification
rate.
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Figure 5: Predicted classification results for the target data to be classified versus the actual categories.
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Figure 6: Neural network training process.

Table 3: Optimization results for different probabilistic neural networks and grid search algorithms.

Category Category 1 Category 2 Category 3 Category 4 Category 5
Classification accuracy (%)

PNN 86.56 89.36 85.46 84.25 81.05
PPNN 89.23 90.12 88.65 87.54 85.21
GS_PPNN 91.87 93.26 90.26 91.48 89.57
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Table 4: Effect of different principal components on classification accuracy.

Classification accuracy (%) Principal component analysis
Proportion 25% 50% 75%
PPNN 84.25 88.56 85.62
GS_PPNN 85.79 91.28 89.46

Table 5: Effect of different principal components on classification time.

Classification time (s) Principal component analysis
Proportion 25% 50% 75%
PPNN 25.65 28.62 32.45
GS_PPNN 45.36 51.63 65.26
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Figure 8: Comparison of the effect of different principal components on classification accuracy.

8 Scientific Programming



5. Conclusion

In this article, a probabilistic process neuronal network
model and a classification algorithm have been proposed.
*e algorithm is considered as a deterministic algorithm
in terms of the approximation ability of the neural net-
work. However, the model uses an exponential excitation
function with probabilistic meaning in the hidden layer,
which makes the model possess some characteristics of a
stochastic algorithm at the same time. *e probabilistic
process neuron network uses process-like inputs, which
effectively broadens the scope of application of ordinary
PNN. *e model is suitable for real-time processing of
information due to its small number of adjustable pa-
rameters and fast convergence rate. *e experimental
results show that the model and algorithm have certain
potential in pattern classification. It can substantially
improve the efficiency of university intelligent teaching
systems and also scientifically evaluate multiple design
solutions of university intelligent systems, so as to achieve
the optimal design of university intelligent teaching
systems. *e design of the artificial intelligence algorithm
teaching system for universities based on the probabilistic
neuronal network model proposed in the article deserves
further research due to the relatively single parameter
under ideal conditions, and in future practical applica-
tions, more factors should be considered for the influence
of the model.
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