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A novel Multiple Context Learning Network (MCLN) is proposed to model multiple contexts for visual question answering
(VQA), aiming to learn comprehensive contexts. Three kinds of contexts are discussed and the corresponding three context
learning modules are proposed based on a uniform context learning strategy. Specifically, the proposed context learning modules
are visual context learning module (VCL), textual context learning module (TCL), and visual-textual context learning module
(VTCL). The VCL and TCL, respectively, learn the context of objects in an image and the context of words in a question, allowing
object and word features to own intra-modal context information. The VTCL is performed on the concatenated visual-textual
features that endows the output features with synergic visual-textual context information. These modules work together to form a
multiple context learning layer (MCL) and MCL can be stacked in depth for deep context learning. Furthermore, a contextualized
text encoder based on the pretrained BERT is introduced and fine-tuned, which enhances the textual context learning at the
feature extraction stage of text. The approach is evaluated by using two benchmark datasets: VQA v2.0 dataset and GQA dataset.
The MCLN achieves 71.05% and 71.48% overall accuracy on the test-dev and test-std sets of VQA v2.0, respectively. And an
accuracy of 57.0% is gained by the MCLN on the test-standard split of GQA dataset. The MCLN outperforms the previous state-of-

the-art models and the extensive ablation studies examine the effectiveness of the proposed method.

1. Introduction

An artificial intelligence agent must be able to understand
not only the semantics of text but also the content of
images. Most multimodal tasks involving image and text
modalities require this ability; these tasks include
grounding referring expressions [1], image captioning [2],
image-text matching [3], and visual question answering
(VQA) [4, 5]. Compared to other multimodal tasks, VQA is
more complex that requires associating visual content in
the image with the semantic meaning in the question,
together with visual reasoning to make the correct answer.
In addition, VQA has a wide range of applications in
practice, such as assisting the blind and early childhood
education [6]. Considering the challenges and significance
of VQA, visual question answering has attracted much
attention in computer vision and natural language pro-
cessing communities.

In the early stages, the VQA methods adopted the
convolutional neural networks (CNN) [7] and recurrent
neural networks (RNN) [8] to extract the global image and
text features [9, 10], respectively. However, the extracted
global features are not fine-grained. With the development
of deep learning, some fine-grained VQA approaches pro-
posed employing attention mechanisms to locate the
question keywords and the image objects related to the
answers [11-13]. For example, question-guided visual at-
tention on image regions was first proposed in [11]. Fol-
lowing that, a large variety of attention-based variations
including co-attention and compositional attention have
been proposed for VQA [14, 15]. Although aforementioned
attention-based approaches have dramatically ameliorated
the performance of VQA, the context information on image
and question are not considered by these methods.

As context reflects the high-order interactive informa-
tion between entities (image objects or question words) and
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helps to distinguish the targets from other entities, several
attention-based VQA models have begun to emphasize
multimodal context learning. For example, to capture the
visual context information, two shallow context learning
models, ReGAT [16] and v-AGCN [17], are proposed. They
both structured the object relation graph on the image and
used the graph attention network [18] to generate the visual
context-aware image representations. Furthermore, LGCN
learned the deep visual context representation through it-
erative message passing the conditioned textual input on the
fully connected image object graph [19]. However, these
models only consider the context for image modality. More
recently, some deep models have attempted to learn the extra
textual context. DFAF [20] used the intra-modality attention
flow to capture the intra-modal contexts within each mo-
dality. Two deep co-attention models, namely, MCAN [21]
and MEDAN [22], have been introduced to VQA task to
capture the visual and textual contexts based on the encoder-
decoder framework.

Despite the effectiveness of these methods, we still find
that more comprehensive context learning is rarely ex-
plored. On one hand, a special context, named visual-
textual context and expressed as the synergic context-de-
pendence under two modal information, is almost ignored
by the above shallow and deep context learning models. On
the other hand, how to explore an accordant context
learning way integrating multicontext learning into a
unified framework and modelling deep multiple contexts,
there is still an open question. Besides, in terms of text
representations, most existing methods use RNN archi-
tecture to extract the text features. However, due to long-
term dependence between words, the RNN cannot suffi-
ciently capture the textual context at the textual features
extraction stage. To tackle these issues, we propose a novel
Multiple Context Learning Network (MCLN) to learn
comprehensive contexts for VQA. In this paper, three
contexts containing an ignored visual-textual context and
two intra-modal contexts (i.e., the visual context in the
image modality and textual context in the text modality)
are explored. The key-query attention mechanism [23] is
able to model the context-dependence of all entities (ob-
jects or words) in an entity set. Inspired by this, we adopt
key-query attention to uniformly model the multiple
context-dependence and propose the corresponding con-
text learning modules. Figure 1 shows the proposed uni-
form multiple contexts learning strategy. The proposed
visual context learning module (VCL), textual context
learning module (T'CL), and visual-textual context learning
module (VTCL) are constructed based on the key-query
attention. Firstly, two intra-modal contexts are learned
through the VCL and TCL, respectively. Then, the image
and question features with intra-modal context informa-
tion are concatenated to form the visual-textual features,
which will be fed into VTCL to extract the visual-textual
context information. After that, by modular composition of
the three modules, the multiple contexts learning layer
(MCL) is structured. Furthermore, we also tend to capture
the deep context information. By cascading MCL in depth,
the deeper level and more complex context learning can be
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reached handily. Additionally, the pretrained Bidirectional
Encoder Representations from Transformers (BERT) [24]
models the textual context by stacking the bidirectional
encoder. To further enhance the textual context learning
ability of MCLN at the textual features extraction stage and
provide better contextualized representation for textual
features, a BERT-based text encoder is introduced and fine-
tuned to learn contextualized text representations,
resulting in better VQA performance. Finally, the Multiple
Context Learning Network that consists of cascaded MCL
layers is proposed. The preprint is shown in [25].

The main contributions of this study can be summarized
as follows:

(1) We explore multiple contexts including visual
context, textual context, and visual-textual context
ignored by previous methods for VQA task. Par-
ticularly, we propose corresponding context learning
module based on a uniform context learning strategy
and compose the context learning modules to
structure a multiple context learning layer (MCL),
which can model and learn multiple contexts.

(2) We attempt to consider the deep contexts and the
proposed MCLN is a deep model stacking several
MCL layers, meaning that it can capture deep-level
context information.

(3) To further consider more comprehensive context
learning, we adopt the pretrained BERT as a con-
textualized text encoder and fine-tune its learning rate
during the training of MCLN, enhancing the textual
context at the textual features extraction stage.

(4) Evaluation results on two benchmark VQA datasets
demonstrate that MCLN achieves state-of-the-art
performance. The proposed MCLN achieves 71.05%
and 71.48% overall accuracies for test-dev and test-std
sets on the VQA v2.0 dataset [4], respectively. On the
GQA [5], the overall performance reaches 56.8% for
test-dev set and 57.0% for test set. In addition, ade-
quate ablation studies are conducted to quantitatively
and qualitatively prove the significance of different
modules in the proposed model, verifying the effec-
tiveness of the proposed MCLN architecture.

The rest of the paper is organized as follows. In Section 2,
the proposed Multiple Context Learning Networks (MCLN)
are presented. In Section 3, the experimental results and
analysis are provided. Finally, the paper is concluded in
Section 4.

2. Multiple Context Learning Networks for VQA

As common practice, identifying a correct answer related to
the given image-question pair from a set of candidate an-
swers is a typical formulation of VQA:
a = argmax py(all,Q) (1)
acA

where the model predicts the correct answer a from the
candidate answers A for a given image I and question Q pair,
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FIGURE 1: A diagram of the proposed context learning method, which simultaneously learns multiple contexts by using a uniform context
learning framework. VCL and TCL model the intra-modal contexts in the MCL layer, while VTCL models the visual-textual context. For
image features (V) and question feature (T), the handled features with context information are (V)' and (T)’, respectively.

and 0 is the learned parameters of model. Without loss of
generality, the proposed method also follows this convention.

Figure 2 illustrates the overall pipeline of the proposed
MCLN, which consists of a series of subnetworks: (a) image
and question representation, which includes image encoder
and text encoder. The image encoder detects objects in an
image and extracts the object features, while text encoder
embeds the question words and encodes the word features;
(b) multiple contexts learning that performs multicontext
learning and it is composed of multiple learning layers by the
cascaded way; and (c) multimodal fusion and answer pre-
diction that fuses image representation and question rep-
resentation to predict a correct answer.

2.1. Image and Question Representation

2.1.1. Image Encoder. Inspired by humans using bottom-up
attention to process visual information [13], we extract the
object-level features for a given image. Our image encoder
encapsulates three main steps: (i) a forward pass of a Faster
R-CNN [26] object detector pretrained on the Visual Ge-
nome dataset [27] for extracting the K most salient objects
O ={o0,}X, within a given image I, thereby achieving the
bottom-up attention; (ii) a ResNet-101 network [28] that
extracts the feature map of detected objects, followed by a
mean pooling layer that generates the 2048-dimensional
vector representation r; for the original object o;; and (iii) a
linear transformation layer to project the object feature r;
into a 768-dimensional vector.

r; = Faster — RCNN (1),

Vi = eri + bV'

j 1,K],
pe LK ©

W, € R?®768 and b, € R7®® are the parameter of the linear
layer. Finally, image I is represented as visual object features

set V = {v; € R/S8}X .

2.1.2. Text Encoder. RNN-based text encoder first tokenizes
question Q into words and uses a maximum of L words to
trim the question. Then, the /-th word in the question is
further embedded into a 300-dimensional vector repre-
sentation ¢; € R*® by using the GloVe word embeddings
[29]. The questions shorter than L words are padded at the
end with zero vectors. Thus, Q is initialized as a word
embeddings sequence E = {¢; € R}/ . Here, a one-layer
and 768-dimensional long short-term memory network
(LSTM) [10] is utilized, which scans the word embeddings
sequence E from e, to e; and picks up current ¢; into its unit
to obtain the word feature t,.

(t1s--stp...t) = LSTM(ey, ... ... €p). (3)

To enhance the textual context at the textual features
extraction stage, we also introduce a contextual text encoder
based on the pretrained BERT model [23] and fine-tune it to
extract the contextualized word features. The BERT-based
text encoder is represented as

(t,.-->tp...t) = BERT(Q). (4)

Finally, theLquestion Q is represented as word features set
T ={t, e R} ..

2.2. Multiple Context Learning Layers. The key-query at-
tention mechanism [23] can model context-dependence of
all entities (objects or words) across whole entities set. In-
spired by this, we adopt key-query attention to uniformly
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F1GURE 2: Overall flowchart of the MCLN that consists of three subnetworks. (a) Image and question representation; (b) multiple context

learning; (c¢) multimodal fusion and answer prediction.

model the multiple context-dependence and propose the
corresponding context learning modules. Using visual
context learning as an example, Figure 3 shows the design of
the visual context learning module (VCL), and the imple-
mentation will be discussed in detail below.

To capture the visual context of all objects, we adopted
the key-value attention to model the context-dependence of
objects. Obtained image object features set V can be denoted
as a features matrix V € RE768 and its i-th row represents
the feature of i-th object. The matrix V would be converted
to key matrix K", query matrix Q", and value matrix V" by
three linear transformations.

KV =vwK,
Q" =vw<, (5)
vV =vwY,

where WK, W<, and WV are the linear transformation
parameters that calculate the key, query, and value matrices.
Then, calculate the dot products between query and key
matrices to get the attention weights matrix A".

Q(x")
Nz ,
where Vd is a normalization constant. In this way of dot
product, the contextual path dependency distance between
all objects is set to 1. So AV € RE*K reflects the context-
dependence of all objects and stores the attention weights
between all objects. The row attention weights AY represent
the context-dependence of i-th object in the image.
Therefore, the visual context feature for i-th object can be
obtained by calculating a weighted combination of the A
and all object features, whereas the form of matrices for the
visual context feature of all objects can be stated as follows:

AV = softmax< (6)

ATT (V) = softmax(L (7)

In addition, the multihead attention based on key-value
attention is performed on V.

MultiHead (V) = (head, | - -- [head,, )W©,

head;, = ATT, (V) = softmax

| <(vw%¥w§f>(vwm

head, is h-th head key-query attention. WX e R7®%di,
W € R0, and W) € R7%*% are the parameter matrices
of head,. W© is the projection matrix for all heads and ||
represents concatenation of all heads. d, is the dimen-
sionality of the output features from each head and usually
making d,=768/H. The multihead attention allows the
model to jointly attend to context information from different
representation subspaces, improving the representation
capacity of features.

After acquiring the visual context features of all objects
using multihead attention, residual connection followed by
layer normalization is applied to integrate the visual context
into the object features.

(8)

V = LN(V + MultiHead (V)), (9)

where LN (-) represents layer normalization. Aiming to
further adjust the object representations, the position wise
feed-forward network (FFN) transforms object features %
with two fully connected layers. And it can be described as

FEN (V) =(ReLu(VW, +b,))W, +b,, (10)
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FIGURe 3: The detailed design of proposed visual context learning module. (a) Key-query attention, (b) multihead attention, (c) visual

context learning module.

Where the W,b,,W,, and b, are the parameters of FEN,
and its hidden and output dimensions are 768 x 4 and 768,
respectively. ReLu is the rectified linear unit. In addition, the
residual connection and layer normalization are also applied
after FFN to facilitate optimization.

By performing the above procedure, the visual contexts
that represent high-order interaction and context-dependence
among all objects can be captured. Such procedure is simplified
by the visual context learning module (VCL) as

V' = VCL(V). (11)

The textual context learning module can work in the
same manner on the word features T, but with a different set
of parameters to be learned; thus details are omitted and it is
also simplified as

T' = TCL(T). (12)

Since the contextual path dependency distance between
all entities is 1, the visual-textual context can be easily
modelled by feeding the connected visual-textual feature
matrix V'”T' € RIK+M)X768 ints the visual-textual context
learning module (VTCL) with the same context learning
mechanism.

A% (13)

out?

Tou = VICL(V'|T").

Then, we combine three context learning modules to
form a multiple context learning layer (MCL). Finally, such
MCL layer is stacked in depth to learn the deeper and more
high-level context information, and the output of the last
layer is the input of the next layer, expressed as VN, TN = M
CLy (VN=L,TN=1),

2.3. Multimodal Fusion and Answer Prediction. After N MCL
layers, the output image object features V¥ and question
word features T" not only contain the intra-modal contexts

but also capture the inter-modal context dependencies. To
distinguish important entities from context information and
fuse multimodal features, an attention model with an FFN
(its hidden and output dimensions are 768 and 1) is designed
for V¥ and TV to obtain attended image feature v and
question feature g. Taking image object features VN as an
example, the attended image features v are calculated as
follows:

K
v= z avY, whereq; = softmax(FFN(le)).
i=1

(14)

«; is the learned object attention weight for i-th object. The
learned word attention weight f3; and the attended question
feature q can be obtained using an independent attention
model by analogy.

After obtaining image feature v and question feature g,
two linear transformations are implemented on v and g, and
using the addition to get joint representation z. Finally, z is
fed into a fully connected layer followed by a sigmoid
function to generate the answer vector p € R4/,

T T
z=LN(W,v+W_.q), s
p = sigmaid (W,z + b,).

WT € RIOZXT68 T ¢ RIO24T68 and W e RIAIKI024 are three
linear projection matrixes, b, is the bias parameter, sigmoid
(+) is used for classification, and |A]| is the number of can-
didate answers.

3. Experiment

3.1. Datasets and Evaluation Metric. VQA v2.0 dataset is the
most commonly used large-scale VQA dataset [4], which
contains 1.1 M questions asked by humans and 10 answers
are collected for each image-question pair from human
annotators. The answer with the highest number of



occurrences will be regarded as the correct answer. The
dataset is divided into three parts: a training set containing
80 K images and 444 K questions, a validation set containing
40K images and 214 K questions, and a test set containing
80 K images and 448 K questions. Additionally, based on the
answer category, all questions are divided into three types:
yes/no, number, and other; we use the following accuracy as
the evaluation metric for answering quality.

provided (annotators)’ ) ) (16)

accuracy (answer) = min( 3

To demonstrate the generalization of approach, we
further evaluate the model on the GQA dataset [4]. GQA
dataset is the latest large-scale VQA dataset containing more
than 110K images and 22 M questions [5]. The dataset is
divided randomly into proportions of 87%, 12%, and 1% for
train, validation, and test sets, respectively.

3.2. Experimental Setup

3.2.1. Universal Setup. The proposed MCLN is implemented
by PyTorch and all the experiments are conducted on a
workstation; the experimental environment is shown in Table 1.
The universal hyperparameters of MCLN model that are used in
the experiments are listed as follows. For the pretrained Faster
R-CNN, we follow the strategies in [13] to set its parameters and
obtain a dynamic number of objects K € [10, 100]. For textual
features, we use either a LSTM with a 300-dimensional GloVe
word embedding size or a pretrained BERT model with the 768-
dimensional embedding size. In all context learning modules,
we set the number of heads H as 12, so the latent dimensionality
for each head is dj, = d/12 = 64. Adam Optimizer [31] is used to
optimize the model with 64 batch sizes.

3.2.2. Setup for VQA v2.0. The answers with an occurrence
rate less than 8 times in the training and validation sets are
discarded, which resulted in |A| = 3129 candidate answers.
The maximum length of tokenized words is L=14. More-
over, the number of MCL layers is Ne {1, 2, 3, 4}. For the
choice of learning rate Ir, the warm-up strategy is employed.
Specifically, the initial learning rate is 2.5x 107> and grows
by 2.5x 107 at each epoch till it reaches 1 x 10~* at epoch 4.
After 10 epochs, the learning rate is decreased by 1/5 for
every epoch up to 12 epochs. Since there exist multiple
correct answers for a question in the VQA v2.0 dataset, the
binary cross-entropy loss (BCE) is applied to optimize
MCLN:

lA]|
BCEloss = - ) (ylog(p;) + (1 - y;) (log 1 - p;)),  (17)
i=1
where y; is the given score by the datasets and p; is the
predicted score by the MCLN model and corresponds to the
i-th element in the answer vector p.

3.2.3. Setup for GQA. The GQA dataset provided |A| = 1878
candidate answers. The maximum length of tokenized words
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TaBLE 1: Experimental environment.

Details

Operating system Ubuntu 18.04

RAM 64G

Graphic processing unit NVIDIA GeForce GTX 2080 Ti
Programming language Python 3.6

Deep learning framework PyTorch 1.0.1
Architecture platform CUDA10.0 and CUDNN7.4

Configuration

is L=29. We also use the same learning rate strategy on the
GQA dataset, while after 8 epochs the learning rate is de-
creased by 1/5 for each up to 10 epochs. For the loss
function, we choose the cross-entropy loss (CE) to optimize
our model on GQA dataset.

lA]
CEloss = — Z yilog(p;)- (18)
i=1

3.3. Ablation Studies. On the validation sets of VQA v2.0
and GQA, the proposed MCLN will execute extensive ab-
lation studies from three different aspects: (1) the effec-
tiveness of the three context learning modules in the
proposed MCL network architecture; (2) the impact of
different layers on the performance of MCLN; (3) the effect
of enhancing the textual context.

3.3.1. Effect of the Context Learning Module. As mentioned,
three modules are designed to perform corresponding context
learning. To demonstrate the effectiveness of the proposed
context learning modules, we employ the MCLN model with
LSTM to quantitatively ablate three modules. Table 2 shows
the results of various ablated versions of the model on the
VQA v2.0 and GQA validation sets. It has been discovered
that induction and elimination of any module have an impact
on the performance. The optimum results are only achieved
by integrating all three components. Results indicate that
every context learning module contributes significantly to
VQA performance and demonstrating the effectiveness of
context learning modules. The result on VTCL module is
noteworthy. For the models on VQA v2.0 dataset, model 4
only with the VTCL module obtains 62.07% overall accuracy,
which outperforms model 1 more than 7.47% and higher
performance is gained compared to model 2 and model 3.
Furthermore, when the VTCL module is disabled in model 7
compared to model 8, a rapid decrease of 9.92% is observed. It
indicates that the visual-textual context ignored by prior
approaches is crucial to VQA.

3.3.2. Effect of MCL Layers. Next, we stack the full-module
MCL layer in depth to evaluate the effect of MCL layers.
Figure 4 shows the performance of the MCLN models with
the different numbers of MCL layers N € {1, 2, 3, 4} on the
VQA v2.0 validation set. Regarding the performance, we
observed two phenomena on the overall accuracy: (1) as
increasing N, the performances of MCLN models steadily
improve and finally saturate at a certain number N=3; (2)
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TaBLE 2: The results of ablating the context learning modules on VQA v2.0 and GQA validation sets.
VQA v2.0
Model Module GQA Q
All All Y/N Num Other
1 Without all 53.08 54.60 69.79 36.02 47.50
2 Only VCL 53.45 55.13 69.82 36.09 47.99
3 Only TCL 53.50 55.53 69.82 36.44 49.72
4 Only VICL 58.63 62.07 79.79 42.67 53.73
5 TCL+VTCL 63.88 65.17 82.88 44.68 57.15
6 VCL+VTCL 59.04 62.72 79.33 43.29 55.23
7 VCL+TCL 53.72 55.76 71.01 36.37 49.29
8 Full modules 64.48 65.68 83.40 45.57 57.53
85.0 49.5
84.62 48.99 48.85 4877
84.48
84.5 - 8435 485
84.0 47.5
83.5 _83'4 46.5
#5.5
83.0 1 . . — 4554 . . .
1 2 3 4 1 2 3 4
(a) (b)
58.7 67.1
66.86
66.74
58.34 66.72
58.4 66.7
58.17
58.1 4 66.3
57.8 4 4
57.69 65.9 s 68
b7.53
575 1€ : : 655 1 , , :
1 2 3 4 1 2 3 4

(c)

FIGURE 4: The overall and per-type accuracies of the MCLN with different MCL layers on the VQA v2.0 validation set. (a) Yes/no, (b)

number, (c) others, and (d) overall.

the one-layer model does not perform as well as the deeper
models, but there is a quite improvement over N =1 while a
subtle decrease over N=3 when N=4. In addition, the
performance of the MCLN with the different number of
MCL layers on the GQA validation set is shown in Figure 5.
Similar experimental phenomena are observed and the best
performance appears at N=2. From the experimental re-
sults, it can be seen that deeper MCL layers usually obtain
higher overall accuracy. We attribute it to deep context
learning, which captures more complex context information
and achieves a better contextual understanding of the image
and question contents. However, comparing the shallow
model and deep model, the number of layers increases and
the parameters of the model rise as well. As a result, the
model with deeper MCL layers is difficult to be optimized
and suffers from a larger risk of overfitting the training set

due to the higher number of parameters. Therefore, the
overall performance decreases at N=4 and N=3 on the
VQA v2.0 and GQA, respectively.

3.3.3. Effect of Enhancing the Textual Context. Since the
pretrained BERT [23] was trained on large text corpus and
models the textual context by stacking the bidirectional
encoder, to enhance the textual context at the textual fea-
tures extraction stage, a contextualized text encoder based
on BERT is introduced and fine-tuned. The results of fine-
tuning the weight of pretrained BERT with different learning
rates are shown in Tables 3 and 4. On the VQA v2.0, the best
performance is achieved at Irx 0.1 under one-layer MCL.
With this learning rate, by increasing the MCL layers, the
performance grows and also saturates at three MCL layers.
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FiGure 5: The overall accuracies of the MCLN with different MCL
layers on the GQA validation set.

TaBLE 3: The results of fine-tuning BERT on VQA v2.0 validation
set.

Model Irx All Y/N Num Other
N=1, BERT 0.001 65.21 82.61 45.74 57.13
N=1, BERT 0.01 66.12 84.08 45.97 57.80
N=1, BERT 0.1 66.61 85.09 46.14 57.98
N=2, BERT 0.1 67.52 85.18 49.09 58.97
N=3, BERT 0.1 67.86 85.35 49.75 59.27
N=4, BERT 0.1 67.80 85.73 49.94 58.94
N=3, LSTM 66.86 84.62 48.85 58.34

TaBLE 4: The results of fine-tuning BERT on GQA validation set.

Model Irx All

N=1, BERT 0.001 64.25
N=1, BERT 0.01 64.63
N=1, BERT 0.1 64.51
N=2, BERT 0.01 65.22
N=3, BERT 0.01 65.11
N=2, LSTM - 65.01

On the GQA dataset, due to the differences in datasets and
experimental settings, the best performance is achieved by
fine-tuning the learning rate of BERT to Ir x 0.01 and setting
the MCL layer to 2. Compared with the MCLN-LSTM using
three-layer MCL, 1% overall accuracy is improved by the
MCLN-BERT using three-layer MCL and Irx 0.1 learning
rate on the VQA v2.0 validation set. On the GQA validation
set, when the MCL layer is set to two and fine-tuning the
learning rate of BERT to Ir x 0.01, the gain is 0.11% compared
with MCLN-BERT and MCLN-LSTM. From these experi-
mental and compared results, it can be found that BERT is
compatible with MCLN and conducive to boosting the
performance by fine-tuning it to enhance textual context at
the textual features extraction stage.

3.4. Visualization Analysis. Assuming that, after processing
the object and word features through multiple MCL layers,
the keywords in a question and the relevant image objects
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related to the answer can be well distinguished by the
multimodal fusion and answer prediction networks
according to the multiple context information. Thus, to
intuitively illustrate the effectiveness of MCL layers, we
selected three models to visualize the learned attention
weights by equation (14): the MCLN-w/o without the MCL
layer, the MCLN-1 with one-layer MCL, and the MCLN-3
with three MCL layers. The top-2 object attention weights
and all word attention weights are visualized in Figure 6. As
can be seen from the visualization of attention weights, MCL
contributes to focusing on relevant objects and keywords.
For the correctly predicted example by three models, al-
though the MCLN-w/o can locate the elephants, the
MCLN-1 and MCLN-3 can focus on the target objects more
fine-grained and the target objects with the higher attention
weight value. The incorrectly predicted examples by the
MCLN-w/o model are more complex and require a com-
prehensive understanding of the contexts of image and
question. Due to the lack of MCL, MCLN-w/o is not able to
accurately locate keywords and relevant objects according to
the context information, resulting in wrong answers. For
example, MCLN-w/o mainly pays attention to the “people”
but ignores other keywords (e.g., “many” and “board”),
which means that the context-dependency of “people on
board” cannot be captured. In addition, compared with
MCLN-1, more reasonable attention weights are usually
learned by the MCLN-3. As shown in Figure 6, MCLN-2
mainly attend the keywords like “people,” “on,” and “board”
in the second question. In the third question, the mainly
attended keywords by the MCLN-2 are “person,” “white,”
and “holding.” In other words, the deep-level textual con-
texts like “people on board” and “white person holding” are
captured by MCLN-3.

3.5. Comparison with State-of-the-Art Methods. In Tables 5
and 6, we compare our MCLN model with the current state-
of-the-art (SOTA) models on the GQA and VQA v2.0,
respectively. And the text encoder of compared models is
based on RNN architecture. The proposed MCLN-LSTM is
based on RNN architecture, while the text encoder of
proposed MCLN-BERT is based on BERT and it enhances
the textual context learning at the textual features extraction
stage. Furthermore, two proposed MCLN are deep context
learning models; they not only consider two intra-modal
contexts but also learn the ignored visual-textual context.
On the GQA dataset, the compared results of two MCLN
models and the SOTA models are shown in Table 5. Among
them are CNN+LSTM [5], BUTD [13], and MAC [15]
without any context learning. LCGN [19] is a deep context
learning model and OCCAM [31] is a shallow context
learning model, but they both only take into account the
context of the image modality. The highest accuracy of the
model without context learning is 54.1% and the highest
accuracy of the model with visual context learning is 56.3%
on the test set. For the MCLN-LSTM also using RNN to
extract the word features, compared with MAC and
OCCAM, the accuracy is 2.5% and 0.3% higher, respectively,
while for the MCLN-BERT employing BERT, higher gains,
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Image-Question-Answer

MCLN without MCL layer

MCLN with one MCL layer

MCLN with three MCL layers

What animal is this
Correct answers: elephant

What animal is this
Predicted answers: elephant

What animal is this
Predicted answers: elephant

What animal is this
Predicted answers: elephant

How many people are on the
board Correct answers: 2

How many people are on the
board Predicted answers: 1

How many people are on the
board Predicted answers: 2

How many people are on the
board Predicted answers: 2

What is the person in white
holding Correct answer: baseball

What is the person in white
holding Predicted answer: bat

What is the person in white
holding Predicted answer: baseball

What is the person in white
holding Predicted answer: baseball

FIGURE 6: Visualizations of the learned attention weights on the VQA v2.0 dataset. The colors ranging from clear to red on image objects or
words denote the attention weights from 0 to 1.

TaBLE 5: Comparison with the current state-of-the-art methods on GQA test datasets.

Model Test-dev Test
CNN +LSTM [5] — 46.6
BUTD [13] - 49.7
MAC [15] - 54.1
LCGN [19] 55.8 56.1
OCCAM [31] 56.2 56.3
MCLN-LSTM 56.4 56.6
MCLN-BERT 56.8 57.0
TaBLE 6: Comparison with previous state-of-the-art methods on VQA v2.0 test dataset.
Model Test-dev Test-std
All Y/N Num Other All
BUTD [13] 65.32 81.82 4421 56.05 65.67
MFH [32] 68.76 85.31 49.56 59.89 -
Counter [33] 68.09 83.14 51.62 58.97 68.09
v-AGCN [17] 65.94 82.58 45.12 56.71 66.17
ReGAT [16] 70.27 86.08 54.42 60.33 70.58
DFAF [20] 70.22 86.09 53.32 60.49 70.34
MCAN [21] 70.63 86.82 53.26 60.72 70.90
MEDAN [22] 70.60 87.10 52.69 60.56 71.01
MCLN-LSTM 70.26 85.95 53.18 60.72 70.63
MCLN-BERT 71.05 87.43 53.28 61.08 71.48
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2.9% and 0.7% are achieved compared with MAC and
OCCAM. Additionally, MCLN-LSTM and MCLN-BERT
both overperform the SOTA models, proving the excellent
performance of the proposed model on the GQA.

On the test sets of VQA v2.0, the proposed models are
compared with SOTA models to further verify their ad-
vantage. The compared models include three models
without context learning (BUTD [13], MFH [32], Counter
[33]), two shallow models that only learn the visual context
(ReGAT [16], v-AGCN [17]), and three deep models with
intra-modal context learning (DFAF [20], MCAN [21],
MEDAN [22]). Table 6 shows the compared experiment
results on the VQA v2.0 test-dev and test-std sets. For the
RNN-based MCLN-LSTM model, compared with three
methods that ignore the context learning, on the test-dev set,
4.94%, 1.5%, and 2.17% overall accuracy are improved by the
MCLN-LSTM. ReGAT only models the visual context on the
image modality, which combines various relation learning
models and the Counter model [33]. By comparison, the
single MCLN-LSTM not only is higher than ReGAT on test-
std, but also has an advantage in the number of models. The
DFAF model ignoring the visual-textual context captures
intra-modal contexts via two intra-modality attention flows
and uses two separate inter-modality attention flows to
achieve the inter-modal interactions, but the two separate
inter-modality information flows do not reflect the synergic
context dependence of image objects and question words
under the two-modality information. On the contrary, the
MCLN-LSTM not only captures intra-modal contexts, but
also achieves the synergic visual-textual context learning as
well as the inter-modal interactions through a single VTCL
module. As shown in Table 3, MCLN-LSTM is 0.04 and 0.29
points higher than DFAF on test-dev and test-std. By using
the encoder-decoder architecture, MCAN and MEDAN
achieve optimal performance. Even though the overall ac-
curacy of the proposed MCLN-LSTM model is lower than
MCAN and MEDAN, where BERT is introduced to enhance
the textual context at the textual features extraction stage, the
MCLN-BERT model overperforms these two models on the
overall accuracy. The results indicate that MCLN consid-
ering comprehensive contexts is superior. Furthermore,
compared with other state-of-the-art models, the significant
improvements are obtained by MCLN-BERT and it gains
71.05% and 71.48% overall accuracies on the test-dev and
test sets, respectively.

From the compared experiment results on GQA and
VQA v2.0 dataset, it can be seen that the proposed MCLN
gains better results due to the fact that it considers more
comprehensive contexts. On one hand, MCLN not only
captures two intra-modal contexts but also learns the ig-
nored visual-textual context. On the other hand, MCLN
enhances the textual context learning at the textual features
extraction stage.

4. Conclusions

This article presents a novel framework, the Multiple
Context Learning Network (MCLN), to model multiple
context learnings for visual question answering. The MCLN
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exploits three types of contexts, the visual context and
textual context in the intra-modalities, and the visual-textual
context, to learn a context-aware representation through the
corresponding context learning module. The core idea of the
context learning module is to establish the contextual de-
pendency of all entities in an entity set by using key-query
attention mechanism. Our context learning approach is
simple but extremely effective. The MCLN is better able to
learn complex contexts and improve VQA performance by
composing three context learning modules to construct
MCL layer and stacking such layer in depth. Furthermore,
BERT-based text encoder is introduced and fine-tuned to
facilitate the textual context learning at the textual features
extraction stage. Experimental results on two large-scale
benchmark datasets show that our proposed method out-
performs the previous state-of-the-art methods. And the
extensive ablation studies demonstrate the effectiveness of
context learning modules, stacking MCL layers, and en-
hancing the textual context. However, stacking MCL layers
will increase the training time of the model and make the
model difficult to be optimized in practical experiments; we
will optimize our model to achieve a rapid network
framework in a future study. In addition, we plan to promote
the proposed context learning method to other multimodal
tasks such as image captioning and image-text matching.
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