
Research Article
Research on Software Vulnerability Detection Method Based on
Improved CNN Model

Gao Qiang

Shandong Management University, School of Labor Relations, Jinan, Shandong 250357, China

Correspondence should be addressed to Gao Qiang; 14438120210041@sdmu.edu.cn

Received 16 April 2022; Revised 26 April 2022; Accepted 8 May 2022; Published 12 July 2022

Academic Editor: Jie Liu

Copyright © 2022 Gao Qiang. �is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A software construction detection algorithm based on improved CNN model is proposed. Firstly, extract the vulnerability
characteristics of the software, extract the characteristics from the static code by using the program slicing technology, establish
the vulnerability library, standardize the vulnerability language, and vectorize it as the input data. Gru model is used to optimize
CNN neural network. �e organic combination of the two can quickly process the feature data and retain the calling relationship
between the codes. Compared with single CNN and RNN model, it has stronger vulnerability detection ability and higher
detection accuracy. In contrast, the software algorithm of the improved CNNmodel has strong vulnerability detection ability and
higher detection accuracy. In terms of training loss rate, the DNN+Gru model is 17.2% lower than the single RNN model, 10.5%
lower than the single CNN model, and 7% lower than the VulDeePecker model.

1. Introduction

Software systems are widely used in various production and
life �elds. �e primary issue to be considered in the de-
velopment process is security. Software vulnerabilities will
not only cause unnecessary consumption of resources, but
also seriously damage the economic property of the appli-
cation industry. Traditional vulnerability analysis is divided
into three methods: static analysis, dynamic analysis, and
combined dynamic and static analysis [1]. Xia [2] compared
the static analysis method with other program analysis
methods and found that the static analysis method has a
higher degree of automation and faster speed in detecting
software vulnerabilities, but the static analysis method
generally has the problem of high false positive rate. Lu [3]
proposes a vulnerability detection technology based on
dynamic taint analysis, which realizes the taint propagation
process based on control �ow and data �ow, but frequent
taint mark detection takes up a lot of memory and reduces
system performance. Pan and Zhou [4] propose a method of
combining static code analysis of pollution propagation

model and dynamic detection of puri�cation units to dis-
cover vulnerabilities in web applications, but this method is
only used for cross-site scripting attacks and is used to detect
other vulnerabilities, such as poor ability. Perl et al. [5]
proposed a tool VccFinder that uses SVM classi�er to mark
suspicious codes. Although this tool reduces the false pos-
itive rate, it needs to reextract features and perform model
training every time when detecting codes in di¡erent lan-
guages. Li et al. [6] developed the VulPecker tool, which has
a very low false positive rate when detecting vulnerabilities in
code clones, but is not suitable for dealing with other types of
vulnerabilities.

With the continuous development of the deep learning
discipline, the use of machine learning to achieve software
vulnerability detection has gradually emerged. A deep
learning-based Android malicious application detection is
proposed, and a recurrent neural network is used to detect
Smali static code, but this method is only aimed at malicious
application attack problems and cannot �nd vulnerabilities
in the code itself [7]. Li et al. [8] proposed an improved long
short-term memory network (LSTM) model, which is

Hindawi
Scientific Programming
Volume 2022, Article ID 4442374, 8 pages
https://doi.org/10.1155/2022/4442374

mailto:14438120210041@sdmu.edu.cn
https://orcid.org/0000-0001-7743-6353
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4442374

applied to the vulnerability detection problem of open
source code, but this model is only for C/C++ source code
problems and can only handle API and library function calls
question.

On the basis of the above method, this paper proposes a
software vulnerability detection method of deformable
convolutional neural network, relying on the activation
function and residual unit to improve the stability of the
training gradient, because the convolution kernel can be
shared in the convolutional neural network, and the network
depth determines the length of the back propagation path, so
it can greatly reduce the algorithm’s time when detecting
software vulnerabilities memory consumption.

2. Software Code Feature Extraction

Feature extraction of software code is the key to vulnerability
detection. Firstly, program slicing is performed with key
points in the vulnerability library as entry points, and code
fragments containing vulnerability features are extracted
from open source code, and these code fragments are called
“code unit sets” [7]. Secondly, the set of code units con-
taining vulnerabilities is vectorized, and the features are
represented in a vector form that can be processed by the
deep learning model. �e feature processing �ow of open
source code is shown in Figure 1.

2.1. Establish aVulnerability Library. In order to ensure that
the slicing tool can accurately locate the code part containing
the vulnerability features, a vulnerability library needs to be
designed, and the key points of program slicing are de�ned
in the vulnerability library. Taking API misuse as an ex-
ample, the calling function of the API in the program is the
key point of API misuse in the vulnerability library. Using
the calling function as the entry point, the parameters,
statements, and expressions related to the key points in the
code are extracted. �erefore, the design of open source
software vulnerability library is an indispensable link in
static code vulnerability detection.

�e open source software vulnerability library designed
in this paper is mainly based on the CVE vulnerability
database. CVE is compatible with 28 communities and
institutions and contains about 6,500 entries. It is currently
the authoritative standard vulnerability library for vulner-
ability scanning and evaluation. In addition, this paper also
combines other large vulnerability information bases, such
as CWE, NVD, and CNNVD.�rough comparative analysis,
the vulnerability library is roughly divided into seven cat-
egories: input validation, bu¡er over�ow, memory man-
agement, API misuse, error handling, information leakage,
and cross-site scripting [9]. Some key points are shown in
Table 1.

2.2. Program Slicing. Program slicing is used to implement
static code vulnerability feature extraction and process static
code into a code unit set containing features. In the slicing
process, the key points in the vulnerability library are used as
entry points, and the control �ow graph and data �ow graph

are constructed according to the order of mutual calls in the
program and the �ow of data parameters, so as to extract the
expressions related to the key points. Formulas and state-
ments and code statements and comments that are not
related to features are removed [10]. �ere are many al-
gorithms and tools related to program slicing. �is paper
uses LLVM to complete static code slicing.

2.3. Feature Vectorized Expression. After the program is
sliced, a code unit set containing vulnerability features is
obtained. �e code unit set cannot be directly used as the
input of the deep learning model and needs to be quantized
into a �xed-length vector. In this paper, the word vectori-
zation model word2vec is used to complete the vectorization
of features. �e word2vec model processes the code unit set
by constructing a multilayer neural network. During the
processing, the parameters of the neural network are con-
tinuously corrected and a series of linear and nonlinear
operations are performed. Finally, we get the required word
vectors. Before vectorizing the code unit set, the code unit set
should be regularized, and the user-de�ned variables and
function names in the code should be replaced with standard
symbolic names in one-to-one correspondence. In this
paper, the static analysis tool cppcheck is used to traverse
line by line code and completes the substitution of user-
de�ned variables and standardized names.

3. Improve the CNN Vulnerability
Detection Model

3.1. CNNModel. �e basic structure of CNN consists of an
input layer, a convolution layer, a pooling layer, a fully
connected layer, and an output layer. Generally, several
convolution layers and pooling layers are used, and the
convolution layers and pooling layers are alternately set; that
is, one convolutional layer is connected to a pooling layer
and so on. Since each neuron of the output feature surface in
the convolutional layer is locally connected to its input, and
the corresponding connection weights and local inputs are
weighted and summed together with the bias value to get the
input value of the neuron, this process is equivalent to the
convolution process.

�e convolution layer consists of multiple feature sur-
faces, each feature surface consists of multiple neurons, and
each neuron is connected to the local area of the feature
surface of the previous layer through a convolution kernel,
which is a weight matrix (such as for two-dimensional
avatars, it can be a 3× 3 or 5× 5 matrix) [11], the con-
volutional layer of CNN extracts input features through
convolution operations, the �rst convolutional layer extracts

Vulnerability
library

Open source
code Code unit set Feature vector

Program slice

Figure 1: Feature code feature processing �ow.

2 Scienti�c Programming

low-level features, and the convolutional layer of higher
layers extract higher-level features. Figure 2 shows a sche-
matic diagram of the convolutional layer and pooling layer
structure of a one-dimensional CNN.

�e pooling layer follows the convolutional layer and is
also composed of multiple feature surfaces, each of which
uniquely corresponds to a feature surface of the previous
layer and does not change the number of feature surfaces. As
shown in Figure 2, the convolutional layer is the input layer
of the pooling layer. A feature surface of the convolutional
layer uniquely corresponds to a feature surface in the
pooling layer, the neurons of the pooling layer are also
connected to the local receptive �eld of the input layer, and
the local receptive �elds of di¡erent neurons do not overlap.
�e pooling layer aims to obtain spatially invariant features
by reducing the resolution of feature surfaces [12].

�e pooling layer plays the role of secondary feature
extraction, and each neuron performs a pooling operation
on the local receptive �eld. In the CNN structure, one or
more fully connected layers are connected after multiple
convolutional layers and pooling layers. Each neuron in the
fully connected layer is fully connected to all neurons in the
previous layer. �e fully connected layer can integrate the
class-discriminative local information in the convolutional
layer or the pooling layer [13].

It can be seen from Figure 3 that the neurons of the
convolution layer are tissue into each feature, and each
neuron is connected to the local region of the upper layer,
that is, the gland in the convolution layer. �e feature in the
input layer performs local connection [14]. �e local con-
nection weighted and passed to a nonlinear function such as
the RELU function to obtain an output value of each neuron

Xt-1

ht-1

Xt

ht

Xt+1

ht+1

× +Ct-1

ht-1

Ct

ht

× ×
σ σ tanh σ

tanh

BN(Ct; γcLβc)

BN(Wt·[ht-1, xt]+bk),k=f,i,C,0

... ...

Input layer
50×50

Convolutional
layer 1
44×44

Pooling
layer 1
22×22

Convolutional
layer 2
20×20

Pooling
layer 2
10×10

GRU
100

Fully connected layer Softmax

Output

Figure 2: DNN+GRU model structure diagram.

Table 1: Program vulnerabilities and key points.

Program vulnerabilities Key points

Input validation problem insect, create, select, alter, update, order, cookie, subject, system, command, open, close, getProperty,
getRuntime

Bu¡er over�ow problem Strcpy, strlen, stract, strchr, scanf, sprintf, sterror, strcoll, sbumpc, strcnpy, cin, gets, fgets, getchat, getc,getpass,
malloc, istream, printf

Misuse of API Cin, gets, fgets, getchat, getc, getpass, memcpy, malloc, getParameter, equals, getProperty, read, gethostbyaddr
Content management
issues

Malloc, calloc, realloc, alloca, free, new, delete, memcpy, memmove, memcmp, memchr, memset, mmap,
munmap, memccpy, getpagesize

Error handling issues -Alloca, catch, throw, EnterCriticalSection
Cross site scripting
problem URL, submit, cookie

Information leakage
problem Malloc, calloc, realloc, alloca, memcpy, memmove

Scienti�c Programming 3

in the convolution layer. In the same input feature and the
same output feature, the weight sharing of the CNN can
reduce the model complexity by weight sharing, making the
network easier to train.

3.2. CNN+GRU Model. Although CNN has good classi�-
cation ability in vulnerability detection, it cannot well
preserve the contextual relationship between code state-
ments, and the overly complex neural network structure will
have the problem of gradient disappearance as the number
of layers increases [15]. RNN is often used to deal with time
series problems and can better express the contextual calling
relationship between codes, but RNN also has the problem
of gradient disappearance. GRU is an e¡ective variant of
LSTM network. It has simpler structure and better e¡ect
than LSTM network. �erefore, it is also a very manifold
network at present. Since Gru is a variant of LSTM, it can
also solve the long dependency problem in RNN networks
[16]. GRU introduces three gate functions into LSTM: input
gate, forgetting gate, and output gate to control input value,
memory value, and output value. In GRU model, there are
only two doors: update door and reset door.

�is paper proposes to combine CNN and GRU, or-
ganically integrate the advantages of the two models, and
build a new model that is more suitable for open source
software vulnerability detection. �e CNN is used as the
interface for interacting with the feature vector, and the
GRU is used as the gating mechanism to deal with the re-
lationship between the code statements, which constitutes
the CNN+GRUmodel. �e e±ciency of CNN in processing
data is higher and faster than GRU, and the automatic
learning ability of convolution kernel is also stronger than
GRU [17], and GRU model not only solves the problem of
gradient disappearance in CNN, but also captures CNN Call
information between code functions is ignored. �e struc-
ture of the CNN+GRU model is shown in Figure 4.

In Figure 2, the �rst is the convolution and pooling pro-
cessing of CNN. CNN can quickly process high-dimensional
data and ensure the invariance of feature data to the greatest
extent during dimensionality reduction [18]. Second, the GRU
is embedded between the pooling layer and the fully connected
layer, and the GRU is used to preserve the up-down calling

relationship between code data. Finally, the fully connected
layer is used to complete the normalization process, and the
processed output value is sent to the SoftMax classi�er for
classi�cation and detection, and the classi�cation result is ob-
tained [19].

�e input layer is a preprocessed 50× 50-dimensional
feature matrix. �e red square in the �gure represents the
convolution kernel with a size of 7× 7. �e convolution
kernel is the weight matrix in the perception �eld. �e scan
pitch for input data is set to 1. �ere may be out-of-bounds
phenomenon when scanning to the boundary, the boundary
needs to be expanded, and the value of the out-of-bounds
part is set to 0. �e input of the convolutional layer is the
50× 50 feature matrix in the input layer, and the output
matrix dimension is determined by

heightout �
heightin − heightkemel + 2 × padding

stride
+ 1,

widthout �
widthin − widthkemel + 2 × padding

stride
+ 1.




(1)

In formula (1), height and width represent the length and
width of the matrix, padding is the padding mode, and stride
is the step size. To be precise, each convolution kernel also
contains a bias parameter, but the formula omits bias. In the
CNN+GRU model, padding is 0, stride is 1, and the length
and width of the output matrix are (50 − 7 + 2)/1 + 1 � 44;
that is, the input matrix of pooling layer 1 is 44× 44

Input face features

Output face features
Convolutional layer

Output face features
Pooling layer

Figure 3: Schematic diagram of convolutional layer and pooling layer.

Static code preprocessing stage CNN+GRU model training and testing stage

Test program

Design vulnerability library,
identify key points of static code

Programmatically Slicing Static
Code Using Slicing Tools

Characterization and
Vectorization

Eigenvector matrix

Input 50×50 feature matrix

·

marker feature matrix

Train CNN+GRU model

CNN+GRU model
testing

Comparison of test results

Determine the model evaluation
index and get the evaluation data

Training samples

Test samples

Figure 4: �e process of CNN+GRU model detecting software
vulnerabilities.

4 Scienti�c Programming

dimensions.)e pooling layer is mainly to compress and
reduce features and prevent overfitting. In pooling layer 1, a
filter of size 2× 2 is used, and the stride is chosen to be 2. It
can be concluded that the output of pooling layer 1 is 22× 22.
)e processing of convolutional layer 2 and pooling layer 2 is
similar to convolutional layer 1 and pooling layer 1.

GRU is embedded between the pooling layer and the
fully connected layer. Since CNN uses filters and windows of
different sizes to process data, it often loses the up-down
calling and transfer relationship between these code data. In
addition, too many neural network layers will also have the
problem of gradient disappearance, so it is necessary that
GRU acts as a storage timing information and control gate in
the whole model. In the GRU structure diagram, x is the
input, h is the output, fi is the forgotten part of the input
information, and ri is the memorized part of the input
information.)e calculation in GRU is shown in

rt � σ Wr × ht− 1, xt􏼂 􏼃(􏼁,

ft � σ Wf × ht− 1, xt􏼂 􏼃􏼐 􏼑,

􏽥ht � Relu W × ft × ht− 1, xt􏼂 􏼃(􏼁,

ht � 1 − rt(􏼁 × ht− 1 + rt × 􏽥ht.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

In formula (2), w represents the weight, and relu is the
activation function. In order to make CNN+GRU have
nonlinear modeling ability, an activation function is added
to GRU.)e relu function, which is faster to calculate and
can alleviate gradient disappearance, is selected as the ac-
tivation function, as shown in

f(x) � max(0, x), (3)

where x is the input, f(x) is the output, and relu can keep
the gradient from decaying when x > 0, alleviating the
problem of gradient disappearance.

)e problem of program vulnerability detection is ac-
tually a two-category problem, with or without loopholes. So
you need to add a fully connected layer and a SoftMax layer
at the end of the model.)e fully connected layer is re-
sponsible for further dimensionality reduction and purifi-
cation of the features, and the classifier is responsible for
whether the final sample contains vulnerabilities.)rough
filters (also called convolution kernels), the fully connected
layer connects the input and output together, and the fully
connected part is shown in

W∗ x + b � z. (4)

Among them, x � [x0, x1, x2, . . . , xn]T is the input
vector; y � [y0, y1, y2, . . . , yn]T is the output vector, then
the filter part is a matrix of size m × n, and b is a partial set of
the term, b � [b0, b1, b2, . . . , bn]T.

SoftMax classifiers are widely used to solve multi-
classification problems in various domains.)e input fea-
ture of the SoftMax function is set to x, and the probability
value is p(y � j|x), assuming the function is as follows:

hθ(x) �

p y
(i)

� 1|x
(i)

; θ􏼐 􏼑

p y
(i)

� 2|x
(i)

; θ􏼐 􏼑

⋮

p y
(i)

� k|x
(i)

; θ􏼐 􏼑

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

�
1

􏽐
k
j�1 e

θT
j x(i)

e
θT
1 x(i)

e
θT
2 x(i)

⋮

e
θT

k x(i)

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

.

(5)

)e parameter θ is obtained through training, the setting
of θ needs to minimize the regression cost function, k is the
dimension of the vector, and the regression cost function of
SoftMax is

J(θ) � −
1
m

􏽘

m

i�1
􏽘

k

j�1
1 y

(i)
� j􏽮 􏽯|b

e
θT

j x(i)

􏽐
k
i�1 e

θT
j x(i)

⎡⎢⎢⎣ ⎤⎥⎥⎦ +
λ
2

􏽘

k

i�1
􏽘

n

j�0
θ2ij.

(6)

(λ/2)(􏽐
k
i�1 􏽐

n
j�0 θ

2
ij) is the weight failure; in order to mini-

mize the value of J(θ), use iterative optimal algorithm. By
seeking, gradient formulas can be obtained:

∇θj
J(θ) � −

1
m

􏽘

m

i�1
1 xi yi � j(􏼈 􏼉 − p yi � j|xi; θ(􏼁􏼂 􏼃 + λθj.

(7)

∇θj
J (θ) represents a vector, and a SoftMax model can be

implemented by minimizing J(θ).

3.3. Model Assessment Indicator. Before training and testing
models, you need to give an evaluation indicator of the
vulnerability detection model, the accuracy (ACC), and the
loss rate (LOSS), which is often used.

Refer to the mainstream assessment index system,
according to the difference between the prediction results
and the real results, divided into the following four cases
[20]:

TP: the prediction result is positive and the real results
are positive.
FP: the prediction result is positive, and the real results
are negative.
FN: the forecast results are negative, and the real results
are positive.
TN: the forecast results are negative, and the real results
are negative.)e calculation of the accuracy ACC is as
shown in

ACC �
TP + TN

TP + FP + FN + TN
. (8)

)e loss rate of the CNN+GRU model is calculated by
the cross-entropy loss function and reflects the gap between
the prediction results and the real results by calculating the
cross entropy.)e collection of predicted results is used to
represent the collection of real results, and the cross-entropy
of the two sets can be defined as follows:

Scientific Programming 5

H(p, r) � Ep[− |br] � H(p) + DKL(pr). (9)

H(p) represents the entropy of P, and DKL(pr) is KL

distance to measure the distance of two collections.

4. Simulation Experiment

When using the software vulnerability detection algorithm
of the CNN model, the corresponding indicators are mainly
the accuracy rate of training and the loss rate of training as
the main basis for judging the detection of software vul-
nerabilities of the CNN model.

4.1. Experimental Environment.)e training and testing
environment of the vulnerability detection model is 16GB
memory, and the processor is Intel® Core™ i5-3515M, 64-bit
Win10 physical machine. Open source data often have class
imbalance problems; that is, most of the data are positive
samples (samples without vulnerabilities), while the number
of negative samples is low (samples with vulnerabilities).
Such imbalance problems will affect the vulnerability de-
tection model performance, causing vulnerability cases in
the standard library.)is dataset is preprocessed, including
feature extraction, normalization, and vectorization of fea-
tures. Finally, more than 300 samples were formed as ex-
perimental data (171 positive samples and 144 negative
samples), and 215 samples were taken as training data (117
positive samples and 98 negative samples).)e remaining
100 samples are used as test samples, 54 positive samples,
and 46 negative samples, which are used to verify the vul-
nerability detection ability of the CNN+GRU model as
shown in Table 2.

4.2. Detection Process.)e vulnerability detection process
can be divided into two stages: the static code preprocessing
stage and the vulnerability detection model training and
testing stage [21].

In the static code preprocessing stage, first of all, refer to
the real vulnerability cases in CVE, extract the API functions
with specific errors in the cases, divide the API functions into
7 categories to construct the open source software vulner-
ability library of this article, and use the API functions in the
vulnerability library. It is the key point and the entry point of
the program slice. Second, collect the data set, use LLVM to
slice the data set program, extract key points from the data
set code, and construct the control flow chart of the key
point function. In the control flow graph, each node is a basic
block.)e variables and operations related to the key point
function are found through each branch of the basic block.

Finally, all the basic blocks related to the key point function
are intercepted to form more than 300 code unit sets. In
addition, it is necessary to standardize and vectorize the code
unit set and use word2vec to vectorize more than 300 code
unit sets in batches to obtain training samples. Use the same
method to obtain test samples. Finally, normalize all the
feature vectors, and process the feature vectors into a
50× 50-dimensional feature matrix according to the size of
the sample.)e size of the ordinate is the dimension of the
word vector, and the abscissa is the number of word vectors.
If the word vector is less than 50, it is filled with 0. In the
training and testing phases of the vulnerability detection
model, the training model and the testing model need to be
written, and the entire compilation process uses the python
language. Add a label to the test sample, set the label of the
sample containing the vulnerability to “0,” and set the label
of the sample without the vulnerability to “1.” 215 samples
were taken as training data. In the experiment, batch ex-
traction was used to extract a fixed number of samples from
the test samples each time, and the model was trained
through multiple iterations. In the testing phase, use the
trained CNN+GRUmodel for testing, compare whether the
model test results are the same as the actual results, and test
the detection ability of the CNN+GRU model.)e overall
process of the entire static code vulnerability detection is
shown in Figure 4.

4.3. Analysis of Experimental Results. In the training phase,
iterate 3000 training cycles, and use the minibatch gradient
descent algorithm (MBGD) for batch extraction. Every 10
iterations, the current training accuracy rate (training ACC)
and training loss rate (training loss) are output, and save the
model document.)e model document saves the weights
that are adjusted and set when training the neural network,
so that the model document can run directly.)e detection
results of part of the model during the training process are
shown in Table 3.

During the training process, the accuracy and loss rate
after 500 iterations are stable at 0.903 3 and 0.154 1.)e
weight values of the model at this time are saved in the ckft
model document, and the parameters in the document are in
the testing phase parameter to use.)e changes in the ac-
curacy and loss rates during training are shown in Figure 5.

As can be seen from Figure 5, when the number of it-
erations is less than 500, the accuracy of the whole curve is
significantly improved; when the number of iterations is
more than 500, the accuracy curve tends to be stable and
remains at about 0.9. When the number of iterations is less
than 500, the whole curve shows an obvious downward
trend.When the number of iterations is greater than 500, the
curve also tends to be stable and remains at about 0.15. After
the model training is completed, the test samples are tested.
By loading the model documents saved during the training,
the model can be directly restored to the state at the end of
the training. 100 samples are randomly selected from 315 test
samples each time for 5 times. See Table 4 for test accuracy
(test ACC) and test loss rate (test loss).

In order to further prove that the CNN+GRUmodel has
high vulnerability detection ability, the CNN+GRU model

Table 2: Simulation experiment environment.

Name Parameter
RAM 16GB
HD 512GB
CPU Intel® Core™ i5-3515M
OS 64-bit Win10 physical machine
Python 3.7.1

6 Scientific Programming

is compared with a single CNN, RNN, and the existing
vulnerability detection model VulDeePecker [22].�e CNN,
RNN, and VulDeePecker models were trained and tested
using the same dataset, and the experimental results of the
four models were compared. �e speci�c results are shown
in Table 5. �e information in the table is the average of the
training data and test data of the four models. It can be seen
that the experimental results of CNN+GRU are the best.

�e experimental results show that it is feasible to nest
GRU into the pooling layer and fully connected layer of

CNN. �e CNN+GRU model proposed in this paper can
not only ensure the invariance of feature vectors to the
greatest extent during dimension reduction, but also pre-
serve the invariance between codes. Call relationship has
stronger vulnerability detection ability, and compared with
CNN, RNN, and VulDeePecker models, CNN+GRU has
higher accuracy and lower loss rate.

5. Conclusion

�is paper proposes a software building detection algorithm
based on an improved CNN model. Firstly, extract the
vulnerability features of the software, use program slicing
technology to extract features from static code, establish a
vulnerability library, and standardize and vectorize the
vulnerability library as input data. GRU model is used to
optimize CNN neural network. �e organic combination of
the two can quickly process the feature data and retain the
calling relationship between the codes. �e improved CNN
model is better than the single CNN and RNN model in
vulnerability detection ability and detection accuracy.
Compared with single CNN model and VulDeePecker
model, the training loss rate is 4.25% higher. On the con-
trary, compared with single RNN model and VulDeePecker
model, the training loss rate is 17.2% and 7% lower,
respectively.

Compared with other single algorithms, the improved
CNN algorithm has relatively high requirements for data
and needs to be further optimized in the future.

Data Availability

�e dataset can be accessed upon request.

Conflicts of Interest

�e author declares that there are no con�icts of interest.

References

[1] H. Shahriar and M. Zulkernine, “Mitigating program security
vulnerabilities,” ACM Computing Surveys, vol. 44, no. 3,
pp. 1–46, 2012.

[2] Y. Xia, “Research on security vulnerability detection tech-
nology based on static analysis,” Computer Science, vol. 33,
no. 10, pp. 279–282, 2006.

[3] K. Lu, Research and Implementation of Vulnerability Attack
Detection Technology Based on Dynamic Taint Analysis,
University of Electronic Science and Technology Press,
Chengdu, China, 2013.

[4] G. Pan and Y. Zhou, “XSS vulnerability discovery based on
static analysis and dynamic detection,” Computer Science,
vol. 39, no. s1, pp. 51–53, 2012.

[5] H. Perl, S. Dechand, and M. Smith, “VccFinder: �nding
potential vulnerabilities in opensource projects to assistcode
audits,” in Proceedings of the 22nd ACM SIGSACConference
on Computer and Communications Security, pp. 426–437,
Denver, CO, USA, October 12-16, 2015.

[6] Z. Li, D. Zou, and S. Xu, “VulPecker：an automated vul-
nerabilitydetection system based on code similarity analysis,”

Table 4: CNN+GRU Model test results.

Sample Test ACC Test loss
1 0.8800 0.1617
2 0.8700 0.1674
3 0.8700 0.1707
4 0.8600 0.1972
5 0.8700 0.1591

Table 5: Data comparison of deep learning models.

Model Training
ACC

Training
loss Test ACC Test loss

RNN 0.8372 0.1819 0.8000 0.2068
CNN 0.8810 0.1702 0.8400 0.1918
VulDeePecker 0.8791 0.1613 0.8300 0.1844
CNN+GPU 0.9033 0.1541 0.8700 0.1713

Table 3: CNN+GPU model training results.

Number of iterations Training ACC Training loss
10 0.3706 0.6635
20 0.6225 0.3782
30 0.8742 0.2375
60 0.9017 0.1581
90 0.9032 0.1543
120 0.9033 0.1541
150 0.9033 0.1541

0

0.2

0.4

0.6

AC
C/
Lo

ss

0.8

1.0

500 1000 1500

ACC
Loss

Figure 5: CNN+GRU model test results.

Scienti�c Programming 7

in Proceedings of the Conference on Computer Security Ap-
plications, pp. 201–213, Angeles, CA, USA, December 2016.

[7] S. Chen, Research and Implementation of Android Malicious
Application Detection Technology Based on Deep Learning
algorithm, Beijing University of Posts and Telecommunica-
tions Press, Beijing, China, 2016.

[8] Z. Li, D. Zou, and S. Xu, “VulDeePecker: a deep learning-
based system for vulnerability detection,” in Proceedings of the
Network and Distributed Systems Security (NDSS) Symposium,
Diego, CA, USA, February 2018.

[9] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Eval-
uating complexity, code churn, and developer activity metrics
as indicators of software vulnerabilities,” IEEE Transactions
on Software Engineering, vol. 37, no. 6, pp. 772–787, 2011.

[10] B. Chernis and R. Verma, “Machine learning methods for
softwarevulnerability detection,” in Proceedings of the ACM
International Workshop, pp. 31–39, Tokyo, Japan, November
2018.

[11] R. Grosu and S. A. Smolka, Monte Carlo Model checking//
Tools and Algorithms Forthe Construction and Analysis of
Systems, Springer Berlin Heidelberg, Berlin, Germany, 2005.

[12] M. D. Zeiler and R. Fergus, “Stochastic pooling for regu-
larzition of deep convolutional neural networks,” 2013,
https://arxiv.org/abs/1301.3557.

[13] Y.-L. Boureau, J. Ponce, and Y. LeCun, “A theoretical analusis
of feature pooling in visual recognition,” International Con-
ference on Machine Learning, vol. 32, no. 4, pp. 111–118, 2010.

[14] D. Erhan, Y. Bengio, and A. Courville, “Why does unsu-
pervised pre-training help deep learning?” Journal of Machine
Learning Research, vol. 11, no. 3, pp. 625–660, 2010.

[15] J. Saxe and K. Berlin, “Xpose：a character-level con-
volutionalneural network with embeddings for detecting
maliciousURLs, file paths and registry keys,” 2017, https://
www.arxiv-vanity.com/papers/1702.08568/.

[16] Z. Qu, L. Su, and X. Wang, “A unsupervised learningmethod
of anomaly detection using GRU,” in Proceedings of the IEEE
International Conference on Big Data & Smart Computing,
IEEE, Shanghai, China, January 2018.

[17] F. Wu, J. Wang, and J. Liu, “Vulnerability detection withdeep
learning,” in Proceedings of the IEEE International Conference
onComputer and Communications, pp. 1298–1302, IEEE,
Chengdu, China, December 2017.

[18] J. Su, Z. Tan, and D. Xiong, “Lattice-based recurrent neu-
ralnetwork encoders for neural machine translation,” in
Proceedings of the 31st AAAI Conference on ArtificialIntelli-
gence, pp. 3302–3308, February 2017.

[19] V. Nair, G. E. Hinton, and C. Farabet, “Rectified linear units
implement restored boltzmann machines,” in Proceedings of
the 27th International Conference on Machine Learning,
pp. 807–814, Haifa, Israel, July 2010.

[20] D. Silver, A. Huang, and C. J. Maddison, “Mastering the game
of go with deep neural networks and tree search,” Nature,
vol. 529, no. 7587, pp. 484–489, 2016.

[21] S. Lawrence, C. L. Giles, A. C. Ah Chung Tsoi, and A. Back,
“Face recognition: a convolutional neural-network ap-
proach,” IEEE Transactions on Neural Networks, vol. 8, no. 1,
pp. 98–113, 1997.

[22] C. Neubauer, “Evaluation of convolutional neural networks
for visual regression,” IEEE Transactions on Neural Networks,
vol. 9, no. 4, pp. 685–696, 1998.

8 Scientific Programming

https://arxiv.org/abs/1301.3557
https://www.arxiv-vanity.com/papers/1702.08568/
https://www.arxiv-vanity.com/papers/1702.08568/

