Hindawi

Scientific Programming

Volume 2022, Article ID 4301944, 11 pages
https://doi.org/10.1155/2022/4301944

Research Article

@ Hindawi

Translytics: A Novel Approach for Runtime Selection of Database

Layout Based on User’s Context

Muhammad Makhshif Tanvir,! Muhammad Khuram Shahzad,! Muhammad Anwar 0,2

and Su Man Nam ©°

'Department of Computing, National University of Sciences and Technology, Islamabad 46000, Pakistan
Department of Information Science, Division of Science and Technology, University of Education, Lahore 54000, Pakistan
’Dudu Information Technologies, Inc., Seoul, Republic of Korea

Correspondence should be addressed to Su Man Nam; sumannam@gmail.com

Received 29 April 2022; Revised 15 June 2022; Accepted 20 June 2022; Published 10 August 2022

Academic Editor: Sikandar Ali

Copyright © 2022 Muhammad Makhshif Tanvir et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Currently, organizations have to maintain separate systems for transactions and analytics inside the company. Notably, different
vendors provide the capabilities for either of these tasks that require specialized hardware or software. Data engineers are required
to retrieve data from one source and transform it into another format to obtain the maximum benefit in a minimum time.
Organizations strive for a competitive advantage that is achieved by fetching data from their customers and getting insights
earliest for timely decision making. Present practices do not permit the view of the latest data for analytics since the first data have
to be fetched from the source, transformed, and loaded to other systems to be utilized for analysis by relevant teams. This paper
introduces a single system for both transactions and analytics. Our proposed solution would permit companies to seamlessly adapt
our solution without the need to shift all of their data to newer systems and allow all the teams. It would grant all the teams to have

a view of the latest available data without extra expertise and budget.

1. Introduction

In this paper, we aim at countering the limitations arising
from maintaining separate systems for transactions and
analytics in organizations. In today’s modern world, orga-
nizations have to deal with a lot of data. These data can be
generated either from their customers or within the orga-
nization. Other than generation of data, this is equally
important to analyze these data to derive the hidden facts
inside it. This is becoming increasingly difficult to handle
these data in a way so the transactions and analysis can be
run simultaneously on the same data and the same systems.
If we can have a system where we can run both types of
workload on the same system, it can save us from the
overhead of maintaining two different systems, keeping data
at 2 places, and waiting for a whole day for data to be
available for analysis.

As per the present practices, corporates deploy essen-
tially 2 different types of databases. One is for transactional
processing and another is for analytical processing. The main
or first data store is usually the OLTP database because the
data are first inserted into the database and any sort of
transaction whether insert, update, or delete performs better
in row stores. Once the data from the main source are
inserted in the database, the data are transferred to the OLAP
databases with specialized jobs which usually run in off-peak
to avoid any workload on main databases. These data are
then accessed by the teams who have to perform analysis on
these data. There are a few problems in this setup. Foremost
is that the analysis teams do not have the latest view of data
and as per usual practice they have data till ‘sysdate-1.
Secondly, the same data are residing in 2 different databases
which impose the hardware and support burden on com-
panies. So, there should be a way in which the analytics team

mailto:sumannam@gmail.com
https://orcid.org/0000-0002-0615-3038
https://orcid.org/0000-0002-8595-3307
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4301944

can have a view of the latest available data. Here, we need to
have different databases for transactions and analytics.
Ideally, we should have the same database where users can
perform transactions and analyses simultaneously.

The actual reason for this segregation is the format of the
data inside the database storage. In transactional databases
or OLTP systems, the data are stored in row format while in
analytical databases or OLAP systems, the data are stored in
column format. This is not possible to natively co-locate
both formats in the database as data can either be stored in
row format or column format. Some years ago the concept of
HTAP was introduced. It stands for Hybrid Transactional
Analytical Processing. Some vendors and researchers step-
ped forward and offered some of their solutions. In a few of
them, the analysis could be run on the latest data while in
others the users had to wait for some time so the view of the
latest data could be prepared for them within the database.
In the past, relational databases have been used for the
transaction as well as analytical processing. However, OLTP
and OLAP systems have very different characteristics.
Traditionally, we have known OLTP systems by their ca-
pabilities of individual record insert, delete, or update
statements and also the point queries that take advantage of
indexes. On the other side, we update the OLAP systems in
batches and they usually require table scans. ETL (extract
transform load) systems perform batch insertion into OLAP
systems which fetch and transform transactional data from
OLTP environments and import it into OLAP environments
for users to perform analysis on the data.

The term HTAP (hybrid transactional analytical pro-
cessing) is used for the systems that support both OLTP and
OLAP queries. Some of these systems can execute analytical
queries on the latest data, and some of them need some time
before the queries can have a view of the latest data. OLAP
and OLTP systems have somehow progressed over time.
OLTP and OLAP systems are different from each other;
although the purpose is to provide data to the user, they
have different use cases. OLTP systems usually have the data
arranged row format which better supports large transac-
tional queries, e.g., insert/update/delete while OLAP sys-
tems are usually arranged in column format which better
supports the large analytical queries like table scans and
selection in batches. ETL processes do the batch insertions
in OLAP systems, and they consolidate and transform the
transactional data from OLTP systems into an OLAP en-
vironment for analysis. This is because the source systems
usually have the databases configured to better support the
transactions.

We have kept in mind that organizations do not need to
shift all of their data from their operational databases to a
whole new infrastructure; this would rather be closer to a
plug-and-play proposal. They will not need to get the
training from scratch or hire experts. This will allow the
users to eliminate the need for having two different and
loosely coupled systems for each type of need. This will also
lessen the burden of maintaining the different databases by
capitalizing on the utilities of a single database. All
the organizations that require regular transactions and
analysis of the data for their decisions can benefit from this

Scientific Programming

research. These organizations may include telecommuni-
cation companies, banks, financing companies, retail, and
SO on.

2. Related Work

We have seen some specialized systems in the last few years
such as BLU [1], Vertica [2], ParAccel, GreenPlumDB [3],
Vectorvise, as well as many in-memory OLTP systems,
including VoltDB [4], Hekaton [5], and MemSQL [6]. The
abovementioned systems take good advantage of multicore,
multilevels of memory caches and a huge amount of
memories. Recently we have also seen an outburst of many
big data technologies, being used by new generation ap-
plications. NoSQL/key-value stores like Voldemort [7],
Cassandra [8], and RocksDB [9] support fast inserts and
lookups and good capabilities to scale out, but they lack in
some query capabilities and do not offer complete trans-
actional guarantees. There have been also many SQL-on-
Hadoop [10] offerings, including Hive [11], Big SQL [12],
Impala [13], and Spark SQL [14], which provide analytical
capabilities on huge data sets, and they focus on OLAP
queries only hence lacking transaction support. These sys-
tems started as traditional databases where they developed
leaner database engines from scratch. Almost all of these
started support for one type of processing and later on
started adding support for the other type of processing as
well.

These systems are mainly different from each other based
on the data organization they use for either transactional or
analytical requests. There was a project named HyPer [15],
that was designed to support both fast transactions and
analytics using one engine. In the beginning, it was using
row-based processing of data for both OLTP and OLAP, but
now it also provides the option for choosing a columnar
format so it can run the analytical requests also more effi-
ciently. Recently, there has been another project named
Peloton [16] which aims to build an autonomous database
system. It provides data the capability to change its format at
run-time based on the type of requests. Then, there is an-
other subsequent research [17] that aims to forecast the
query workloads that the format of the storage can be
changed on the fly. They have also done some research for
bridging the archipelago between row stores and column
stores [18] so it can be decided which data have to be kept in
row format and which in column format at which particular
time. Almost all of these systems require converting the data
from one format to another before it can be visible to users
requiring the other format.

One issue in each of these proposed solutions is that each
of them has been built from scratch and none of these is the
plug-and-play module so organizations can plug these into
their existing architecture so they do not have to adopt a
major technology shifting. In our study, we shall focus on a
system that should allow the organizations to cater to the
needs of each type of the user from a single database where
users can do their analysis of the latest data by keeping the
level of trade-offs as low as it can get.

Scientific Programming

No. of employees

90

56

150

72

Sales, Commercial, I'T, Marketing

321,213,453,556

Department Dept ID
Sales 321
Commercial 213
1T 453
Marketing 556
Row 1 Sales,321,90 Department
Row 2 Commercial, 213,56 Dept ID
Row 3 IT,453,150 No. of
Row 4 Marketing,556,72 employees

90,56,150,72

FiGUre 1: Row format vs. column format.

Client Process

®.

Shared SQL area
Server Process
Data Buffer
dictionary Cache

FiGure 2: User connection with database.

3. Row Format vs. Column Format

Conceptually, a relational database table is a two-dimen-
sional data structure with cells organized in rows and col-
umns. For storing a table in linear memory, two options can
be chosen, i.e., row store and column store. A row store
stores a sequence of records that contains the fields of one
row in the table as we can see in Figure 1. In a column store,
the entries of a column are stored in contiguous memory
locations as we can see in Figure 1 again. Basically, row stores
are good for transactional processing while column stores
are good for highly analytical query models. Row stores have
the ability to write data very quickly, whereas a column store
supports better for aggregating large volumes of data for a
subset of columns.

4. Data Access Method

Before coming to our main strategy, let us discuss how a query
runs inside a database engine so that we may know which part
of the overall architecture needs to be focused on for our
implementation. Figure 2 shows the high-level view of the
architecture of relational databases. This is the high-level view
of the architecture of relational databases. Given one is of oracle
but relational databases more or less use the same concept. Let
us explain this briefly. The database user connects to the da-
tabase through a client where a specified amount of session

memory is allocated to its server process. The query is then
directed to the database instance where the query is parsed and
consequently data are fetched. For every query which user
issues, the data are first searched inside the database memory,
and if the data are present in it, the data are returned to the user
but if the data are not present in memory, the data are first
brought into the memory from databases files residing on the
disk and then the data are returned to the user. This is true for
every computational process that data are first searched inside
the RAM or memory; if it is not found in it, then the data are
fetched from the disk. But keep in mind, the memory of the
database is not the same as the data of the server on which the
database is running. A separate chunk of memory has to be
allocated to the database instance; this is an educated chunk of
memory where database-specific parsing and data manipula-
tion take place.

Now, let us look a little deeper inside a portion of ar-
chitecture in Figure 3 where we will be more focused in our
study, the memory of the database. This is the area where
SQL parsing takes place. We can look at the high-level view
In Figure 3. When a user issues an SQL query, it is first
parsed. Parsing consists of three parts, i.e., syntax checking,
semantics checking, and shared pool checking. In syntax
checking, the database engine checks if the syntax of the
query is correct. If the syntax is correct, it then checks for the
semantics of the query. For example, if a user issues a query
where 3 different columns are required to be checked, this
step of semantics checking will check if the required table is
present in the database; if the required columns are present
in that table; and so on. After this step, the privileges are also
checked where the database checks if the user has the re-
quired permissions and privileges to access these data. If
these checks are fine, then a hash value of the given SQL
command is generated and stored in the library cache. But
before storing the hash in the library cache, it will first check
if the same hash is already present inside the library cache or
not. If the hash is already present. then there is no need to
store it again; otherwise, we store it. If the hash is already
present, this saves us from some subsequent efforts which we
shall discuss. This step is called shared pool checking. If the

SQL Statement

Parsing ¢

Syntax check

v

Semantic check

!

Shared pool check

A 4

Optimization

i

Row source generation

Execution

FiGure 3: SQL statement lifecycle.

query hash is found to be already present in the library cache,
this situation is a soft parse and the database engine goes
directly to the execution of the query. If the hash is not found
and has to be stored, this is called hard parse where the
optimizer does its work and generated different execution
plans of this query and chooses the best one out of these.
Row source is then generated, the query is executed, and the
result is returned to the user.

Scientific Programming

As we discussed, if the hash is not found in the library
cache, this is called hard parse. This is the stage where the
query goes through the whole parsing cycle. Syntax of the
query is checked whether the query is in DB understandable
form, semantics are checked whether the requested data are
present in a database or not, if the user has permissions to
access these data, and so on. Then, the optimizer does its
work and generates different execution plans for this query
and chooses the best one out of these. Row source is then
generated, the query is executed, and the result is returned to
the user.

If each new SQL statement is being parsed, this means
each new SQL is a new entrant and has not been previously
used or the plan has timed out. This might also mean that the
shared pool is not large enough to keep the regular SQL
plans. Frequent hard parsing does not always point to the
problems as we can consider the possibility that each SQL is
anew one but this is an extremely optimistic approach as this
is a rare scenario. The hard parsing slows down the per-
formance because we have to then frequently access the hard
disk which itself is a costly process. This is the place where
the DBAs of the company have to be engaged to look into the
matter. The reasons for hard parsing might include the
queries have not been standardized, the host variables are
not being used, the size of the shared pool is very small, and
regular queries have not been documented or controlled
somewhere because only changing the case of the SQL
statement, i.e., changing from upper case to lower case and
vice versa will generate the different hash values. The reason
has to be analyzed and rectified accordingly, e.g., we can plan
to take care that the host variables are used in SQL so these
can be treated as the re-entrants. The lesser the hard parsing
the better the performance be but each SQL will be parsed at
least once in the starting.

If the query hash is found to be already present in the
library cache, this situation is a soft parse and the database
engine goes directly to the execution of the query. If the
query has already been parsed and its hash value is present
in the library cache, we will not have to reparse it and we
will be saved from a lot of overhead as parsing itself is a
costly process as the purpose of the shared pool is to
maximize the sharing and minimizing the repetitive tasks
by reusing the already available information. Soft parsing
might mean that the entrant SQL was as it is executed
before or the only unique feature of this new entrant is its
host variables. In this case, the hash value will remain
the same and the input values of variables are changed. So,
the size of the library cache has to be kept as much which
can hold the hash values and execution plans of at least
those queries which are regularly and frequently being
accessed.

5. Proposed Design

Now comes the main topic of discussion. We will focus on
how we can keep the 2 layouts, i.e., row store and column
store in one database. As discussed earlier, while creating the
database, we may have options whether to adopt a row store
or column store but not both, and if both have to be done, we

Scientific Programming

OLTP — % N OLAP
CITT]
CITT]
FIGUre 4: High-level concept overview.
Instance 1 Instance 2
| | | | | | Private IP
L[[] |
L [[[| |
SRV1 SRV2

Cluster IP: SRV1

Cluster IP: SRV2

FIGURE 5: Segregation of users.

have to have 2 different databases and replicate data between
both of these.

Practically speaking, the data analytics teams are working
on a specific chunk of data on daily basis and they do not
require the whole data at one time. So, instead of trying to co-
locate row and column format on the disk, what if we try to
manage it inside of the memory of the database. We can try
to keep the database the same but define 2 separate chunks of
memory for it. One where the data are in row format, and the
other where data are in column format. The transactional
queries can be redirected to the former and analytical queries
to the latter. But a new challenge comes to the surface that
how can we do this so that the underlying database remains
the same and we can plug another memory set along with the
default one. We shall discuss this in our next portion.

5.1. Database Cluster Configuration. Our main consider-
ations are we have to keep the storage the same so we do not
have to have the burden of extra storage for the replica

database, all types of users should be able to work on the
same database, the required tables, views, or partitions
should have the most recently updated data, and the da-
tabase should be able to comprehend the context of the
query and redirect it to the suitable chunk of memory from
where its needs will be catered for. Most importantly, this
proposed design should not be in conflict to presently
working database and its working should be seamless. We
can make a database cluster which has the same storage but
has multiple instances running on it as we can see in the
high-level diagram in Figure 4.

So, in the proposed database cluster, the instances are 2
servers or 2 virtual machines as we can see in Figure 5. These
can be running on any operating system whether it is Linux,
Windows, UNIX, and so on. These instances or nodes of
databases will have their own memory and separate CPUs
but storage is shared between both of the instances. Storage
can be provisioned through SAN or by making shared
mount points or disks. Both of these instances communicate

1800

1600

1400

1200

1000

800

Time taken (sec)

600

400

200

Scientific Programming

Selection (sec)

50 100 150

200

250 300 350 400 450

Size of data (GBs)

FIGURE 6: Selection in row format.

Transactions (sec)

350

300

250

200

150

Time taken (sec)

100

50

20000 40000

60000

80000 100000 120000

Number of records in transaction

FiGUure 7: Transactions in row format.

with each other through private IP, and each of these in-
stances has its own public IP which is visible to everyone. We
then configure a cluster that will include both of these in-
stances. Database software is installed on both of these
instances, and the view of data is the same for both of them.
So, the issue arises that each of these instances has its own IP,
how will the user know to which IP I need to connect? We
shall configure virtual IP for this purpose and that is con-
figured for the cluster. The user who is connecting to the
database will use the virtual IP instead of public IP of the
specific instances and will connect to the cluster instead of
connecting to the instances. Generally, the cluster decides to
route the queries towards lesser loaded instances and If
needed it remove or add more instances based on their
availability. Traditionally if the cluster is configured, then
both of the instances are supposed to be performing the

same functionality, but in our case, the instances are not the
same, and these are supposed to be performing the same
functionality.

Keeping all these reasons in mind, we have to decide
which database will we use for the implementation. The
database should be a fully ACID complaint and should
provide the clustering capabilities also, and its community
version should be easily available for research. After an-
alyzing multiple databases which includes MySQL, Post-
gresqgl, Microsoft SQL Server, and Oracle, we have decided
to go with oracle as its clustering capabilities are better than
the remaining and it makes the intelligent shared cluster.
Our research focus is to decide the context of the query and
type of user and then route the user to the suitable instance.
So, how will we achieve this? Technically speaking, if a user
has to connect to the database, he has to use a connection

Scientific Programming

Selection (sec)

160

140

120

100

80

60

Time taken (sec)

40

20

100 150 200

250 300 350 450

Size of data (GBs)

FiGURE 8: Selection in column format.

1400

1200

1000

800

600

Time taken (sec)

400

200

Transaction (Sec)

20000 40000

60000 80000 100000 120000

Number of records in transaction

FiGURE 9: Transactions in column format.

string but has the IP of the database which will be virtual IP
in our case. We will create services for the database in-
stances and will use these services in the connection string
so that database knows which user has to connect to which
database instance. The connection strings are usually
provided by Database Administrators to the relevant team
users, so the only thing which has to be taken care of are the
connection strings being provided to the users. We shall
create 2 services for the database. One for the OLTP in-
stance and another for the OLAP instance. The users who
are in transaction-based teams will be provided with
connection strings with service 1 and the users who are in
analytics teams will be provided with connection strings
with service 2. So, now since we have 2 different instances
with shared storage and different services to be connected

to them, we can now move on to implementing the main
thing inside instances, i.e., layout definitions. We shall let
instance 1 use its native layout which is row-based for
transactions, and we shall configure instance 2 to store data
in its memory in columnar format. Since the native layout
is row-based both on disk and memory, we shall keep the
size of the memory as per the organizational conventions.
But since in instance 2, we will be keeping the data in a
columnar format in memory, and we shall keep the size of
the memory to a fairly large value which can be increased or
decreased as we gain experience. This needs to be decided
internally with the analytics team that which tables/par-
titions/views do they need at which time, and these can be
loaded accordingly as per their needs into the memory of
instance 2.

1800

1600

1400

1200

1000

800

Time taken (sec)

600

400

200

Scientific Programming

Selection (sec)

100 150

200

250 300 350 400 450

Size of data (GBs)

—— Row-Format (sec)
Column format (sec)

Ficure 10: Selection in row format vs. column format.

Transaction (sec)

1400

1200

1000

800

600

Time taken (sec)

400

200

0 20000 40000

60000 80000 100000 120000

Number of records in transaction

—— Row-Format (sec)
Column format (sec)

FiGure 11: Transactions in row format vs. column format.

6. Experiments and Results

Now, we shall evaluate our proposed model and see how
this can contribute to the overall idea. We will be validating
a few things in our experiments which we claim to be the
basis of the whole study, and these include that the row store
works better for OLTP while column stores work better for
OLAP, and these can co-locate in a database on their
specified instances We shall start with looking at the
conventional systems where the source databases are op-
timized for OLTP. For experimental purposes, we have
acquired data from a corporate and table sizes range from
9 GBs to around 400.

GBs include partitioned as well nonpartitioned tables.
Right now, we have a database with 2 instances, and both
of the instances have their memory in a conventional

layout which is the row format. For the start, we shall
execute a series of select statements on tables of different
sizes, and then will execute a series of transactions on the
same database with a varying number of records to be
updated.

Here, we can visualize in Figures 6 and 7 that the
transactions are a bit faster as compared to selection as the
database is yet in row format but at the moment we cannot
accurately compare both because transactions are being
evaluated on number of records while selection on the size of
the database. The picture will keep on getting clearer as we
shall proceed on the further cases.

Now, we shall convert the memory into the column store
on both of the instances and will see how the system per-
forms for selections and transactions. Ideally, this format
should support selection or scan of records better.

Scientific Programming

Selection (sec)

180

160
140
120
100

80

Time taken (sec)

60
40
20

100 150

200

250 300 350 400 450

Size of data (GBs)

—— Proposed solution (sec)
Pure column format (sec)

FIGURE 12: Selection when clustering in column format vs. proposed solution.

Transaction (sec)

350

300

250

200

150

Time taken (sec)

100

50

0 20000 40000

60000 80000 100000 120000

Number of records in transactions

—— Proposed solution
Pure row format (sec)

FIGURE 13: Transactions when clustering in row format vs. proposed solution.

Now, here we see that the selection of records seems to
be faster and transactions seem slower as we can see in
Figures 8 and 9. Here, we can establish that the row format is
working better for the transactions while the column format
is working better for selection of records. Now, let us
combine the results from both of the experiments done
above and see how much the format affects the speed of
selection or transactions. Since the comparison is not be-
tween selection and transaction, this actually is selection in
rowformat vs. selection in column format and similar
transactions in row format vs. transactions in column
format as shown in Figure 10.

We have seen that the same scan queries have performed
a lot better in column format as compared to row format.

Now, let us see the comparisons between transactions
performing in row format vs. transactions performing in
column format Figure 11.

As expected, we can see that the transactions are per-
forming better in row format as compared to column format.

Since now, we have established the base that which type of
queries work better in which format of data layout. In both
the scenarios, we either had the data fully row formatted or
column formatted. Now, we have to co-locate both of the
formats. For this purpose, we shall now keep the one in-
stance in native layout, i.e., row store while we shall change
the other instance and will arrange its memory in column
format, we shall keep the memory of the second node a little
higher as we would expect that most of the data that the
analytics team should be fetched into memory already. Here,
we shall run the same queries which we ran earlier and will
check their results to compare how well they perform in the
proposed setup. Given below are the results, and the other
lines in comparison are the results when the database was
either fully row formatted or fully column formatted. In the
selection, we shall compare the results of our proposed
solution with the results in column format we checked
earlier and plot it in Figure 12, and in transactions, we shall
compare the results of our proposed solution with the results

10 Scientific Programming

Selection (sec)
1800

1600
1400
1200
1000
800
600
400
200

Time taken (sec)

0 50 100 150

’ e

200

250 300 350 400 450

Size of data (GBs)

—— Proposed solution (sec)
Pure row format (sec)
Pure column format (sec)

FIGURE 14: Selection in all scenarios combined.

Transaction (sec)

1400

1200

1000

800

600

Time taken (sec)

400

200

0 20000 40000

60000 80000 100000 120000

Number of records in transactions

—— Proposed solution
Pure column format (sec)
Pure row format (sec)

FiGure 15: Transactions in all scenarios combined.

in row format which we also checked earlier and plot these in
Figure 13.

Here, we can see that there is very slight performance
degradation in our proposed solution as compared to when
the database was in full row format or in full column format.
The reason for this is that we have a cluster of 2 servers.
When both nodes were in the same format, both of these
servers were contributing to fetch the results so that com-
putations were a bit faster; since now, we have one server in
one format and we could see a slight slow. This is not very
significant in this study, and we will not count it as a
drawback because corporates have enough budgets so when
they would implement the solution they can afford to keep 4
nodes in a cluster instead of 2 where 2 each will contribute
for each type of format. Anyways the performance gain is
very much as compared to the traditional approach. So, if we
summarize the whole thing, we shall get the results as in
Figures 14 and 15.

Here, the worst performing lines are either selection in a
row format or transactions in column format. So, imple-
menting the proposed solution brings is better of both
worlds in our case.

7. Conclusion and Future Work

We have presented an architecture for the databases which
can accommodate the needs for analytics and transactions in
the same database. Also, this is going to be a necessary
requirement for the organizations to have a view of the latest
data at the earliest to fetch insights from it. This will allow the
users to analyze the latest view of data without having the
need for waiting for the latest data to be available through
specialized jobs. The trade-offs we get from this approach is
we need to have more memory at the column formatted
instances, we may need to maintain more instances of the
databases, and we have to look after segregation of users

Scientific Programming

carefully else they might land at the wrong layout which may
worsen the situation for them. While in this paper, we knew
the segregation of our users and we created different con-
nection services for each of these which will route their
queries to their respective engines; this is a good idea to work
on making the system generic without having the need to tell
the system which user is of which type and letting the system
decide who the user is and route the query to the suitable
engine.

In the future, instead of making the services, a parser can
be developed, which will check whether the query is ana-
Iytical or transactional and then make the suitable engine
take over from there. Secondly, one can then embed a
machine learning module which can track the behaviour of
the system based on which queries are executed at which
time by which user. This way we can better populate the
query cache and buffer caches proactively. The focus will be
to minimize the manual efforts and let the database do things
for itself.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the Technology Development
Program (52966549) funded by the Ministry of SMEs and
Startups (MSS, Korea).

References

[1] V. Raman, G. Attaluri, R. Barber et al., “DB2 with BLU ac-
celeration: so much more than just a column store,” Pro-
ceedings of the VLDB Endowment, vol. 6, mno. 11,
pp. 1080-1091, 2013.

U. Shafig, M. K. Shahzad, M. Anwar, Q. Shaheen, M. Shiraz,
and A. Gani, “Transfer Learning Auto-Encoder Neural Net-
works for Anomaly Detection of DDoS Generating IoT De-
vices,” Security and Communication Networks, vol. 2022
Article ID 8221351, 13 pages, 2022.

M. Anwar, A. H. Abdullah, A. Altameem et al., “Green
communication for wireless body area networks: energy aware
link efficient routing approach,” Sensors, vol. 18, no. 10,
p. 3237, 2018.

[4] M. Stonebraker and A. Weisberg, “The VoltDB Main Memory
DBMS,” IEEE Data Eng. Bull.vol. 36, no. 2, p. 2127, 2013.
C. Diaconu, C. Freedman, E. Ismert et al., “Hekaton: SQL
Server’s memory- optimized OLTP engine,” in Proceedings of
the 2013 ACM SIGMOD International Conference on Man-
agement of Data, Article ID 12431254, New York, NY, USA,
June 2013.

MemSQL: http://www.memsgl.com.

S. Amjad, M. Younas, M. Anwar, Q. Shaheen, M. Shiraz, and
A. Gani, “Data Mining Techniques to Analyze the Impact of
Social Media on the Academic Performance of High School

(5]

[8
[9
[10

(11

[12

[13

(14

(15

(16

(17

(18

]

]

]

]

]

]

J

]

11

Students,” Wireless Communications and Mobile Computing,
vol. 2022, Article ID 9299115, 11 pages, 2022.

A. Cassandra: http://apache.cassandra.org.

RocksDB: http://rocksdb.org.

M. Anwar, F. Masud, R. Aslam Butt, S. Mahdaliza Idrus,
M. Nazir Ahmad, and M. Yazid Bajuri, “Traffic priority-aware
medical data dissemination scheme for IoT based WBASN
healthcare applications,” Computers, Materials & Continua,
vol. 71, no. 3, pp. 4443-4456, 2022.

M. Kamran, M. Malik, M. W. Igbal, M. Anwar, and M. Aqeel,
“Web Simplification Prototype for Cognitive Disable Users,”
Human Behaviour and Emergency Techonolgy, vol. 2022,
Article ID 5817410, 14 pages, 2022.

S. Gray, F. Ozcan, H. Pereyra, B. Van der Linden, and
A. Zubiri, “IBM Big SQL 3.0: SQL-On-Hadoop without
Compromise,” 2014.

M. Kornacker, A. Behm, V. Bittorf et al., “Impala: A Modern,
Open-Source SQL Engine for Hadoop,” in Proceedings of the
7th Biennial Conference on Innovative Data Systems Research
(CIDR’15), Asilomar, CA, USA, January 2015.

M. Armbrust, R. S. Xin, C. Lian et al., “Spark SQL: Relational
Data Processing in Spark,” in Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data,
Article ID 13831394, Melbourne, Victoria, Australia, May
2015.

A. Kemper and T. Neumann, “HyPer A Hybrid OLTPOLAP
Main Memory Database System Based on Virtual Memory
Snapshots,” in Proceedings of the 2011 IEEE 27th International
Conference on Data Engineering, Article ID 195206, Hann-
over, Germany, April 2011.

A. Pavlo, J. Arulraj, L. Ma et al, “Self-Driving Database
Management Systems,” in Proceedings of the Biennial Con-
ference on Innovative Data Systems Research (CIDR), Asilo-
mar, CA, USA, 2017.

L. Ma, D. Van Aken, A. Hefny, G. Mezerhane, A. Pavlo, and
G. J. Gordon, “Query-based workload forecasting for self-
driving database management systems,” in Proceedings of the
2018 International Conference on Management of Data,
Houston, TX, USA, May 2018.

J. Arulraj, A. Pavlo, and P. Menon, “Bridging the archipelago
between row-stores and column-stores for Hybrid work-
loads,” in Proceedings of the 2016 International Conference on
Management of Data, San Francisco, CA, USA, June 2016.

http://www.memsql.com
http://apache.cassandra.org
http://rocksdb.org

