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Femur is a thigh bone in humans, which is particularly prone to injury and di�cult to mend if damaged.�e stress shielding e�ect
is caused by a change in bonemechanics transmission route as a result of femur bone damage.�e formation of a porous structure
provides a better solution to the problem of stress shielding e�ect reduction. �e porous material is basically a solid which has
empty space(s) which is not covered by the primary structure of particles that build up the solid’s structure. Traditional porous
materials have a uniform density distribution in their microstructure. �e density distribution of a material should be established
according to di�erent loads in each location of the material to completely represent its characteristics. In this paper, to acquire the
ideal density distribution of porous materials and construct high-performance variable-density porous structures, topological
optimization is applied into the design of the lattice structure. According to a structure constructed utilising individualised
parameters paired with computed tomography (CT) data of the human femur, a topological optimization design of a multiscale
femoral prosthesis model based on the homogenization approach is presented. Experiments on di�erent femoral prosthesis
architectures revealed that variable-density porous prostheses have superior material and stress distributions than equal-density
porous prostheses under the same stress and successfully decreased femoral stress shielding to improve prosthetic stability.

1. Introduction

�e femur is a bone in the human body that is found in the
thigh area. It is the body’s longest and the most powerful
bone. It is an important component of the human capacity to
stand and move. Many vital muscles, tendons, ligaments,
and components of the human circulatory system are also
supported by the human femur. �e femur bears the ma-
jority of the human body weight as one of the primary load-
bearing elements of the lower limbs. �is bone is very easily
injured and di�cult to mend after it has been damaged.
Furthermore, arthritis, osteoporosis, and other linked dis-
orders have received more attention in aging people [1].

Total hip replacement is the most e�ective way to solve
injury and in�ammatory pain of the femoral joint. However,
many postoperative complications have not been solved
completely. �e proportion of young patients who

considerably exercise and will be rebuilt after the operation
has also been increasing [2]. �e cause of postoperative
adverse reactions is the mismatch between elastic modulus
of implant and host femur. Wol�’s law states that the im-
plant with the highest elastic modulus carries a portion of the
load that is initially carried by the femur [3]. �is syndrome
causes bone resorption by altering the direction of me-
chanical transmission on the femur and lowering the load on
the femur [4]. Reducing the stress shielding e�ect caused by
change in the transmission path of bone mechanics is the
problem to be solved [5].

A porous substance is the one that has pores (voids) in it.
�e “matrix” or “frame” refers to the skeleton component of
the material. A �uid (liquid or gas) is usually injected into
the pores. Although the skeleton material is normally solid,
structures such as foams might bene�t from the notion of
porous materials [6]. Along with rapid development of 3D
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printing technology, the emergence of a porous structure
better solves the problem of reducing the stress shielding
effect. (e introduction of porous structure can greatly
reduce the elastic modulus of a metal, which causes the
elastic modulus of prosthesis to be similar to that of a natural
bone. Stress shielding is reduced as a result, and the implant-
bone tissue combination can be improved [7]. Node con-
nectivity, porosity, pore width, and the overall material of
unit cells influence the mechanical and biological charac-
teristics of unit cells in completely porous biomaterials [8].
According to the type of unit body structure, porous
structures for additive manufacturing can be divided into
three types: imitated dot array of metal lattice, curved-
surface porous structure generated by controlling the im-
plicit function, also known as a three-period minimum
curved-surface porous structure, and the unit body obtained
after topological optimization [9].

Numerous researches have been undertaken on devel-
oping the crystal lattice structure and its performance due to
the simplicity of the crystal lattice design and its outstanding
qualities, such as being light and having high strength
[10, 11]. Arabnejad et al. [12] designed a hip stem filled with
conceptualized two-dimensional lattice to optimize the
structure with bone resorption and interface failure as
conditions to control the density. (e design has been
proved to result in a more uniform transfer of force from the
prosthesis to the femur, reduce bone resorption, and lower
the fatigue strength on the stem of the prosthesis. Oladapo
et al. [13] designed five kinds of hip bone implants with
composite porous cell microstructure. (e results showed
that controllable homogenization, porosity, and particle size
distribution are beneficial in increasing the cell infiltration
and biological integration of hip implant composites.
Seharing et al. [14] compared and analyzed the mechanical
properties of cubic and eight-axis truss gradient lattice
structures. (e displacement is identified by using finite
element analysis based on the simulation of uniaxial com-
pression. (e results showed that the cubic gradient lattice
structure has the best mechanical properties under appro-
priate relative density and pore diameter, which is suitable
for bone implant. Eldesouky et al. [15] proposed a novel
design of tibial implant with a porous rhombic dodecahe-
dron structure. Compared with the solid titanium implant,
the clinical performance of such tibial-knee joint implants is
improved, which lowers the stress shielding. Zhang et al. [16]
proposed a step topology design of functional gradient
porous biomaterial with a diamond unit structure to sim-
ulate the structure of the femoral shaft. Selective laser
melting is selected by taking Ti-6Al-4V powder as the raw
material. (e defect coupling model predicted the Young’s
modulus and yield stress of functional gradient porous
biomaterials that revealed a considerable yield at the bearing
location.

(e three-period minimum curved-surface structure is a
minimum surface with complex 3D topological spatial
structure [17, 18]. (is structure has high specific surface
area, high porosity, and high long-range ordered structure
[19]. Its internal structure is interconnected, and surface is
smooth. Such a porous structure is useful for constructing

bone implants [20, 21]. Ma et al. [22] designed a gyroid
double implicit curved-surface porous structure (double-
gyroid) by using the Parametric Technology Corporation
(PTC) software and gyroid. (ey prepared a double-gyroid
structure by using laser selective melting technology. From
the compression test and hydrodynamics simulation, the
mechanical performance and fluid permeability are ob-
tained. (e structure is predicted to be suitable for cell
culture and medical implant. Corona–Castuera et al. [23]
designed and fabricated personalized stainless steel partial
hip implants by using tomography data and self-supporting
three-period minimum curved-surface structure. (e me-
chanical properties of the implants during compression are
adjusted by using an internal rotating element structure.(e
design and manufacture of implants are developed by
considering the clinical conditions of specific patients. (e
quality of the different types of bone tissues can be adjusted
to meet specific clinical requirements. Vijayavenkataraman
et al. [24] studied the design of porous bone implant based
on the three-period minimum curved surface, and this
design is made by using photoetching ceramic
manufacturing technology. A total of 12 different initial
surface structure elements are considered. (e results show
that the selection of materials and the design of porous-
based three-period minimum curved surface had led to
markedly lower compression modulus of the structure than
that of the natural bone.(erefore, the designmethod can be
used in the design of bone implant to alleviate the stress
shielding effect. Song et al. [25] proposed a design and
optimization method for the porous structure of customized
root simulated implant. (e Procter and Gamble (P and G)
structures with four kinds of porosity are designed and
prepared by using the three-periodminimum curved surface
as the cubic samples. (e Young’s modulus, Poisson’s ratio,
and yield strength of each sample are measured by a
compression test. (e stress distribution at the interface
between the tailored implant and the surrounding bone
tissue is studied using finite element analysis under various
pore structures and porosities. (e results show that the
porous implant constructed by using the three-period
minimum curved surface can lower the stress shielding
effect.

(e basic principle of designed porous element based on
the topological optimization method is the specific load and
boundary conditions as well as design and nondesign areas
are set in the cubic space by using topological optimization
algorithm. In order to create a unit structure with a certain
porosity, the relative density is used as the weight reduction
goal when creating topological optimization conditions.
Simoneau et al. [26] developed a disordered porous-struc-
ture filling at the top section of the prosthesis stem, which is
proven to better distribute stress and enhance mechanical
distribution of the prosthesis. Deering et al. [27] designed a
porous scaffold by using selective Voronoi tessellation and
priority sowing technology to simulate the natural structure
of trabecular bone. During polyhedron expansion, a pref-
erence texture is produced in the seed void in the original
volume to change the implant’s support direction. Anisot-
ropy is digitally characterized by the mean intercept length
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and star-shaped volume distribution to determine the
similarity with the trabecular direction. Nicali et al. [28] built
the bottom structure of the prosthesis to be more efficient
than a prosthesis created using standard approaches by
taking into account the patients’ masticatory biomechanics.
(e ultimate structural volume is 2% of the starting model,
which differs significantly from the standard model. (e
material is distributed according to the load point, the di-
rection and modulus of the applied force.

A new topological optimization method for variable-
density lattice structure is proposed in this paper. A per-
sonalized porous prosthesis that can fit the human femur is
designed based on the CTdata of human femur. (en, based
on the homogenization method, the topological optimiza-
tion design of a multiscale femoral prosthesis is achieved.
(e numerical analytical results of the femoral stress
shielding by three prostheses are compared by combining
the mechanical performance of total solid prosthesis, uni-
form porous prosthesis, and variable-density porous
prosthesis.

(e rest of the paper is structured according to the
following section: the topological optimization model of the
multiscale lattice structure based on the homogenization
method is present in Section 2, Parametric modelling of
femoral prosthesis is discussed in Section 3, while results and
analysis are delivered in Section 4. Finally, the paper is
concluded in Section 5.

2. Topological Optimization Model of
Multiscale Lattice Structure Using
Homogenization Method

(is section is divided into the following sections.

2.1. Calculation of Mechanical Properties for a Lattice
Structure. (e lattice microstructure with uniform periodic
array is classified as the continuum. (e homogenization
process might be used to produce identical mechanical
characteristics. (e microstructure lattice cell is a rhombic
dodecahedron. (e volume percent of the lattice cell are
stated as follows:

xe �
Vs

V
, (1)

where, xe is the relative density of lattice cell (volume
fraction), Vs is the volume of lattice cell’s solid component,
and V is the volume of lattice cell.

(e equivalent elastic modulus of the lattice structure
EH
ijkl can be calculated as follows:

E
H
ijkl �

1
|V|

􏽚
Vs

EijmnMmnkldV, (2)

where Eijkl is the local elastic modulus, this is the elastic
modulus for the solid component of the lattice cell’s ma-
terial, and Mijkl refers to εij, the local structure tensor εij

related to the macro-strains and micro-strains as follows:

εij � Mijklεij. (3)

Mijkl can be calculated as follows:

Mijkl �
1
2

δikδjl + δilδjk􏼐 􏼑 − ε∗ kl
ij . (4)

In (4), δij is the Kronecker delta and ε∗kl
ij is the mi-

crostructure strain corresponding to εkl, the component kl of
the macro-strain tensor.

Micro-strain can be expressed as follows:

σij � EijklMklmnεmn,

� EijklMklmn E
H
pqmn􏼐 􏼑

− 1
σpq􏼔 􏼕.

(5)

To avoid the repeated use of the homogenization method
and to speed up the iteration rate, this paper is aimed to
calculate the equivalent mechanical properties of the lattice
cells at different sampling sites by sampling the density and
fit the functional relationship between the equivalent me-
chanical properties and the relative density of the lattice
cells. (e samples are collected in equal density intervals of
the relative density in the range of 0–1. (e corresponding
equivalent mechanical properties are calculated by the ho-
mogenization method. Based on the polynomial interpo-
lation formula, the relationship between the properties of the
lattice cell and relative density is fitted into the function
formula. Figure 1 shows the functional relationship between
the equivalent elastic modulus Eii, shear modulus Gii,
Poisson’s ratio ]ij, and relative density of cells xe. Among
these variables, Es is the elastic modulus of the solid material,
while ]s refers to the Poisson’s ratio of the solid materials.
(e cube in Figure 1 is a rhombic dodecahedron structure
called a lattice structure cell.(e function curve in Figure 1 is
obtained by the least squares fitting. Quadratic polynomial
fitting provides the elastic and shear modulus, whereas cubic
polynomial fitting provides Poisson’s ratio. (e parameters
related to the fitting function are shown in Table 1, in which
R2 represents the fitting accuracy. If R2 is closer to 1, the
fitting accuracy is higher. If R2 is closer to 0, the fitting
accuracy is lower. (e fitting function could be directly used
in the iterative process of topological optimization to avoid
monotony caused by the repeated use of homogenization in
each iteration and speed up the iteration.

2.2. Multiscale Topological Optimization. (e homogeniza-
tion approach is used to propose the density method. Es-
sentially, the classic density technique generates a
distribution of 0 and 1, which is related to macrostructure
optimization. (e topological optimization design of the
lattice structure included the microscale, which involved the
qualities of a microstructure, in addition to the macroscale.

(e lattice cell corresponds to the finite element one by
one in the iteration of the density method. (e equivalent
elastic modulus Ee (i.e., unit elastic modulus) of the lattice
structure cell is calculated rapidly according to the fitting
formula in Table 1, and then, the numerical solution is
performed as follows:

Scientific Programming 3



x � x1, x2, . . . , xn( )T,
c(x) � UTKU

�∑
N

e�1
Ee xe( )uTe keue,

s.t.

V
(x)
V0

� f,

F � KU,

0< xmin ≤xe ≤ 1,




(6)

where, xe refers to the design variable (unit relative density),
and its value is in the range (0, 1), xmin refers to the
minimum relative density to avoid occurrence of singularity,

x refers to the vector of design variables, N refers to the
number of design variables, c refers to the overall �exibility,
Ee refers to the unit elastic modulus (equivalent to the elastic
modulus of the cell), U refers to the global displacement
matrix, F refers to the global stress matrix, K refers to the
global sti�ness matrix, ke refers to the unit sti�ness matrix,
ue refers to the unit displacement matrix, V(x) and V0 refer
to the solid and total volumes of the design domain,
respectively, and f refers to the volume fraction.

Di�erent methods are used to solve the optimization
results. �e optimization criterion algorithm is common.
�e design variables could be iterated constantly in the
solution process. �e iterative process depended on the
following heuristic algorithm

xnewe �
max xmin, xe −m( ), ifxeB

η
e ≤max xmin, xe −m( ),

xeB
η
e , if max xmin, xe −m( )<xeB

η
e <min 1, xe +m( ),

min 1, xe +m( ), ifxeB
η
e ≥min 1, xe +m( ),




(7)

where, m represents the maximum variation; and η refers to
the numerical damping coe�cient. Be could be solved as
follows:

Be �
−zc/zxe
λ zV/zxe

, (8)

where λ refers to the Lagrangian function.
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Figure 1: Equivalent mechanical properties of the lattice cell.

Table 1: Functional relationship between equivalent mechanical properties and relative density xe of lattice cells.

Equivalent mechanical properties Fitting function Fitting accuracy (R2)
Exx/Es � Eyy/Es � Ezz/Es 0.745x2e + 0.101xe + 0.022 0.998 57
Gxy/Es � Gyz/Es � Gxz/Es 0.515x2e − 0.098xe + 0.031 0.997 79
]xy/]s � ]yz/]s � ]xz/]s 0.449x3e − 0.644x2e + 0.292xe + 0.706 0.989 65
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Contrary to the traditional density method, the new
technique does not have a penalty factor. (e sensitivity of
the objective function is derived on the basis of the fitting
formula in Table 1 as follows:

zc

zxe

� 1.098xe + 0.102( 􏼁u
T
e keue. (9)

When the unit volume is used in each element, the
sensitivity of the volume is as follows:

zV

zxe

� 1. (10)

To summarise, the above represented the essential
principle of topological optimization of the lattice structure
using the homogenization method: (e fitting function of
comparable mechanical characteristics of the rhombic do-
decahedron lattice cell is calculated and fitted using the
homogenization approach. By merging the density approach
with the structure topological optimization model of the
minimal compliance issue under volume constraints, a
structural topological optimization model of the minimum
compliance problem under volume constraints is created.
(e unit mechanical characteristics of the new technique are
derived using the homogenization method, rather of the
previous density method. (ere is no penalty factor
employed. (e fitting function equation is used to calculate
sensitivity. As a result, the optimization results comprise a
series of gray units with the relative densities ranging from 0
to 1. A variable-density lattice structure would eventually
emerge from these gray components.

2.3. Parametric Modelling of Variable-Density Lattice
Structure. To construct the lattice structural morphology
based on discrete elements, extracting the information of key
position is necessary to assist the modelling. As shown in
Figure 2, the spatial position of each lattice cell could be
positioned by extracting the node coordinates of the ele-
ment. In terms of equal-density lattice structure, array
modelling could be directly performed according to the
geometric parameters of the cell, as shown in Figure 2(b). If
the node position coordinates are retrieved without
addressing the transition between cells with varying den-
sities for a variable-density lattice structure, the problem of
unequal connectivity between cells will arise. In the case of
the X-shaped cell, the connection’s strength is decided by the
weakest cell at the time shown in Figure 2(c). To solve a
nonsmooth connection, extracting the adjacency of each
unit and the connection between unit nodes, in addition to
the node information, is required to transform the unit
density into the node density and construct the smooth
variable-density lattice model based on the node density
shown in Figure 2(d).

(e autogeneration of the geometric model for the
variable-density lattice mainly included four parts as shown
in Figure 3: (1) acquisition of unit density distribution after
optimization; (2) calculation of the node density; (3) con-
struction of the cell geometric model, and (4) generation of
the lattice geometric model.

After optimization, the density of the unit density can be
retrieved from the topological optimization result. (e
following weighted average equation is used to determine
node density:

ρnj �
􏽐ixeiVei

􏽐iVei

, (11)

where, ρnj refers to density of the jth node, xei and Vei refer
to density and volume of the j element adjacent to node i,
respectively.

Nonuniform rational B-spline is used to describe the
model in the existing mainstream computer-aided design
(CAD) system. Its essence is an element expressed in the
form of the tensor product. As expressing models with
complex geometry, this element is usually expressed topo-
logically by boundary representation (B-Rep) and format of
the constructed solid geometry (CSG).

(e geometric model of the cell is constructed based on
the B-Rep method. (e geometric and topological infor-
mation of themodel are constructed parametrically according
to the spot, line, and surface from bottom to top. (e ex-
pression of B-Rep is depicted in Figure 4 using the X-shaped
cell in Figure 3 as an example. (e parametric construction
and operation of various geometric models based on the spot,
line, and surface can be achieved from bottom to top
according to the topological information of the shape in the
B-Rep structure once the B-Rep structure is established.

For the variable-density lattice structure, adjusting the
coordinate position on the top of the cell according to the
node density is necessary. (en, the geometric model of the
deformed cell is constructed by constructing the line and
surface based on the B-Rep relation. After the deformed cells
corresponding to various elements are constructed, the
parametric model of complex lattice structure could be
constructed by CSG through intersection, union, difference,
and other operations. In CAD system, geometric models are
expressed by boundaries, while 3-dimensional (3D) solid
models are described through their surfaces. (erefore, the
above methods can be used in the surface parametric
construction of 3D models to realize the autogeneration of
complex 3D variable-density lattice models.

2.4.AlgorithmImplementation. (e basic flow of topological
optimization algorithm for multiscale lattice structure based
on the homogenization method is shown in Figure 5.

(e proposed method is based on the homogenization
and density methods. First, equivalent mechanical proper-
ties of the lattice cell are determined by using the homog-
enization method and fitted as functions with relative
density of the lattice cell.(en, using the density approach in
MATLAB, iteration is optimized using the relative density of
microstructure cells as the design value and the minimal
flexibility as the goal function. (e fitting formula in Table 1
is used to compute the equivalent mechanical characteristics
of cells. (e equivalent volume element approach is used to
equate the lattice cells to dense solid components. (e finite
element problem is solved via Analysis System (ANSYS).(e
relative density distribution of the element, element nodes,
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Figure 2: Example of the lattice model based on the discrete element: (a) unit node model; (b) equal-density lattice model; (c) nonsmooth
variable-density lattice model; (d) smooth variable-density lattice model.
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Figure 3: Schematic diagram of the variable-density lattice model.

6 Scienti�c Programming



and other information are produced after interactive
MATLAB and ANSYS calculation. Finally, the relative
density is used to construct a one-to-one connection be-
tween the element and the lattice structure cell. �us, the
variable-density lattice structure is parameterized and
generated based on the element node information.

3. Parametric Modelling of Femoral Prosthesis

�e ilium and femur of participants were scanned using CT
for the model used in this experiment. �e elastic modulus
distribution in the appropriate region can be determined
using the corresponding relationship equation, which can
be re�ected in the CT data. In the human body, the density
of blood is approximately equal to that of water, which is
ρwater � 1.0 g/cm3, the corresponding apparent density is
ρAPP 0 � 0, and gray value is 0. �e bone density in the area
with the largest bone density is ρcort, and the gray value is
1613. Given that the hardest compact bone contains almost
no liquid, its apparent density can be considered equal to
the actual density. �erefore, the linear relationship be-
tween its apparent density ρAPP and gray value Ht is as
follows:

ρAPP �
Htρcort
1613

. (12)

�e cortical bone is greatly di�erent from the cancellous
bone in density. �e mapping relation of the elastic moduli
could be expressed as piece-wise functions as follows:

Cortical bone:

ECortical � 15010ρ2.18APP]

� 0.3ρAPP > 0.28.
(13)

Cancellous bone:

ECancellous � 6850ρ1.49APP]

� 0.3ρAPP ≤ 0.28,
(14)

where, ECortical and ECancellous refer to the elastic moduli of
the cortical and cancellous bones, respectively, and ] rep-
resents Poisson’s ratio. (11) and (12) are utilised to get the
distribution of elastic moduli in the femur, which is then
used as the foundation for further microstructure design,
modelling, and simulation experiments.

�e neck plane of the femur (T20), lesser trochanter
plane of femur (T0), and isthmus plane of femur (TN) at the
top of the femur’s CT image is shown in Figure 6. �ese
planes could re�ect the data of the patient’s femur and are
suitable for designing prosthesis. �e long and short di-
ameters of the pulp cavity for di�erent sections are measured
and obtained on the abovementioned three planes and are
recorded as LL20, LB20, LL0, LB0, LLN, and LBN. �e distance
from the neck plane of femur T20 to the isthmus plane of
femur TN is measured and recorded as L. �e frontal
projection data of CTdata is used to pick CTdata that might
convey the morphology of the femur for the basis of indi-
vidualised modelling. A section perpendicular to the center
line of the neck of the femur is established at the intersection
between the facial femur T20 and pulp cavity. �e distance
from the vertical point to center of the femur’s head is
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measured and recorded as LD.(e angle between the central
line of the neck and the central line of pulp cavity is
measured and recorded as α. (e radius of the head of femur
is measured and recorded as Rc. For the prosthetic design,
this data would serve as the primary reference sizes.

(e parametric modelling system of the femoral pros-
thesis is built based on the open-cascade open-source
modelling platform in this work to better adapt the pros-
thesis shape of the femur. (e parametric modelling of the
prosthesis is accomplished utilising the software based on
the structural characteristics of the femur measured. Si-
multaneously, CTscans are utilised to simulate the ilium and
femur in contact with the femoral prosthesis in order to
verify and investigate the stress on the femoral prosthesis.
Figure 7 depicts the completed model.

4. Results and Analysis

(e results and analysis of the proposed work consist of the
following parts:

4.1. Mechanical Model Establishment. In this experiment,
the weight delivered to the femur is the same as when a
human walks normally. (e peak approach is used to model
the walking process of an 80 kg human, which is broken
down into three distinct moments: early (toe off), middle
(single-leg support), and late (heel striking). In each typical
instant, a load is applied, as shown in Tables 2, 3, and 4,
correspondingly. A person’s average walking pace is 4 km/h,
with a maximum peak value of 3.8 times their body weight.

Additionally, complicated miscellaneous loads with many
functions are delivered to the upper femur during this phase,
which are summarised in this experiment as joint force,
abductor force, lateral femur muscle strength, and iliopsoas
muscle strength. Figure 8 illustrates the loading technique.

4.2. Optimization Analysis. (e femoral prosthesis is ana-
lyzed using finite element analysis. (en, the prosthesis is
optimized topologically by using the topological optimiza-
tionmodel of themultiscale variable-density lattice structure
based on the homogenization method. (e prosthetic ma-
terial selected is Ti-6Al-4V alloy, with elastic modulus of 110
gigapascals (GPa), Poisson’s rate of 0.3, and density of
4.5×10−6 kg/mm3.

(e load is delivered to the node in this experiment, and
the force on the femoral prosthesis is uniformly distributed
to the place where the femur is positioned. Changing the
node location subject to the load adjusts the position of the
load in the prosthesis. (ere are a lot of burdens to deal with.
(e computation must converge once the load is applied,
which necessitates the creation of three analytical phases.
(e peak load on the top of the femur in the early stages of
walking is applied in the load module in the first analytical
phase, as indicated in Table 2. (e peak load at the middle
stage of walking is applied in second analysis as shown in
Table 3. (e load on the upper part of the femoral prosthesis
in the late stage of walking is applied in the third analytical
step as shown in Table 4. At the same time, fixed constraints
are applied to the lower part of the parametric model of the
upper femur.

(a) (b) (c)

(d)

Figure 6: Extraction of the feature parameters of the femoral microstructure: (a) TN face; (b) T0 face; (c) T20 face; (d) axial size of the femur.
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Table 2: Joint force and muscle strength on the upper femur during walking at the early stage.

Direction Joint force (N) Abductor force (N) Lateral femur muscle strength (N) Iliopsoas muscle strength (N)
X 1160 −504 0 −17.6
Y 336 0 0 −131.2
Z 2800 −1352 1400 −123.2

Table 3: Joint force and muscle strength on the upper femur during walking at the middle stage.

Direction Joint force (N) Abductor force (N) Lateral femur muscle strength (N) Iliopsoas muscle strength (N)
X 290 −504 0 −17.6
Y 80 0 0 −131.2
Z 700 −1352 1120 −123.2

Table 4: Joint force and muscle strength on the upper femur during walking at the late stage.

Direction Joint force (N) Abductor force (N) Lateral femur muscle strength (N) Iliopsoas muscle strength (N)
X 290 −100 0 −88
Y 80 0 0 −565
Z 700 −254 700 −616

(a) (b) (c) (h)

(d) (e) (f) (g)

Figure 7: An example of the parametric modelling: (a) cortical bone of the femur; (b) cancellous bone of the femur; (c) femoral stem
prosthesis; (d) femoral head prosthesis; (e) acetabular cartilage; (f ) cancellous bone of ilium; (g) cortical bone of ilium; (h) assembled model.

F2
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F4

F3

F4

Z

X

Z

Y
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3°

20°

9°
47°

7°

Figure 8: loading of the femur: F1 r, joint force; F2, abductor force; F3, lateral femur muscle strength; F4, iliopsoas muscle strength.
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�e prosthesis of the femoral head is the mainly stressed
part, the whole solid structure is adopted. �e optimization
analysis of the femoral stem prosthesis is studied. After
optimization, the �nite element analysis is used to examine
the complete solid femoral prosthesis model, uniform po-
rous femoral prosthesis model, and the variable-density
porous femoral prosthesis model. Figure 9 shows the ana-
lytical results of the global deformation and equivalent stress
for all-metal femoral stem prosthesis. Figure 10 shows the
uniform porous femoral prosthesis model (porosity, 50%) as
well as analytical results of the global deformation and
equivalent stress. Figure 11 shows the optimized variable-
density porous femoral prosthesis model and the analytical
results of the global deformation and equivalent stress.

As shown in Figure 9(a), the solid femoral stem pros-
thesis weighed approximately 151.9 g. �e cloud chart of the
equivalent stress showed a certain stress concentration at the

neck of the femur, and the maximum stress is approximately
117.9 megapascal (MPa). �e axial direction of the femoral
prosthesis transmits the stress, while the stress on the lower
surface is signi�cant. �is phenomenon is due to the �xed
support constraint in this study. �e cloud chart of the solid
structure deformation is shown in Figure 9(b). �e maxi-
mum deformation is located near the neck of the femur, and
the maximum value is approximately 4.98mm. �e defor-
mation gradually decreased towards the tail of the femoral
stem prosthesis. �e whole deformation tended to rotate
around the tail of the prosthesis.

�e uniform porous structure treatment is performed
below the neck of the femur by using the rhombic do-
decahedral element with porosity of 50% as shown in
Figure 10(a) and weight of approximately 75.74 g, which is
∼50.14% lower than the whole solid structure. �e cloud
chart of the equivalent stress as shown in Figure 10(b),

117.9 Max
Unit: MPa

101.19

84.474

109.54

92.83

76.117
67.761
59.404
51.047
42.691
34.334
25.977
17.621
9.2642
0.90755 Min

(a)

4.9788 Max
Unit: mm

4.3204

3.6619

4.6496

3.9911

3.3326
3.0034
2.6742
2.3449
2.0157
1.6864
1.3572
1.028
0.69872
0.36948 Min

(b)

Figure 9: Numerical analysis of the all-metal femoral stem prosthesis: cloud charts of the (a) equivalent stress and (b) global deformation.

(a)

459.75 Max
Unit: MPa

394.07

328.39

426.91

361.23

295.55
262.71
229.87
197.03
164.2
131.36
98.518
65.679
32.84
0.00055708 Min

(b)

20.868 Max
Unit: mm

17.948

15.028

19.408

16.488

13.568
12.108
10.648
9.1879
7.7279
6.2679
4.8078
3.3478
1.8878
0.42776 Min

(c)

Figure 10: Numerical analysis of the uniform porous femoral prosthesis: (a) uniform prosthesis model and the cloud charts of the (b)
equivalent stress, and (c) global deformation.
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indicated a certain stress concentration at the neck of the
femur and the transition between the solid and porous parts.
�e normal area of the load in the prosthesis decreased, and
the stress increased accordingly. �e maximum stress is
approximately 459.75MPa, considerably more than that of
the whole solid femoral stem prosthesis. However, the stress
concentration slightly improved. �e stress concentration at
the neck of the femur had slowed down, while the stress
concentration at the lower end of the femoral prosthesis has
signi�cantly decreased. �e cloud chart of the uniform
density structure deformation is shown in Figure 10(c).With
a maximum value of 20.87mm, the largest distortion is seen
around the femur’s neck. �e greatest deformation achieved
by employing the porous structure is 4.19 times more than
the total deformation of the solid structure. �e distortion is

mostly located above the femur’s neck. From the transition
between solid and porous portions to the tail, the defor-
mation is minimal.

�e femoral prosthesis is optimized topologically by
using the topological optimization of multiscale variable-
density lattice structure based on the homogenization
method. �e optimized femoral prosthesis structure is
shown in Figure 11(a). �e structure weighed ∼87.23 g,
which is ∼42.57% lower than the whole solid structure
material and ∼15.17% more than the uniform porous
structure material. �e stress condition is shown in
Figure 11(b).�e cloud chart of the equivalent stress showed
that the variable-density porous structure is similar to the
whole solid structure. �e maximum stress is ∼150.44MPa,
which is ∼27.6% more than that of the whole solid structure

(a)

150.44 Max
Unit: MPa

128.95

107.46

139.69

118.2

96.718
85.974
75.231
64.487
53.744
43
32.257
21.513
10.77
0.026223 Min

(b)
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4.3845
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3.4961
3.0519
2.6076
2.1634
1.7192
1.275
0.83074
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(c)

Figure 11: Numerical analysis of the variable-density porous femoral prosthesis: (a) variable-density prosthesis model and the cloud charts
of the (b) equivalent stress and (c) global deformation.
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Figure 12: Featured regions of the femur: (a) regions prone to bone resorption and (b) stress distribution.
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and ∼67.28% lower than that of uniform porous structure.
(e stress concentration is significantly improved, and the
stress concentration in the neck of the femur is slightly
slowed down.(e cloud chart of the variable-density porous
structure deformation is shown in Figure 11(c). Similarly,
the maximum deformation is located near the neck of the
femur, and the maximum value is ∼6.61mm. (e variable-
density porous structure is adopted. Its deformation is
similar to that of the whole solid structure, which is ∼32.73%
more than the whole solid structure deformation and
∼68.33% lower than that of uniform porous structure. (e
deformation gradually decreased towards the tail of the
femoral stem prosthesis. (e whole deformation tended to
rotate around the tail of the prosthesis.

(e region most prone to bone resorption in hip
prosthesis replacement is shown in Figure 12. (is study is
performed to analyze the bone resorption in the feature
region. To better evaluate the bone resorption, the stress
shielding rate is used as a measurement of bone resorption.
Stress shielding rate is calculated as follows:

ψ � 1 −
σp

σo

􏼠 􏼡 × %, (15)

where ψ refers to the stress shielding rate; σp refers to the
stress after prosthesis implantation; and σo refers to the
stress before prosthesis implantation.

(e mean stresses in the highlighted region are 6.82,
19.49, and 16.25MPa for the complete solid prosthesis,
uniform porous prosthesis, and variable-density porous
prosthesis, respectively. Figure 12 depicts the stress distri-
butions in the feature areas of the three prostheses. When
compared to a solid construction, the porous structure
significantly improves stress shielding on the femur. (e
gravitational shielding caused by all-metal and porous stems
differs significantly. (is significant difference represented
the fact that low-stretch implants are superior than high-
stretch implants.

Topology optimization of the multiscale lattice structure
proposed in this paper has achieved variable-density to-
pological optimization. (is approach produced not only an
excellent lightweight effect, but also a superior stress dis-
tribution, demonstrating the lattice structure’s capability
and obviating the need for stress shielding.

5. Conclusion

(is paper puts forward the topological optimization of a
multiscale lattice structure based on the homogenization
method. (e following conclusions could be drawn: First,
the homogenization approach is used to calculate and fit the
function for calculating the equivalent mechanical perfor-
mance of a cell. (e results can speed up the computation
and eliminate the need for the homogenization approach to
be used many times. Second, a variable-density lattice
structure design based on topological optimization is ef-
fectively implemented, leading to a novel lattice structure
design idea. As a result, the characteristics of lattice materials
are improved, resulting in even better results. (ird, the

proposed technology could well be employed in conjunction
with 3D printing production. (e technology can be used in
a variety of sectors, including aerospace and tailored medical
treatment, to produce small-batch high-performance lattice
structures. (e approach is also used to produce high-
performance automotive lattice components, reducing the
research and development cycle and saving money. Finally,
the lattice structure had some special properties, such as high
heat dissipation and high energy absorption. (e proposed
method can be further applied to heat dissipation, energy
absorption, and other specific applications to realize the
optimal design of high-performance lattice structures.
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