
Research Article
A Real-Time Detection Method of Software Configuration Errors
Based on Fine-Grained Configuration Item Types

Li Zhang ,1 Shengang Hao,2 and Meng Ming2

1School of Media Engineering, Communication University of Zhejiang, Hangzhou 310018, China
2School of Computer Science, Beijing Institute of Technology, Beijing 100081, China

Correspondence should be addressed to Li Zhang; nythhsg@163.com

Received 24 November 2021; Accepted 6 January 2022; Published 22 February 2022

Academic Editor: Rahman Ali

Copyright © 2022 Li Zhang et al. 'is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the continuous expansion of software scale and the continuous complexity of software functions, abnormal parameter
configuration often brings adverse effects to the software system and even leads to system failure.'erefore, a method is needed to
detect whether the parameter configuration is correct. Most of the current configuration errors detection methods focus on the
passive diagnosis after the system failure, which cannot solve the potential delay problem of configuration error. 'is paper
proposes an automatic real-time detection method of software configuration errors, in which the configuration items are classified
based on the fine-grained configuration item types and related syntax patterns, and the configuration constraint rule base is
generated. 'en, the real-time exception detection of configuration update operation is realized by using the file operation
monitoring function. 'e experimental results show that this method can accurately classify the types of configuration items and
verify the effectiveness of detecting software configuration update exceptions in real time through the constraint rule base. 'e
classification accuracy reaches up to 90.4% on MySQL and 87.4% on Apache.

1. Introduction

In recent years, with the development of computer tech-
nology and the continuous improvement of computer
performance, the complexity of user software is becoming
higher and higher. 'e abundant number of configuration
items is one of the manifestations of software complexity. At
present, the number of configuration items of large-scale
open source software such as Apache, Hadoop, and MySQL
has reached hundreds, and the number is increasing year by
year [1, 2]. By 2018, the number of MySQL configuration
items has reached 700. It is extremely difficult for users to
fully master complex configuration rules and correctly
configure a large number of parameters.

However, the impact of incorrect configuration on the
system is often fatal. According to relevant research, more
than 50% of the failures related to system operation and
maintenance management come from configuration errors
[3]. More than 80% of network failures are caused by
configuration errors [4]. Configuration errors are difficult to

avoid, and large application systems of well-known enter-
prises such as Amazon EC2 [5], Facebook [6], and Microsoft
azure [7] have experienced service interruption caused by
configuration errors, resulting in significant losses. More-
over, once these system failures occur in the fields such as
unmanned driving, it may cause disastrous consequences
[8]. 'erefore, detecting configuration errors is one of the
important directions of software reliability research [9].

Most of the traditional methods to detect configuration
errors are manually eliminated by the maintenance per-
sonnel. However, the increasing number of configuration
items and complex setting rules makes the manual trou-
bleshooting gradually infeasible, and the reliability of
manual operation is difficult to be guaranteed [10]. Most of
the existing research work on configuration errors detection
focuses on the passive diagnosis after fault [11], but it cannot
solve the potential delay problem of configuration error. A
small part of the work studies the active prevention before
the occurrence of configuration errors. Such methods can do
error detecting before the system runs, but their real-time

Hindawi
Scientific Programming
Volume 2022, Article ID 4415366, 13 pages
https://doi.org/10.1155/2022/4415366

mailto:nythhsg@163.com
https://orcid.org/0000-0002-2170-5064
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4415366

performance is poor, and they cannot solve the unavail-
ability of configuration files caused by the accidental deletion
or the format damage.

'erefore, this paper proposes an automatic method that
can monitor and detect whether there are errors in the up-
dates of software configuration parameters in real time.When
the detection passes, the software system continues to run
under the protection of the predesigned configuration data
rules. When the detection fails, the configuration recovery
module immediately started to change themodified abnormal
configuration into the initial normal configuration, so as to
ensure the stability of the software system and to avoid the
service interruption caused by abnormal configuration.

'e contributions of this paper are as follows:

(1) We propose a real-time configuration error detection
method, which can realize the fine-grained classifi-
cation of the configuration items by analyzing their
syntax structure, the semantic information in their
names, and the system environment information.

(2) We build the configuration constraint rule base to
monitor and protect the software configuration file
in real time, and to actively detect whether there are
exceptions when the configuration update operation
occurs.

(3) Our method does not need to analyze the source
code of the software system, so it has good scalability
and compatibility. 'e whole detection process of
configuration errors is fully automated, without user
intervention, so it has good stability and higher
efficiency.

'e rest of this paper is organized as follows: Section 2
briefly introduces the background and related work. Section
3 discusses the design principle and the overall architecture
and describes the implementation details of our method.
Section 4 gives the experimental results and analysis, and
section 5 is the conclusions.

2. Background and Related Work

2.1. Configuration Error. Software configuration manage-
ment (SCM) is an auxiliary software development tool. It
includes a series of technology of identification, organiza-
tion, and control modification with more organized logical
structure. 'e entity unit in software configuration man-
agement is the software configuration item (CI), including
program, data structure, and document [12]. Software
configuration error refers to the situation that the deter-
ministic failure is caused by the wrong parameter setting of
software configuration items, which affects the operation of
the system (also called themisconfiguration) [13]. According
to relevant research [14], common configuration errors are
mainly reflected in three aspects: parameter value, com-
patibility, and component placement position. Among them,
parameter value errors account for the largest proportion in
actual situations. Such errors include the single configura-
tion item value error and the multiple configuration item
value errors.

2.2. Configuration Error Detection. At present, software
configuration error detection methods can be mainly di-
vided into four types. 'ey are program analysis, statistical
learning, comparison, and replay technology [11]. Accord-
ing to their dependence on the target system in the detection
process, these methods can be divided into the white box
detection and the black box detection, as shown in Figure 1.

'e method based on program analysis belongs to the
white box method. By analyzing the source code, bytecode,
or binary code of the software system, the program exe-
cution logic statements can find that they are affected by the
configuration parameters, so as to locate the configuration
fault. 'e research productions in this field have a tool called
ConfAid [15] to eliminate the configuration fault by ana-
lyzing the dynamic information flow, a detection tool called
Conf_Analyzer that can analyze the static data flow of
software [16], a detection tool called ConfDebugger [17]
using the reverse static data flow analysis technology, and a
configuration constraint reasoning tool SPEX [18].

'e method based on statistical learning regards the
software system as a black box; it mines rules from the
historical data related to the system behavior, the system
state and the system events with the technology of statistics
and machine learning, and realizes the error diagnosis based
on the rules violated by the system. For example, Zhang [19]
first proposed that there may be a connection between the
value of software configuration items and the operating
environment, other configuration items in 2014. On this
basis, the author designs Encore. It can mine the correlation
constraints among the multiple configuration items and can
learn the configuration rules iteratively from a given set of
configuration data sets. Finally, it can actively detect whether
the configuration of the software system is correct or not
based on the rich constraint rules. In addition, there are
some detection tools such as ConfTest [20] and ConfVD [21]
that classify the configuration items based on the tree
structure and that extract the configuration constraint rules
according to the configuration item type.

'e method based on comparison belongs to the black
box method, which needs to treat a huge amount of the
existing error information as the reference benchmark to
establish the configuration error knowledge base in order to
diagnose the configuration error. For example, Talwadker R
implemented the detection tool called Dexer [22], in which
he established a case knowledge base based on the system log
in the correct configuration state. When an error occurs, the
possible solutions can be found out from the knowledge
base.

'e method based on replay technology also belongs to
the black box method, which sets the various configuration
parameter values and observes the system behavior state
over and over again to find out the potential configuration
constraints so as to detect the exceptions and repair them.
For example, the replay technology is applied to the tool
called Triage [23] to capture the scene when the fault occurs
and reproduce it, and then to track the program running
path and the data flow by using the dynamic program
analysis technology. Finally, the correct parameters are
compared with the wrong parameters observed from the

2 Scientific Programming

repeated scene to locate the configuration errors and to find
the possible repair methods. In addition, the method called
Autobash [24] realizes the tracking and playback of the
process state changes by rewriting the function of Linux
kernel, and it can isolate other application software.

2.3. Configuration Type Classification. Xu et al. [25] inves-
tigated and analyzed more than 3000 configuration items of
eight large open source software such as Apache, mysql,
nginx, and PostgreSQL and found that the configuration
item types contain rich semantic constraints, such as
DocumentRoot in httpd.conf and in squid.conf_ who_ Take
the two configuration items of server as an example, as
shown in Table 1. 'e configuration item DocumentRoot is
of filepath type, while as_ who_ Server is a URL. It can be
judged that the configuration value set by the user is wrong
according to the constraint rules of the corresponding type.
'erefore, it is meaningful to set the constraint rules
according to the configuration type to detect whether there
are errors in the configuration items.

Rabkin [26] et al. have conducted the relevant research on
the configuration type classification, but the classification
method has the coarse granularity. Based on this work, Xu et al.
proposed a fine-grained configuration type classification after
the investigation and analysis of more than 3000 different
software configuration items, which classified the software
configuration items into 21 types. 'e author described the 21
types of configuration items by using a hierarchical tree
structure. 'e closer it is to the upper layer, the coarser the
classification granularity and the configuration item type it
belongs to. For example, all configuration item types can be
roughly classified into the string types and the digital types, and
each upper type can be further subdivided into other lower
types. 'is classification tree has good scalability.

'e author reapplies the configuration type classification
results to the eight investigated software for testing.'e fine-

grained configuration type classification structure can cover
at least 85.1%, and the average coverage is more than 90%.
'e author also found from the survey that more than 91% of
the configuration item names contain two (or more) words.
'e pattern of naming configuration items using hump
naming method can reflect the type semantic information.
For example, the configuration items related to the number
of user connections in MySQL often contain keywords such
as “connection,” “Max,” and “current.” 'e configuration
items representing the path usually contain keywords such
as “path,” “directory,” “location,” “dir.” 'erefore, the au-
thor proposes a type inference method based on configu-
ration name analysis and designs and implements the tool
called ConfTypeInferer.

It can be seen from the above that most of the work in the
research based on program analysis, comparison, and replay
technology belongs to the passive detection after configu-
ration errors occur. Such methods cannot eliminate the
negative impact of the configuration errors in time. How-
ever, the method based on statistical learning can actively
detect the configuration errors of the software system based
on the learned configuration rules and can be used for real-
time detection of configuration errors, so it can quickly
reduce the negative effect on the software system.

'is paper proposes an online real-time detection
method of software configuration errors based on the fine-

White box detection

Program analysis

Static data flow
analysis

Dynamic data
flow analysis

Statistics

Rules mining

Comparison

Similarity Difference

Black box detection

Replay

Trail & error

Foundation

Code

Source
code

Byte
code

Binary
code

Data information Domain knowledge Test case

Known
error Benchmark

Category

Technology

Figure 1: Configure error detection method [11].

Table 1: Examples of incorrect configuration [25].

Configuration file httpd.conf squid.conf
Configuration item DocumentRoot as_who_server
Type of
Configuration
item

Filepath URL

Configuration
constraint /.+(/.+)∗ [A-Z]+://∗

User’s parameter Root Server1
Correct parameter /Document/root http://aswho.server.com

Scientific Programming 3

http://aswho.server.com

grained configuration type classification. It is not necessary
to analyze the source code of the software system and to
understand the specific semantics of the codes in our
method, so it has good scalability and compatibility.

3. Design and Implementation

3.1. Design Principle. As shown in Table 1, configuration
types contain a lot of semantic information about constraint
rules. Such semantic constraints not only are effective for a
single configuration item itself, but also reflect the constraint
relationship between the configuration item and the running
environment to some extent. For example, when the con-
figuration parameter belongs to the URL type, you can judge
whether the configuration value is correct according to the
composition structure of the URL. When the two config-
uration parameters belong to the same path type, there may
be path inclusion and ownership relationship. 'e memory
type configuration parameters related to memory allocation
need to meet the constraints of the available memory of the
current system. 'e potential constraint relationship can be
reflected through configuration types. 'erefore, in this
scheme, the constraint rule template is mainly formulated by
exploring the constraint conditions of configuration types.

'is scheme is designed based on the fine-grained
configuration item types and the related syntax patterns
proposed in literature [25] to classify configuration items
and formulate syntax constraints. 'e difference is that
literature [25] classifies configuration items through se-
mantic information in configuration item names and pro-
gram analysis, while this scheme realizes the classification of
configuration items through the hybrid method of syntax
structure, system environment information, and name
analysis. At the same time, this scheme generates the con-
figuration constraint rule base through type constraints and
uses the constraint rule base to realize the real-time ex-
ception detection of configuration update operation in
combination with the file operation monitoring function.

3.2. Architecture Design. 'e real-time detection of con-
figuration errors always occurs when the configuration items
are modified.'is detection process is generally divided into
two stages, as shown in Figure 2.'e first stage is to generate
the configuration constraint rules base. 'erefore, it is
necessary to extract the constraint rules from all kinds of the
configuration files. 'e second stage is to detect the con-
figuration errors when the configuration update operation is
done. It is the prerequisite to monitor the software con-
figuration dynamics in real time and to capture the access
operation of the configuration file and to identify the
modified configuration item.

In detail, the first stage of detection process can be di-
vided into three steps. 'e first step is to collect and analyze
the configuration files of the software, to extract the con-
figuration items with the tool called Augeas [27], and then to
convert them into key-value pairs. After that, in the second
step, the type information of configuration items is mined by
analyzing their syntax structure, the semantic information in

their names, and the system environment information, and
they are classified according to the fine-grained configura-
tion item type lists in Figure 3. Finally, the resolved con-
figuration items are written into the predefined template of
type constraint to form the configuration constraint rule
base.

'e key problems to be solved in the whole detection
process are as follows:

(1) Collect the configuration files of software and parse
the configuration items into multiple key-value pairs

(2) Classify these key-value pairs of configuration items
into the corresponding types based on the fine-
grained type lists

(3) Define the constraint template of the configuration
type and generate the configuration constraint rule
base

(4) Monitor the configuration modification dynamics in
real time and detect whether the configuration up-
date operation break the constraint rules

3.3. Implementation

3.3.1. Key-Value Pairs of Configuration Item Extraction.
In order to generate the constraint rule base of software
configuration items, first, it is needed to obtain all configu-
ration items of the software system and parse them into the
key-value pairs. Due to the “everything is a file” feature of
Linux system, the configuration items of application software
are stored in the configuration file in a specific format, and the
configuration is set and managed through the configuration
file. 'e Linux system has the directory/etc. for uniformly
storing and managing various configuration files. When the
software is successfully installed, a directory named the
software name will be generated under/etc., such as/etc./
apache, which means that all configuration files related to the
apache will be stored in this directory. 'erefore, it is easy to
gather the configuration files of the target software.

Generally, the configuration files of application soft-
ware in Linux are encoded in ASCI, so the configuration
items can be easily extracted only by parsing the file
content. 'e storage structure of these configuration files
in Linux generally has two forms. One is similar to that of
the INI file, which is composed of multiple sections. Each
section starts with the section name with square brackets,
followed by the parameter name and its value. Take the
configuration file of MySQL as an example; its file
structure is shown in Figure 4. Each section starts with a
section label, such as [mysqld], and the configuration item
is represented by a key-value pair of parameter name-
� parameter value. “#” is a comment character. Except
that, a semicolon may be a comment character too. 'e
comment line that begins with “#” or “ ;” will be ignored in
the actual operation. Since the configuration items in this
kind of configuration files are stored in the form of key-
value pairs, they are easy to deal with.

Another format is similar to that of the XML file, such as
the configuration files of Apache. For the configuration files

4 Scientific Programming

in the XML format, the special parsing methods are needed
to extract the names and values of configuration items.
Augeas is one of the most widely used automatic analysis
and management tools for the configuration files in Linux
system. It can analyze the profiles of most software including
Httpd, MySQL, Nginx, and PostgreSQL. It provides many
interfaces of different programming languages, including
python, ruby, and Java, and it is applied in the configuration
management tools such as puppet and bcfg. 'erefore, we
can realize the analysis of configuration files in complex
format based on Augeas.

Take the configuration file Apache as an example; there
are two main components in it: section and directive.

Section can be nested and contain multiple directives, and
each directive is composed of a name and the corre-
sponding arguments. Figure 5 shows a fragment of the
configuration file named ports.conf. 'ey include one
section and two directives: IfModule is a section, and the
two directives are two listen commands corresponding to
two ports.

'e parse tree transformed by Augeas is shown in
Figure 6. It entirely reflects the hierarchical structure of the
configuration file and distinguishes the configuration item
name and its value. 'e configuration item in the form of
key-value pairs can be extracted from the parse tree, as
shown in Table 2.

Configuration
Item Types

Numeric

String

Number
with units

Number

Name

Enumeration

URI

Memory

Time

Speed rate

Port

Fraction

Count

Permission

User name

Password

File name

Boolean

Language

Mode

MIME types

File path

Path

URL

Partial file path

Directory path

Partial directory path

Domain name

IP address

Email

Figure 3: 'e fine-grained classification lists of configuration items [10].

Stage 1: Establishing the Configuration Constraint Rule

key-valueconfiguration
files

file resolution
template

classification of
configuration item

generation of
constraint rule base

monitoring the
access status template

capturing the operation
configuration update

modifying the
configuration items

monitor

Stage 2: Detecting the Configuration Errors in Real Time

detect

Figure 2: 'e architecture of configuration errors detection in real time.

Scientific Programming 5

Augeas has built-in API based on C library. We can call
the interface aug_load(augeas ∗aug)，and int aug_-
print(const augeas ∗aug, FILE ∗out, const char ∗path) to
load a configuration file and to generate the parse tree.

'e nodes in the configuration tree can be output to the
specified location, and the configuration item information
can be accurately extracted by transforming the configu-
ration file into a configuration tree.

3.3.2. Configuration Item Classification. According to sec-
tion 2.3, configuration item types contain semantic con-
straint information. Accurate type division of configuration
items helps explore the constraints of the configuration.'is
section designs a configuration item classification method
based on themixedmode, in which both value and name of a
configuration item are considered as the classification bases,
combined with the system environment information. Fi-
nally, a configuration item can be classified into one of 21
types shown in Figure 3.

After collecting and parsing all configuration items of the
software in Section 3.3.1, each configuration item is rep-
resented in the form of key-value pairs. In this section, the
converted key-value pairs are used to classify the items.
Firstly, the parameter value of the configuration item is
considered. In the software system, the values of many
configuration items have a fixed expression format. For this
kind of parameter values with unified format, you can
greatly reduce the type range of the configuration item and
even directly determine the configuration type by simply
making a rough type judgment through regular expression
matching. For example, a configuration item containing “/”
in value may be of type path.

In addition, some parameter values are expressed in
global format, including IP address, domain name, and
e-mail address Among them, IP address is generally
expressed in dotted decimal notation. Domain names are
generally in the form of “agreement +://+ specific address.”
'e expression of e-mail address is usually “user name @
e-mail server name.” Such configuration parameters can
directly infer the configuration type through regular ex-
pression matching. In addition, the configuration parameter
value with fixed expression has another format; that is, it has
a specific flag, which is generally reflected by the unit suffix
representing a certain attribute. For example, for the
memory type of memory allocation, the allocated memory
size will be specified during the actual configuration of this
parameter, so the parameter value will be marked with “KB/
MB/GB”; the configuration item of time type usually has the
time unit “MS/S/min/h/D”; the unit suffix of speed rate type
is usually “BPS/Kbps/Mbps.”

Table 3 is the syntax pattern of each type that belongs to
one of the 21 types of configuration items. Each configu-
ration item can be preliminarily classified based on this table,
and the syntax pattern of this table can be used as the syntax
rule detection standard in the subsequent configuration
exception detection process.

'rough the preliminary regular matching of the values
of the configuration key-value pair, the configuration item
type can be inferred, or the type range can be reduced. When
the type cannot be inferred directly, the system environment
information can be introduced into the reduced type range
for further classification. For example, if the syntax pattern

Listen 80
<IfModule ssl_module>

Listen 443
</IfModule>

Figure 5: 'e fragment of Apache configuration file.

[Mysqld]
character-set-server=utf8
#
* Basic Settings
#
user = mysql
pid-file
socket

= /var/run/mysqld/mysqld.pid
= /var/run/mysqld/mysqld.sock

port
datadir

= 3306
= /var/lib/mysql

Figure 4: 'e structure of MySQL configuration file.

Table 2: 'e key-value pairs included in the parse tree.

Key Value
/Directive [1] Listen
/Directive [1]/arg 80
/IfModule/arg ssl_module
/IfModule/directive Listen
/IfModule/directive/arg 443

ports.conf

IfModule

arg (80)

arg (443)

arg (ssl_module)

directive[l] (Listen)

directive (Listen)

Figure 6: 'e parse tree of ports.conf generated by Augeas.

6 Scientific Programming

matches that the parameter value of the configuration item
belongs to the string type and contains “/”, then the type of
the configuration item can be located to path. Next, you can
judge whether the configuration parameter is set to a file or
directory and whether it is an absolute path according to the
metadata information of the file system.

Some types of configuration item types cannot be dis-
tinguished by syntax mode and system environment infor-
mation, such as port and count in configuration item type
classification. 'e values of these two types of configuration
parameters are expressed in digital form without any special
flags that can be used to distinguish types. For such con-
figuration items, the scheme further classifies them according
to the configuration item name keywords on the basis of
syntax pattern matching and system environment informa-
tion verification. By observing the software configuration file
and user configuration manual, developers usually use words
or abbreviations containing relevant semantic information to
name configuration items and use ““ Separator or hump
nomenclature connects multiple words or abbreviations. 'is
scheme establishes a key thesaurus for each configuration type
and assigns different frequency scores according to the oc-
currence frequency of keywords. For configuration items that
meet multiple types, first segment the configuration item
name according to the separator and capital letters, then
calculate the similarity between the current configuration
item name and each type of keywords, and classify them
according to the type with the highest similarity.

It should be noted that, in the configuration item name
composed of multiple keywords, the keywords that appear in
the front are mainly used to modify the subsequent key-
words. 'e later keywords are often more able to show the
type semantics. 'erefore, in the process of similarity cal-
culation, different weights will be allocated according to the
order in which the keywords appear in the configuration
item name. 'e later the keywords, the greater the weight.
'e calculation formula is as follows:

St �
n

wi

Fi ∗Wi, (1)

where St is the similarity calculation score of configuration
items in each type; n is the number of words obtained by
word segmentation of configuration item name, that is,
generally 2 or 3; wi is the ith keyword after word seg-
mentation; Fi is the frequency score of the ith keyword; wi is
the order weight of the ith keyword, and the value increases
in order of word occurrence.

3.3.3. Generating the Configuration Constraint Rule Base.
After the software configuration items are extracted and
classified, the constraint rules will be generated in this
section based on the predefined constraint templates. Firstly,
the constraint conditions that these configuration item types
need to meet are analyzed to formulate the constraint
template. Software configuration error always is presented as
the parameter value error, which includes the abnormal
spelling, the format error, the datatype error, and the value
range exception.

For the errors of datatype and format, you can easily
judge whether the current value is correct, and it is needed to
specify the syntax pattern that the corresponding type must
meet in the constraint conditions. 'e syntax pattern is
shown in Table 3. However, in practice, most of the con-
figuration items do not have the fixed values or ranges, and
their values are related with the current system execution
environment and other configuration items. 'erefore,
when defining the configuration type constraint template,
attention should also be paid to the relationship between the
item type and the environmental information, other types in
order to generate more comprehensive constraint rules. 'is
section analyzes the constraint rules of software configu-
ration item types from these three aspects, which are the
syntax patterns, the system environmental constraints, and
the associated constraints with other configuration item
types. 'is section will focus on the last two aspects.

Firstly, the relationship between all configuration item
types in Figure 3 and the system execution environment will
be analyzed. 'e values of some parameters will be affected
by the current system environment during the software
running process. For example, we need to judge whether the
parameter value meets the standard of allocable memory in
the current system when the configuration item of memory
is set. In addition, we need to check whether the parameter
value is within the range of [0–65535] and whether the
allocated port has been occupied by other services when the
configuration item of port is set. For another example, when
we set the configuration item of path, we need to check
whether the current path exists, etc. By analyzing the above
21 type of configuration item, some constraints of each type
can be extracted from the system execution environment, as
shown in Table 4. 'e commands of obtaining system en-
vironment information related to each configuration item
are also indicated in Table 4.

Except the above description, this scheme also considers
the possible correlation constraints among the configuration
items. As mentioned in section 2.3, the configuration item
types contain rich semantic information. 'e semantic in-
formation can not only help users understand the values of

Table 3: Syntax patterns of different configuration item types.

Configuration item type Syntax pattern
Memory [\d]+[KB|MB|GB]
Time [\d]+[ms|s|min|h|d]
Speed rate [\d]+[bps|Kbps|Mbps]
Port [\d]+
Fraction [\d]+
Count [\d]+
Permission [\d]+
User name [a-zA-Z][a-zA-Z0-9]∗
File name [\w−]+[\w−]+
Boolean [true|false|on|off|yes|no]
Language [a-zA-Z]2
MIME types [\w/-.]+
Path /.+(/.+)∗
Domain name [a-z]+://.∗
IP address [\d]1,3(.[\d]1,3)3
E-mail (\w)+(\.\w+)∗@(\w)+((\.\w+)+

Scientific Programming 7

configuration items, but also help infer the configuration
dependency constraints. For example, for the configuration
item of file path, it is assumed that the function of the
configuration item is to output the data to the file specified
by parameter value. If the parameter value contains the
system paths, such as/boot,/lib,/bin, the insufficient per-
missions may occur.'erefore, the current user right should
be considered when setting the path parameter.

In addition, for the configuration item belonging to
“Number,” especially for the item name with the keywords
such as “Max,” “Min,” the value range of these parameters
should be considered. Based on the above analysis, this section
extracts the correlation constraint rules of some configuration
items types that will be applied in the configuration error
detection. 'ese constraint rules are shown in Table 5.

'e configuration type constraint template is constructed
based on the configuration item value constraint, the con-
straint between the value and the system environment at-
tribute, and the configuration type correlation constraint.'e
configuration items classified under each type are substituted
into the corresponding type of constraint rules to generate the
constraint rule base of software configuration items. 'e
constraint rule base structure is as follows.

{“K1”: “configuration item name,” “K2”: “configuration
item name,” “rule”: “detailed rules,” “value”: “specific value”}

In the representation of the above constraint rules, for
the syntax constraints of the type to which the configuration
item belongs and the constraints of value and environment
attributes, the configuration item name of “K2″” item uses
“_ “Self” means that the “rule” item is the syntax constraint
expression of this type or the command to obtain system
environment information in Table 4. For configuration type
dependency constraints, “K1” and “K2” are, respectively, the
names of the two configuration items with dependency, and
“rule” is the dependency constraint, such as “> �“, “< �“,
“� “. During detection, relevant constraint rules are ob-
tained from the constraint rule library according to the name
of the currently updated configuration item and then de-
tected in turn.

3.3.4. Anomaly Real-Time Configuration Error Detection.
In this scheme, the constraint rules base of the software
configuration items generated in the above section is used to
judge whether the current configuration update is abnormal.
When the modification operation of the configuration file is

monitored, the modified configuration itemwill be obtained,
and the modification of the current configuration item will
be judged whether it is against the constraint rule according
to the corresponding constraint rule record in the rule base.

In this paper, the listener in the user layer will not only send
the information of the modification operation to the backup
and control module, but also send the modified file path and
the modified items to the configuration error detection
module, as shown in Figure 7. 'e prerequisite for detecting
the configuration error in real time is to timely capture the
update operation of the configuration file and the modified
configuration item.'is question has been solved in the article
[28]. 'e author analyzed the mechanism of inotify in the
Linux kernel and designed their own hook function to capture
the file update operation.When the write operation is executed
in the user layer, the file system of Linux will obtain the file
descriptor fd according to the open operation and call the
unified interface of write operation called vfs_wirte() by VFS
layer, and then the vfs_wirte() function will call the write ()
function provided by the corresponding inode node based on
the file operation pointer f_op. 'erefore, the author designed
the custom write function mywirte() and modified f_op to
point to mywirte_iter(). In the mywrite_iter() function, the file
path of the updated file and the updated operations are sent
into the listener of the user layer through the custom file in the/
proc file system. 'us, the purpose of monitoring the update
operation of a configuration file is achieved.

After receiving the related information of the modified
configuration item, the configuration error detection
module will check whether this modified configuration item
meets all the corresponding constraint rules in the constraint
rule base. If so, it will judge whether the modification times
of the current configuration file reach the threshold. When
they do, it is needed to trigger the snapshot operation of this
configuration file; otherwise, the modification record is
stored in the configuration item update lists; if not, it in-
dicates that the current modification is abnormal, and then
the fast error recovery module will be called.

'e real-time error detection algorithm of the config-
uration update operation is as follows.

4. Experiments and Results Analysis

In this section, we will conduct some experiments to verify
the effect of the real-time configuration error detection

Table 4: System environment constraints met by different configuration item types.

configuration item type System environment constraints Command of obtaining system environment information
Memory Less than the available memory Free - m
Speed rate Less than the upper bandwidth limit ip a and ethtool [ethernet port]
Port Not occupied by other services Netstat - anp | grep [port]
User name User exists cat/etc/passwd | grep [user name]
File name File name exists Stat [file name]
Language Available language types ISO 639–1 [54]
MIME types Available MIME types IANA [55]
Path Path exists Stat (path)
Domain name Domain name is available Curl - I [domain name]
IP address IP address is accessible Ping [IP address]

8 Scientific Programming

scheme and analyze the experimental results. Firstly, the
accuracy of configuration item classification will be verified
based on the hybrid semantic classification method. 'en, it
will be tested whether the new scheme can monitor the
modification operation of the configuration file in real time.
Finally, the experiment will test whether the software
configuration update error can be detected based on the
constraint rule base algorithm 1.

4.1. Accuracy of Configuration Item Classification. Since the
configuration constraint rule template of this scheme is
defined based on the configuration type, during the detec-
tion process, the classification of configuration item type will
directly affect the detection results when the configuration
item is updated.'erefore, it is necessary to test the accuracy
of configuration item classification. Due to the fact that
Apache and MYSQL have a large number of configuration
items and have the complex item types, this section takes the
two software as the examples. By analyzing the official user
guide and their configuration files, the configuration items in
the two software tools are collected and classified according
to the configuration item type list in Figure 3. 'e classi-
fication results are compared with the manual classification
results to judge whether the scheme can classify the con-
figuration items correctly. 'e experimental results are
shown in Table 6.

It can be seen from the classification results that the
hybrid classification method of regular matching based on
configuration parameter values and combined with envi-
ronmental information and configuration item names can
achieve an accuracy of more than 87%. Based on the analysis
of classification results, check the official description of

configuration items that cannot be classified correctly. It is
found that the parameter values of these configuration items
basically belong to enumeration type; that is, the system
provides several specific parameter values for users to choose.
For such configuration items, it is necessary to analyze the
source code to obtain more relevant information. At present,
the classification method of this scheme is not combined with
the analysis process of software source code, so it is impossible
to correctly classify such configuration items, which is also the
work that needs further research in the follow-up.

4.2. Real-Time Monitoring of the Configuration File
Modification. In this experiment, we will take the config-
uration file of MySQL as an example to test whether the
scheme can monitor the update operation of the configu-
ration file in real time. 'e profile named mysqld.cnf was
modified every 2minutes, and the modification is executed
three times during the experiment. 'en, the dmesg com-
mand is used to view the system kernel log. 'e results are
shown in Figure 8.

As can be seen from Figure 8, the goal of the experi-
mental design is achieved, and the continuous update op-
erations at a certain time interval are captured in the
monitored file. When the mysqld.cnf is updated, the VFS
layer calls the custom mywrite_iter() function, in which the
time of write operation and the file path are captured.
'erefore, this scheme can realize the real-time monitoring
of profile update operation.

4.3. Effectiveness of Configuration Error Detection. In order
to verify the effect of online configuration anomaly detection
proposed in this scheme, it is necessary to modify the

Table 5: 'e constraint rules of some configuration item types.

Configuration item type Related configuration item type Constraint rule
File path User name Operation permission
Directory User name Operation permission
Partial file path User name Operation permission
Partial directory path File name [A< partial file path>]+[B<file name>]� [C<file name>]
Partial directory path User name Operation permission
Partial directory path File name [A< partial directory path>]+[B<file name>]� [C< directory name>]
Number Number max,min
Memory Memory max,min

syntactic
constraints

environmental
constraints

configuration
item

constraint
rule base

configuration
error detection

modified item
capture

fast error
recovery

updated item
storage

Figure 7: 'e design architecture of real-time configuration error detection.

Scientific Programming 9

configuration parameter value in the form of violating the
constraint rules in the test process to verify whether the
system can detect the abnormal configuration in time.
During the experiment, based on the idea of conferr [29]
and confvd [21] configuring the fault generation tool, the
representative and possible abnormal configuration up-
date behavior is simulated, and the configuration is
modified manually. At the same time, this experiment also
refers to the problems caused by configuration exceptions
in 8 real environments collected from major websites in
reference [30] and restores the exception setting value
based on its problem description to verify the effectiveness
of this scheme for the exception detection of profile
update.

'e design of test cases in this section is based on the idea
of the above two configuration fault injection tools. For

MySQL, Apache, PostgreSQL, and PHP software, nine ex-
amples are designed that violate the syntax constraints of
configuration values, the constraints of values and envi-
ronment attributes, and the constraints of configuration
correlation defined in this scheme.'e syntax constraint test
of configuration values includes syntax exceptions of values,
abnormal value type and range. For example, the designed
test is shown in Table 7, where the marked “∗” is the col-
lected real configuration problems.

Based on the parameter values of test cases in Table 7, the
corresponding parameter values of the related configuration
file are modified to simulate the configuration errors. 'en,
our scheme is executed to verify whether it can monitor the
modification of the configuration file in real time and
whether it can detect these configuration errors. 'e test
results are shown in Table 8.

Input: the modified configuration file path
Output: the backup data
(1) execute such the command as “diff config_file snapshot_file> patch_file” and get all the modified configuration items since the

last snapshot
(2) Filter the modified operation based on the record in the configuration item update table
(3) get the currently modifying configuration item
(4) judge whether the current item parameter values meet all the related constraint rules in the rule base
(5) If OK then
(6) compare the current modification times and the threshold of modification times
(7) If the current times are less than the threshold then
(8) write the current modifying configuration item into the configuration item

update table and change it into the modified item
(9) else
(10) create a new snapshot of the configuration file
(11) end
(12) else
(13) call the fast error recovery module to perform the recovery operation
(14) end

ALGORITHM 1: anomaly error detection of the configuration update operation

Table 6: Accuracy of configuration item classification results.

Software name 'e number of configuration items 'e number of correctly classified items Classification accuracy (%)
MySQL 5.7.33 673 608 90.4
Apache 2.4.18 564 492 87.4

[92050.979244]

[92050.979245]

[92058.098706]

[92050.098708]

[92157.519265]

[92157.519266]

[92283.731395]

[92283.731397]

hook_fop!

hook_vfs init!

UTC time : 2021-4-19 5:48:27 The modified file is : /etc/mysql/Mysql.conf.d/Mysqld.cmf

Mywrite_iter!

UTC time : 2021-4-19 5:50:7 The modified file is : /etc/mysql/Mysql.conf.d/Mysqld.cmf

/etc/mysql/Mysql.conf.d/Mysqld.cmf

Mywrite_iter!

UTC time : 2021-4-19 5:52:13 The modified file is :

Mywrite_iter!

the time of write operation

the path of the modified profile

calling the custom write operation

Figure 8: Real-time monitoring results of the profile update operation.

10 Scientific Programming

It can be seen that, for the 17 test cases, our scheme can
capture almost all the modification operations of the profiles,
and it can detect most of the configuration errors. 'e
number of errors is 17, while the number of detected errors
is 14. By analyzing the detected configuration errors, it is
found that the error scenes include the spelling and value of
the parameter, whether the parameter value is accessible,
and whether the port is occupied, etc. 'erefore, it can be
seen that this scheme performs well in detecting the syntax
constraints of the configuration parameter and the envi-
ronment constraints.

For the undetected configuration errors, we analyzed
them and found the following questions:

Firstly, our scheme cannot well detect the dependency
exceptions among configuration items. For example, we
found the value of the parameter query_cache_limit in the
test Case 3 should be less than that of query_ cache_ size

after analyzing its configuration file. In practice, there are the
dependencies not only between one configuration item and
the other one in the same software, but also among the
configuration items in different software. 'erefore, one of
our future work is to study how to more comprehensively
analyze and extract the correlation constraints between two
configuration items in different software.

Secondly, this scheme cannot detect the configuration
errors caused by the operations outside the configuration
file, such as the operation in the test Case 9. 'e operation
fails due to the wrong type of uploaded file, while this
operation does not belong to the configuration update
operation, so our scheme cannot deal with it.

'irdly, our scheme cannot detect the software per-
formance exception caused by the improper configuration
parameter values, such as the test Case 11, in which the value
of the parameter work mem is too small, which leads to the

Table 7: Test cases.

No Software Failure description Test case
1 MySQL Failed to get data Key_ buffer_ size� 16N
2∗ MySQL Local server connection failed Bind-address� 192.168.0.0
3 MySQL Data query failed Query_ cache_ limit� 16M
4 MySQL Database connection failed. Port� 8080
5 MySQL Cannot output the log General_ log_ file� /var/log/mysql
6 PHP Cannot load the web page Max_ execution_ time� 50
7 PHP Refresh web page update failed session.entropy_ file� /dev/random
8 PHP Web pages cannot display Default_ mimetype� “test/html”
9∗ PHP Failed to load file - With_ config_ file_ path
10∗ PHP Database connection failure Extension_ dir� ““/usr/local/php5/lib/extension”
11∗ PostgreSQL Software responds slowly Work_ mem� 64KB
12 PostgreSQL Failed to load data Shared_ buffers� 128Mb
13∗ PostgreSQL Cannot output the log Log_ directory� ‘pg_ log’
14∗ PostgreSQL PID file was not written successfully externam_pid_file� ‘/var/run/postgresql’
15∗ Apache User authentication failed Authuserfile/etc/phpMyAdmin/passwd.setup
16 Apache Web page cannot respond Listen 1

17∗ Apache Cannot resolve the web page AddType application/x-httpd-php
.php.html∗

Table 8: Test results of profile update operation.

No Is the configuration update captured Is the exception detected Error analysis
1 Yes Yes 'e syntax constraint rule is broken
2∗ Yes Yes 'e IP address is inaccessible
3 Yes No 'e parameter value is too large
4 Yes Yes 'e port is occupied
5 Yes Yes 'e parameter type should be the file type
6 Yes Yes 'e parameter value is abnormal
7 Yes Yes 'e file path does not exist
8 Yes Yes An unsupported MIME type
9∗ No No 'e parameter type should be the directory type
10∗ Yes Yes 'e parameter type should be the directory type
11∗ Yes No 'e parameter value is too small
12 Yes Yes 'e syntax constraint rule is broken
13∗ Yes Yes No write permission
14∗ Yes Yes 'e parameter type should be the file type
15∗ Yes Yes 'e path does not exist
16 Yes Yes 'e port is occupied
17∗ Yes Yes An unsupported file type

Scientific Programming 11

software response speed becoming slow, and the scheme still
conclude that the configuration item value is normal.

5. Conclusion

In order to solve the problem that the major configuration
error detection methods have the poor real-time perfor-
mance, which may lead to potential threat to the software
system, we design a real-time configuration error detection
method of configuration based on the fine-grained config-
uration item type and a type constraint rules base.

Firstly, it is needed to collect the software configuration
files in different formats and use the configuration man-
agement tool Augeas to resolve the configuration items into
key-value pairs. 'en, a hybrid classification method is
proposed to classify all configuration items based on the
fine-grained configuration item type lists. After that, a
constraint template is predefined according to the syntax
constraints of configuration parameter values, the connec-
tion constraints between the parameter values and the
system execution environment, and the dependency con-
straints between two configuration item types. Finally, the
configuration items are written into the constraint template
to generate the configuration constraint rule base. On the
foundation of the constraint rule base, our method can
detect whether there are exceptions in the configuration
update operations in real time, combining with the custom
real-time monitoring function for the configuration file. 'e
experimental results verify that our method can correctly
classify the configuration items and can effectively detect the
exceptions about the parameter spelling, the parameter value
type, and the dependencies between two parameters. 'e
classification accuracy and detection effectiveness reached
87% and 82%, respectively. In future, we plan to extend our
work and test it on more complex software programs and
frameworks. We intend to make use of big data analytics
tools to be able to test large number of programs and
frameworks in bulk.

Data Availability

'e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

'e authors declare that they have no conflicts of interest.

Acknowledgments

'is work was supported by the National Natural Science
Foundation of China under grant no. 61802210.

References

[1] T. Xu, L. Jin, X. Fan, Y. Zhou, and S. Pasupathy, “Hey, you have
given me too many knobs!: understanding and dealing with
over-designed configuration in system software,” in Proceed-
ings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, pp. 307–319, Bergamo, Italy, September 2015.

[2] L. Welling and L.'omson, Php and Mysql Web development,
Sams Publishing, Carmel, Indiana, 2003.

[3] D. Oppenheimer, A. Ganapathi, andD. A. Patterson, “Why do
internet services fail, and what can be done about it?” in
Proceedings of the USENIX Symposium on Internet Technol-
ogies and Systems, Seattle, WA, US, March 2003.

[4] B. Hale,Why Every it Practitioner Should Care about Network
Change and Configuration Management, 2012.

[5] H. S. Gunawi, M. Hao, R. O. Suminto, and A. Laksono, “Why
does the cloud stop computing? lessons from hundreds of
service outages,” in Proceedings of the Seventh ACM Sym-
posium on Cloud Computing, pp. 1–16, Santa Clara, USA,
October 2016.

[6] T. Ryan, A. Chester, and J. Reece, “'e uses and abuses of
facebook: a review of facebook addiction,” Journal of be-
havioral addictions, vol. 3, no. 3, pp. 133–148, 2014.

[7] Y. Sverdlik, Microsoft: misconfigured network device led to
azure outage, Data Centre Dynamics Ltd (DCD), London,
2012.

[8] J. Garcia, Y. Feng, J. Shen, Y. Xia, and Q. Chen, “A com-
prehensive study of autonomous vehicle bugs,” in Proceedings
of the ACM/IEEE 42nd International Conference on Software
Engineering, pp. 385–396, Seoul South Korea, July 2020.

[9] L. A. Barroso andU. Hölzle, “'e datacenter as a computer: an
introduction to the design of warehousescale machines,”
Synthesis lectures on computer architecture, vol. 4, no. 1,
pp. 1–108, 2009.

[10] F. Oliveira, K. Nagaraja, R. Bachwani, and R. P. Martin,
“Understanding and Validating Database System adminis-
tration.” in Proceedings of the USENIX Annual Technical
Conference, pp. 213–228, Boston, Massachusetts, June 2006.

[11] W. Chen, X. Huang, and X. Qiao, “Research on software
configuration error diagnosis and repair technology,” Journal
of Software, vol. 26, no. 06, pp. 1285–1305, 2015.

[12] F. Li, J. Yang, and J. Wu, “Research on Internet automatic
configuration,” Journal of Software, vol. 25, no. 1, pp. 118–134,
2014.

[13] T. Xu, X. Jin, P. Huang, and Y. Zhou, “Early detection of
configuration errors to reduce failure damage,” in Proceedings
of the 12th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 16), pp. 619–634, Savannah, GA,
November 2016.

[14] Z. Yin, X. Ma, J. Zheng, and Y. Zhou, “An empirical study on
configuration errors in commercial and opensource systems,”
in Proceedings of the Twenty-Eird ACM Symposium on
Operating Systems Principles, pp. 159–172, Cascais, Portugal,
October 2011.

[15] M. Attariyan and J. Flinn, “Automating configuration trou-
bleshooting with dynamic information flow analysis,” in
Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation(OSDI), pp. 237–250,
Berkeley, CA, USA, October 2010.

[16] A. S. Rabkin, Using Program Analysis to Reduce Mis-
configuration in Open Source Systems software, Spring, UC
Berkeley, 2012.

[17] Z. Dong, M. Ghanavati, and A. Andrzejak, “Automated Di-
agnosis of Software Misconfigurations Based on Static analy-
sis,” in Proceedings of the 2013 IEEE International Symposium
on Software Reliability Engineering Workshops (ISSREW),
pp. 162–168, IEEE, Pasadena, CA, USA, November 2013.

[18] T. Xu, J. Zhang, P. Huang, and D. Yuan, “Do not blame users
for misconfigurations,” in Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, pp. 244–
259, New York; NY, November 2013.

12 Scientific Programming

[19] J. Zhang, L. Renganarayana, X. Zhang, and Y. Zhou, “Encore:
exploiting system environment and correlation information
for misconfiguration detection,” in Proceedings of the 19th
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pp. 687–700,
Salt Lake City, USA, March 2014.

[20] W. Li, S. Li, X. Liao, and Y. Zhou, “Conftest: generating
comprehensive misconfiguration for system reactionability
evaluation,” in Proceedings of the 21st International Confer-
ence on Evaluation and Assessment in Software Engineering,
pp. 88–97, Karlskrona, Sweden, June 2017.

[21] S. Li, W. Li, X. Liao, and S. Peng, “Confvd: system reactions
analysis and evaluation through misconfiguration injection,”
IEEE Transactions on Reliability, vol. 67, no. 4, pp. 1393–1405,
2018.

[22] R. Talwadker, “Dexter: faster troubleshooting of mis-
configuration cases using system logs,” in Proceedings of the
10th ACM International Systems and Storage Conference,
pp. 1–12, 2017.

[23] J. Tucek, S. Lu, C. Huang, and Y. Zhou, “Triage: diagnosing
production run failures at the user’s site,” ACM SIGOPS -
Operating Systems Review, vol. 41, no. 6, pp. 131–144, 2007.

[24] Y. Y. Su, M. Attariyan, and J. Flinn, “Autobash: improving
configuration management with operating system causality
analysis,” ACM SIGOPS - Operating Systems Review, vol. 41,
no. 6, pp. 237–250, 2007.

[25] X. Xu, S. Li, Y. Guo, and D. Wei, “Automatic type inference
for proactive misconfiguration prevention,” in Proceedings of
the 29th International Conference on Software Engineering and
Knowledge Engineering(SEKE), pp. 295–300, San Francisco
Bay, CA, July 2017.

[26] A. Rabkin and R. Katz, “Static extraction of program con-
figuration options,” in Proceedings of the 33rd International
Conference on Software Engineering, pp. 131–140, New York.
NY, May 2011.

[27] D. Lutterkort, “Augeas–a configuration api,” in Proceedings of
the Linux Symposium, pp. 47–56, Citeseer, Ottawa, ON, 2008.

[28] M. Ming, L. Liu, and G. Zhao, “An adaptive data protection
scheme for optimizing storage space,” in Proceedings of the
International Conference on Machine Learning for Cyber Se-
curity, pp. 250–260, Guangzhou, China, October 2020.

[29] L. Keller, P. Upadhyaya, and G. Candea, “Conferr: a tool for
assessing resilience to human configuration errors,” in Pro-
ceedings of the 2008 IEEE International Conference on De-
pendable Systems and Networks with FTCS and DCC (DSN),
pp. 157–166, IEEE, Anchorage, AK, June 2008.

[30] S. Zhou, S. Li, X. Liu, and X. Xu, “Easier said than done:
diagnosing misconfiguration via configuration constraints
analysis: a study of the variance of configuration constraints in
source code,” in Proceedings of the 21st International Con-
ference on Evaluation and Assessment in Software Engineering,
pp. 196–201, Karlskrona, Sweden, June 2017.

Scientific Programming 13

