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*is paper proposes a novel approach for structure-sensitive image processing based on the rigorous mathematical derivation of
data-specific anisotropic Mexican hat wavelets (DAM). Our DAM is derived from the negative first-order derivative of the
fundamental solution of heat diffusion equation with respect to time, which not only shares similar properties with Mexican hat
wavelet but also intrinsically embeds the image-specific properties. *rough the scale-aware DAM transform and its inverse
transform, we are capable of conducting structure-sensitive image processing. Our key idea is to represent the images as un-
directed graphs, whose edge weights are governed by the normalized intensity/color differences within the local neighboring pixel
window. Based on the rigorous theory of global graph Laplacian and heat diffusion, our original DAM can also encode the local/
global structure of images. We employ the Krylov subspace technique to reduce the computational cost of our DAM transform.
Furthermore, aiming at various structure-preserving image processing applications such as filtering, detail enhancement, tone
manipulation, and stylization, we conduct comprehensive experiments and make quantitative comparisons with other state-of-
the-art methods, which demonstrate the versatility and superiority of our method.

1. Introduction

As an attractive property for encoding intrinsic information,
structure preserving plays an important role in image
processing, which also has been a very intensive research
topic over the past two decades. *ere is a large amount of
literature addressing this important topic. Currently, the
commonly used ways of image processing can be categorized
into linear or nonlinear filters, which can preserve struc-
tures. *e conventional linear filters such as Gaussian
smoothing cannot preserve the local and global structure
effectively and oftentimes smooth the image excessively,
which results in artifacts for edges easily. In contrast, the
nonlinear filters enable us to well preserve the structures in
an image while performing the smoothing task. *is
property gives rise to a great deal of attention from many
researchers and results in many excellent prior works, such

as anisotropic diffusion [1, 2], weighted least squares [3], the
bilateral filter [4], and wavelets [5]. Other sophisticated
methods have also been proposed, such as neighborhood
filters [6] and edge-preserving optimization [7, 8]. Among
these, the anisotropic diffusion (AD) and wavelets appear to
be the best with sound theoretical foundation. *e AD
theory is employed to smooth images with directionally
selective diffusion that preserves the structure of images.
And the wavelet transforms are used to transform the image
processing problem into a frequency space where it can be
better solved. *is motivates us to explore the data-specific
anisotropic Mexican hat wavelets (DAM) in this paper.
DAM defined in this paper is relevant to the data of un-
derlying images that will be processed. *at is to say, if the
data changes, the accompanying wavelet will also be con-
structed differently. *e most significant characteristic of
DAM is data-specific, which sets the main difference of our
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current research in this paper on wavelets from other types
of wavelets. We construct the DAM by means of global
spectrum decomposition and incorporate the intrinsic im-
age information into DAM. Our DAM is applied to various
tasks of image processing (shown in Figure 1). Particularly, it
exhibits good structure-preserving behavior in the field of
image processing and synthesis.

In this paper, we design a novel approach for effectively
preserving structure while performing image processing.
Our algorithm is based on data-specific anisotropic Mexican
hat wavelets (DAM), derived from the negative first-order
derivative of the fundamental solution to heat diffusion with
respect to time, which shares similar properties with
Mexican hat wavelet (MHW). In addition, based on the
rigorous theory of global graph Laplacian and heat diffusion,
the local/global structures can be elegantly encoded into the
definition of DAM. *e global spectrum decomposition
enables us to construct DAM exactly with sufficient image
structure information. It may be noted that the local in-
formation alone may lose the insight of weak structure
information and hence make the algorithm less accurate.
*erefore, the scale-aware DAM transform and its inverse
transform are also defined in this paper. It can naturally
facilitate the construction of scale space. *ey are all applied
to a variety of structure-preserving image processing. *e
construction of Laplacian uses the weighted undirected
graph from the image pixel lattice, which plays a funda-
mental role in the anisotropic diffusion process. Here, the
edge weight of the graph characterizes the similarity between
pixels in an intrinsic way. *e preciseness of the edge weight
(similarity) dictates how faithfully the algorithm preserves
the structure of the image. *e edge weights are governed by
the weighted distances between local neighboring windows
in this paper. Our DAM, which features the properties of
zero mean, Gaussian decay, and convergence, can be
deployed into a variety of practical applications of image
processing. In order to reduce the computational cost of the
wavelet transform, we have also adopted the Krylov subspace
technique [9], which is an iterative method for sparse matrix
problems.

We demonstrate the effectiveness of our structure-sen-
sitive algorithm on several image processing tasks in the
context of image filtering, detail enhancement, tone ma-
nipulation, and stylization (Section 4). *e contributions of
this paper can be summarized as follows:

(i) A novel data-specific anisotropic Mexican hat
wavelets related to specific data and being con-
structed by local/global structures. It not only has
similar properties to Mexican hat wavelet but also
intrinsically embeds the image-specific properties. It
is derived from the fundamental solution to heat
diffusion (Section 3.1).

(ii) A technique to perform anisotropy by recasting the
image pixel lattice to the weighted undirected graph
(Section 3.2). It enables us to establish a correlation
between data-specific anisotropic Mexican hat
wavelets and the image to process. DAM is struc-
ture-sensitive.

(iii) A technique to effectively implement wavelet
transform and inverse transform (Section 3.3). *e
scale-aware DAM wavelet transform is presented as
inner products between DAM and the images. And
the discrete inverse transform is to reconstruct the
images. *e Krylov subspace technique is used to
accelerate the wavelet transform (Section 3.4).

(iv) An experimental system that demonstrates our al-
gorithm can be used to accomplish a variety of
effects for gray-scale and color images (Section 4).

2. Related Work

A number of techniques for structure-sensitive filter have
been recently explored. Most of the existing structure-
preserving techniques are able to produce well visual results
in many practical applications. In this section, we briefly
review the previous work of image processing most related
to ours.

In computer vision and image processing, structure-
preserving filtering attracts many research efforts. *e bi-
lateral filter (BLF), as a kind of nonlinear filters, is an ef-
fective structure-preserving filter. Despite its appealing
characteristics, it still has some limitations. For example,
Fattal et al. [10] improved the bilateral filter by multiscale
and iterative decomposition and restoration of image. To
better handle the small structures, Farbman et al. [3]
computed a multiscale edge-preserving decomposition with
a weighted least squares optimization scheme (WLS). Paris
and Durand [11] extended the fast bilateral filter and
employed trilinear interpolation and division to recast the
computations as a higher-dimensional linear convolution.
Meanwhile, the bilateral grid proposed by Chen et al. [12]
accelerates edge-aware image processing and achieves a
better visual effect. Paris and Samuel [8] introduced local
Laplacian filters to decompose images into multiple scales, as
well as certain wavelet transforms, which only rely on
pointwise nonlinearities and renew the viewpoint of the
Gaussian kernel.

Another powerful approach for structure-preserving
filtering is PDE-based anisotropic diffusion (AD) [1, 2], of
which the original Perona and Malik model lacks effec-
tiveness in operation due to hard-to-control parameters and
tends to overly sharpen edges and lose the small feature. As a
nonlinear iterative process, its convergence rate is also very
slow. Most recently, Eduardo and Gastal [4] presented a
domain transform approach to conduct edge-preserving
filtering of images and videos by measuring the geodesic
distance between pixels and achieve better performance in
many practical applications. However, this method is not
rotationally invariant.

Meanwhile, wavelet transforms also relate to our work,
which has been widely used in multiscale image decom-
position. In fact, nonlinear wavelet diffusion (NWD)
models were proposed for robust image recovery by Feng
[13], of which the diffusion coefficients are derived from
wavelet coefficients at one or multiple scales and thus can
loyally reflect the singularity of images. Particularly, Dorini
et al. [14] presented a brief survey of wavelets and scale-
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space filtering and showed the basic definitions and some
possible applications of these approaches in image pro-
cessing; please refer to [14] for more comprehensive re-
views. Recently, Fattal et al. [5] proposed an edge-avoiding
wavelet basis (EAW). EAW takes edges factors into its
definition, whose image-specific characteristic is similar to
our method.

3. Data-Specific Anisotropic Mexican Hat
Wavelets (DAM)

Hou and Qin [15] proposed a novel Mexican hat wavelet
(MHW) on the 2D manifold mesh by combining the
conventional Mexican hat wavelet and heat diffusion. In-
spired by it, we are exploring data-specific anisotropic
Mexican hat wavelets (DAM) for structure-sensitive image
processing. In this section, we will theoretically define the
image-specific anisotropic wavelets based on heat diffusion
theory and detail them in four aspects: (a) heat diffusion-
based wavelets, (b) graph Laplacian-based DAM, (c) DAM
transform and inverse transform, and (d) numerical
calculation.

3.1. Heat Diffusion-Based Wavelets. For spatial signals, the
well-known Mexican hat wavelet is derived from the neg-
ative normalized second-order derivative of the Gaussian
function [15]

Ψ(x, t) � −
z
2
G(x, t)

zx
2 . (1)

It closely relates to the partial differential equation of
heat diffusion

zu(x, t)

zt
� Δu(x, t), (2)

where Δ is the Laplace operator. In Euclidean space, the
Gaussian function G(x, t) is the analytic solution to heat
diffusion equation. From this perspective, the Mexican hat
wavelet can also be defined as the negative first-order de-
rivative with respect to time:

Ψ(x, t) � −
zG(x, t)

zt
. (3)

*e generic solution of (2) is known as heat kernel
h(x, y, t). With the help of eigendecomposition of the global
Laplacian matrix on manifold, h(x, y, t) can be analytically
defined as

h(x, y, t) � e
− tΔ

� 􏽘
∞

i�0
e

− λitϕi(x)ϕi(y), (4)

where λi and ϕi are, respectively, the i-th eigenvalue and its
accompanying eigenfunction.*e spectrum of the Laplacian
matrix consists of an increasing nonnegative eigenvalue
sequence λi􏼈 􏼉

∞
i�0(0 � λ0 < λ1 ≤ · · ·), whose corresponding

eigenfunctions ϕi􏼈 􏼉
∞
i�0 form an orthonormal basis. Hence, we

can define the heat diffusion wavelet using the negative first-
order derivative of the heat kernel with respect to time as

Ψ(x, y, t) � −
zh(x, y, t)

zt
� 􏽘
∞

i�0
λie

− λitϕi(x)ϕi(y). (5)

And the dilation and scaling of the wavelet can be in-
trinsically obtained by way of time-relevant heat diffusion, of
which parameter t is related to “frequency,” which can
naturally facilitate the construction of scale space. Small t

(a) (b)

(c) (d)

Figure 1: A variety of effects illustrating the versatility of our DAM. (a) Input, (b) smoothing, (c) detail manipulation, and (d) stylization.
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corresponds to high frequencies, while large one relates to
low frequencies.

Particularly, Figure 2 illustrates the multiscale-based
heat diffusion wavelet of a certain pixel in an image. It
oscillates and attenuates, which is very similar to the
Mexican hat wavelet.

Directly inherited from heat kernel [16] by negative first-
order derivative, the heat diffusion-based wavelet is sym-
metric, multiscale, and stable. Besides, DAM Ψ(x, y, t) also
has many individual remarkable characteristics, such as zero
mean, Gaussian decay, convergent, and informative. *e
rigorous mathematical derivation of zero mean, Gaussian
decay, and convergence is as follows:

Zero Mean. *e wavelet Ψ(x, y, t) has zero mean for
given t> 0; that is, 􏽐

|V|
y�1 Ψ(x, y, t) � 0. *is property is

directly derived from the heat kernel, since ht satisfies
the conditions 0≤ h(x, y, t)≤ 1 for ∀y and
􏽐

|V|
y�1 h(x, y, t) � 1 for all t> 0 for given x. Zero mean

indicates that DAM Ψ(x, y, t) will vanish at zero fre-
quency during Fourier transform, which is an im-
portant condition for the admissible condition of
wavelets.
Gaussian Decay. Since heat kernel has Gaussian decay
with respect to t and DAM is defined as the negative
first-order derivative of the fundamental solution of
heat diffusion equation, DAM also has Gaussian decay.
*e property of exponential decay means that, for the
small t, heat kernel h(x, ·, t) is mainly determined by a
few neighborhoods of x. *e Gaussian decay implies
that DAM Ψ(x, y, t) is mainly determined by a local
supporting area through layered and blocked formu-
lation, and the size of the local supporting area rapidly
extends as t increases. *e properties of zero mean and
Gaussian decay guarantee that DAM is oscillated and
attenuated and can be accurately approximated by a
high-precision local supporting area.
Convergence. For the large t, the DAM Ψ(x, y, t) will
converge to zero for all x, y ∈ I, Ψ(x, y, t) � 0, as
t⟶∞, since when t is large, heat kernel h(x, y, t) has
a stable state as h(x, y, t)≃e− λ2tϕ2ϕ

T
2 , as t⟶∞,

where λ2 is the smallest nonzero eigenvalue and ϕ2 is
the associated eigenvector.

3.2. Graph Laplacian-Based DAM. Indeed, a gray-scale
image can be represented as a 2D manifold embedded in 3D
Euclidean space (5D space for color images). We employ
edge-weighted undirected graph G � (V, E) to map an
image to a 2D manifold, whose node set V corresponds to
the pixels of the original image. For an edge eij ∈ E, w(i, j)

denotes its edge weight, which can be calculated using the
intensity/color differences between corresponding n − ring
adjacent pixel lattices.

At each node, heat diffuses along its joint edges as time
goes by. *e edge weight serves as the thermal conductivity,
which controls the velocity of the heat flow and plays an
important role in DAM definition. *e larger the edge
weight is, the easier the heat is transmitted, and vice versa.

An edge with zero weight means that heat will never flow
along it.

To effectively transform the local image structure
changes to corresponding edge weights, there has been a
large amount of work on the choice of edge weight since it
can significantly affect the extent to which discontinuities are
preserved and unimportant information will be eliminated.
For instance, edge weight is computed by way of pixel
window in [17–19], which enables high robustness and ef-
fectiveness to image noise. Here, we adopt a similar function.
First, we encode the intensities/colors of the image as a
column vector Ii in sequential row/column raster order, and
then we compute the edge weight by

w(i, j) �

exp −
d(i, j)

σ1
􏼠 􏼡

2
⎛⎝ ⎞⎠, if j ∈ Ni,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

d(i, j) � Gσ2 ∗ Ii

→
− Ij

→�����

�����
2

2
, (7)

where N(i) denotes the n − ring neighborhood of pixel i, Ii

denotes the intensities within the window centered at pixel i,
and the intensities within window Ii are organized as a
vector Ii

→
. Hence, we can measure the structure distance

using (6), while (7) is used to remove additive white noise in
advance. Generally speaking, a larger neighborhood window
can better preserve image structure. Since the exponential
function decreases rapidly, it will lead to significant dif-
ferences in the weights of intraregion and interregion edges.
*erefore, the parameter σ1 can be used to adjust the extent
of edge-preserving. To make the parameter σ1 accommodate
the images with different contrast, we normalize the dis-
tances d(i, j) to span the interval [0, 1]. We show the
denoising performance with and without the use of
neighboring windows in Figure 3. Figures 3(c) and 3(f )
better preserve the image structure features than that in
Figures 3(b) and 3(e), which states that the use of neigh-
boring window can achieve more robust results. And we also
use the peak signal-to-noise ratio
(PNSR � 20 log 10(b/rms)) to quantitatively measure the
image smoothing quality. Table 1 lists the PSNR of the
resulting images in Figure 3. Since the large PSNR is ex-
pected, the neighboring window method can obviously
achieve more robust results.

Besides, we compute the weighted adjacency matrix W

for graph G and construct the Laplacian matrix L from W

and the diagonal matrix D by d(i, j) � 􏽐j∈Vw(i, j). *e
Laplacian matrix L encodes the local structure of the image.
It is a sparse matrix of size |N| × |N|, which can be defined as

L(i, j) �

d(i, j), if i � j,

−w(i, j), if eij ∈ E,

0, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

*e spectral decomposition of the Laplacian matrix is
L � ϕ∧ϕT, where ∧ � diag(λ0, λ1, . . . , λ|V|) is the diagonal

4 Scientific Programming



(a) (b) (c)

(d) (e) (f )

Figure 3: Illustration of the effectiveness of the weights calculated from neighboring windows. (a, d) Noisy image, (b, e) smoothing image
using the difference between intensities, and (c, f ) using neighboring windows. All other parameters are the same as in (b, e). (a) Noisy
image, (b) intensity, (c) window, (d) noisy image, (e) intensity, and (f) window.
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Figure 2: DAM on the 2-dimensional manifold at different place (yellow spot) and scale. *e heat diffusion wavelet relates to the local
structure of an image.
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matrix with ordered eigenvalues (0 � λ0 < λ1 ≤ · · ·) as di-
agonal elements and ϕ � (ϕ0|ϕ1|ϕ2 · · ·) is the matrix with
corresponding eigenvectors as matrix columns. Since $L$ is
symmetric and positive semidefinite, the eigenvalues of the
Laplacian matrix are all nonnegative, and the eigenvector ϕ2
associated with the smallest nonzero eigenvalue λ2 is re-
ferred to as the Fiedler vector.

3.3. DAMTransform and Inverse Transform. Given an image
organized as a column vector Ii

→
, its wavelet transform can be

defined as

W(x, t) � 〈Ψ(x, y, t), I(y)〉, (9)

where x, y are in the space domain and t denotes the fre-
quency domain. W(x, t) is called the wavelet coefficient of
the image. *e wavelet transform can produce several detail
levels (W1

��→
, W2
��→

, . . . , Wn

��→
) and a residual level Rn

�→
at different t,

which can facilitate forming scale space with encoded
frequencies.

Assume we have an increasing discrete sampled time
sequence [t0 � 0, t1, . . . , tn]. For the simplicity of formula-
tion, the discrete image-specific wavelets can be defined as

Ψ x, y, ti( 􏼁 �
h x, y, ti−1( 􏼁 − h x, y, ti( 􏼁

Δt

, (10)

where Δt � ti − ti−1 is the time step. By adding equation (10)
to equation (9), we get

W(x, t) � 􏼪
h x, y, ti−1( 􏼁 − h x, y, ti( 􏼁

Δt

, I(y)􏼫. (11)

*e discrete inverse transform is used to restore the
image from the wavelet coefficients Wt

��→
as

I
→

� 􏽘 n
i�1Δt W

�→
i + Rn

�→
, (12)

where Rn

�→
� hn I

→
is the residual level at tn, named as coarse

base level. Figure 4 illustrates the flowchart of DAM
transform (Wi) and its inverse transform (Si). And Figure 5
shows different residual levels of a CT image obtained from
inverse transform corresponding to multiple time scales,
which can be seen as the smoothed versions of the input
image. *e detail levels, computed from the residual level,
can be used for detail manipulation and reconstruction.

3.4. Numerical Calculation. A direct way to compute image-
specific heat diffusion wavelet transform with equations (9)
and (10) is to first compute the heat kernel at different times
and then perform the inner product with the vectorization-
organized image I(y)

����→
. *e heat kernel definition of the

graph is exactly similar to that of Riemannian manifolds
[20]. To interpret the heat kernel in the discrete setting, we
can rewrite the heat equation associated with the Laplacian
operator L as

zHt

zt
� −LHt, (13)

which encapsulates information concerning the average path
length distribution on the graph and has a generic solution
as

Ht � e
− tL

� 􏽘
∞

i�0

(−tL)
i

i!
. (14)

*e initial condition of heat kernelH0 is I|V|, which is the
|V| × |V| identity matrix. Particularly, when L � ϕΛϕT,
Ht � ϕe− tΛϕT.

In practice, the scale of image pixels is huge, so it cannot
be afforded to directly calculate the heat kernel through
complete eigenspectrum of the Laplacian matrix. To over-
come this problem, we employ the Krylov subspace pro-
jection technique [9, 19] as an accelerated scheme, which
allows us to efficiently compute the matrix exponential in a
way like e− tLI. Its underlying principal is to approximate
Ht � eALI � e− tLI with

Km ≡ span I, (tA)I, . . . , (tA)
m− 1

I􏽮 􏽯, (15)

where m is typically small compared to the order of L

(usually m≤ 50, while the order of the principal matrix L can
exceed several thousand). *us, the approximate formula is

Ht ≈ βVme
tRmτ1, (16)

where τ1 is the first unit basis vector. Vm and Rm are, re-
spectively, the orthonormal basis of the Krylov subspace Km,
and the upper Hessenberg matrix comes from the well-
known Arnoldi process [21].*us, the initial large but sparse
e− tL problem is reduced to a much smaller but dense etRm

problem. In our locally connected graphs, since the Lap-
lacian matrix L is symmetric, positive-definite, and very
sparse with a few nonzero elements in each row, the
aforementioned Arnoldi process can be replaced by the
Lanczos process to further decrease the computational
complexity. Obviously, (11) is the main computational
bottleneck; we invoke the MATLAB subroutines from the
Exploit package [22] to solve it. A flowchart of our algorithm
is shown in Figure 6. Given the input image, we first organize
it as an edge-weighted undirected graph and construct the
data-specific DAM. *en we can get the detail and residual
levels by wavelet transform.

4. Results and Discussion

In this section, we verify the proposed wavelet with kinds of
practical image processing applications. In our experi-
ments, the size of neighboring windows is 3 × 3, and all
images are organized with eight-neighborhood graphs.
Edge-preserving smoothing and detail enhancement ap-
plications are addressed first and then followed by tone

Table 1: PSNR comparison of the smoothing image (in decibels).

Image Time Window weight (dB) Intensity weight
Figure 3(a) 10 29.24 27.19 dB
Figure 3(d) 10 29.2478 27.24 dB
Figure 3(a) 15 29.26 25.97 dB
Figure 3(d) 15 29.25 26.19 dB
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manipulation and stylization. We mainly conduct quali-
tative or quantitative evaluation by comparing the pro-
duced results with several state-of-the-art methods,
including anisotropic diffusion (AD) [1], weighted least
squares filter (WLS) [3], edge-avoiding wavelets [5], and
domain transform filter (DT) [4].

4.1. Image Smoothing. In Figure 7, we qualitatively show a
comparison of structure-sensitive smoothing applied to the
input image (a). Noting the white spots on the lamp holder,
our technique can preserve their structure while smoothing
the small structures on the wall (Figures 7(b) and 7(c)).
Although other methods may also preserve the small

(a) (b) (c) (d)

Figure 5: Residual layer Rn at low frequencies. (a) R0, (b) R5, (c) R20, and (d) R50.

Image

Residual level

W2

Graph

DAM

φ (x, y, t)

Wavelet coefficients

Figure 6: Flowchart of DAM construction and structure-sensitive image processing.

W1

S1

Input R1

Ψ1 Ψ2 Ψ3

R2 R3

High frequency Low frequency……

W2

S2

W3

S3

Figure 4: Flowchart of our DAM transform and its inverse transform.

Scientific Programming 7



structure of the white spots when they select very small scale
parameters for their kernel functions, they will preserve the
small structures on the wall as well; otherwise, they smooth
all those structures when selecting large-scale parameters.
Besides, these methods tend to be oversensitive to noise and
are hard to process the weak structures (such as the wall
smoothing), for example, the results produced by the do-
main transform method (Figures 8(b) and 8(d)). However,
even for a relatively larger time scale in our method, these
small spots are in fact regarded as strong structure com-
paring those on the wall due to sharp color differences
(Figure 7(c)) because the data-specific structure-sensitive
measurement is embedded in DAM. It demonstrates that
our technique can well preserve semantic sharp structure
while correctly smoothing other flat regions. In contrast, the
bilateral filter (e) may incorrectly mix colors for large
amounts of smoothing; for instance, the BF result has
changed the color of white spots to light yellow (Figure 8(e)).
As for the result from NC (Figure 7(f )), the white spots are
drastically smoothed. Figure 7(h) shows the result of EAW,
and it presents the worse capability of strong structure
preserving. While the worst results can be observed from the
WLS result (shown in (d)) and EAW (shown in (h)), the
white spots have been removed completely. Table 2 sum-
maries the PSNR comparison, the PSNR indicator of our
method is high against other methods, even for large-scale
smoothing, which is a desired characteristic in image
processing.

4.2. Detail Enhancement. Our wavelet transforms can de-
compose image into several frequency bands, which can be
manipulated independently and reconstructed to produce
various enhanced effects. Let W1, W2, . . . , Wn be the detail
levels of image I � R0.*e enhanced image can be obtained by

I � 􏽘
N

i�1
S δi,ΔtWi( 􏼁 + Rn, (17)

where S(α, x) � 1/(1 + exp(−ax)) is the sigmoid function
[3], which is used to avoid hard clipping when the detail
bands are significantly enhanced.

In fact, detail exaggeration mainly depends on the
structure-sensitive capability of the filter at multiscale de-
composition processing. Since our DAM is image-specific
and encodes the global and local structures of the original
image, most of the structural features can be retained in the
residual layer when conducting DAM transforms; thus,
detail enhancement can be easily achieved through in fre-
quency space.

Figure 9 shows an example of W1 level detail exaggeration
of the flower image (Figure 9(a)). *e first row shows the
enhancement effects, and the second row shows the enlarged
effects for the regions determined by the black box in original
image. Our result in (b) is created by manipulating W1 using
(17) with δ1 � 20. Figure 9(c) shows the result produced by
the EAW method [5]. *e result of domain transform filter
[4] is presented in (d). Figure 9(e) shows the result produced
by the WLS method. Overall, the results in (c), (d), and
(e) present similar visual quality. However, our result (b)
shows more texture detail against other algorithms since our
multiscale wavelet transform-based algorithm not only en-
hances the strong structures but also effectively reserves the
weak structural features, which can be clearly observed from
the locally enlarged subfigures. More particular results of our
method are shown in Figure 10, especially for medical image.

4.3. ToneManipulation. Our method can also be easily used
to conduct detail-preserving compression and structure-
preserving tone manipulation of HDR images, which should

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 7: Smoothing comparison of the result of our DAM filter with t � 4 (b) and t � 40 (c), weighted least squares filter (WLS) (d) with
λ � 0.15 and α � 2, bilateral filter (BF) (e) with σr � 0.2 and σs � 17, (f ) normalized convolution filter (NC) of domain transform with
σr � 0.8 and σs � 80, anisotropic diffusion (AD), and the edge-avoiding wavelets (EAW) (h). *e results of BF, WLS, NC, and EAW are
presented by Gastal et al. (a)Input, (b) our t � 4, (c) our t � 40, (d) WLS, (e) BF, (f ) NC, (g) AD, and (h) EAM.
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avoid the mild halo artifacts during compression. In tone
manipulation, we only adjust the intensity channel while
keeping the color unchanged. Here, Ii � (20Ir + 40Ig

+Ib)/61 denotes luminance channel of image, and color
ratios (cr, cg, cb) are equal to (Ir, Ig, Ib)/Ii. We compute the
3-level wavelets transform of the log-luminance channel and
scale them. *en, we reconstruct a new log-luminance
channel, which must be remapped to the displayable dy-
namic range. Finally, we multiply the new log-luminance
channel with the color ratios (cr, cg, cb) to recover the
output RGB channels.

Figure 11 shows three tone manipulation results, re-
spectively, obtained from our method (a), the domain
transform method (b), and the WLS method (c).
Figures 11(b) and 11(c) show similar quality, while our
method can strongly compress the residual level, boast the
detail levels, and thus produce a rather smooth image with
exaggerated local contrasts. As shown in Figure 11(a), al-
though our whole effect is lightly darker than the other
algorithms, it performs better in the aspect of structure
awareness. For example, the close-up subfigures emphasize

the local contrast ratio and structure-sensitive differences
between the three methods; the whole effects are very
similar; however, our algorithm shows the structural features
more clearly and can effectively stretch the image local
contrast ratio, such as the outlines of the frescoes on the
dome. It can be deduced from these results that our tech-
nique has the characteristics of structural awareness and
intrinsic-structure preserving. Table 3 summaries the
comparison of the contrast ratio and PSNR. High-contrast
ratio as well as high PSNR is a desired aspect in HDR image
tone manipulation. Our method obtains a higher contrast
ratio than other methods, while the PSNR of three tech-
niques is almost equal. It demonstrates that our algorithm
can effectively exaggerate local contrast and ensure the lower
distorted rate of image.

4.4. Stylization. Stylization aims to produce cartoon-like
digital imagery, which emphasizes smooth low-contrast
regions while preserving high-contrast structure features.
As discussed in Sections 4.1 and 4.2, the structure-

Table 2: Figure 7 PSNR comparison (in decibels).

Image Our (dB) t � 4 Our (dB) t � 40 WLS (dB) BF (dB) NC (dB) AD (dB) EAW (dB)
Lamp 29.36 26.13 24.02 25.27 24.61 28.23 24.89

(a) (b) (c)

(d) (e) (f )

Figure 8: Multiscale smoothing comparison. First row: our method smoothing results with σ1 � 0.02, t � 10, t � 30, and t � 50,
respectively. Our method smoothes the weak structure (the wall) and preserves the strong structure feature (the lamp and window). Second
row: DTmethod results with σr � 0.07 and σs � 10 , t � 10, 30, and 50, respectively. *e images (d), (e), and (f) are similar for the small
kernel at different scale. (a) Our t � 10, (b) our t � 30, (c) our t � 50, (d) DT t � 10, (e) DT t � 30, and (f) DT t � 50.
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sensitive property makes our algorithm to be more
suitable for this task (Figure 12(c)) since the quality of
boundary extraction closely relates to the accuracy of edge
weights. Our DAM measures the local structure similarity
governed by the normalized intensity/color differences;
the greater the local neighboring window similarity is, the
higher the edge weight is. *us, the weak structure can be
effectively protected due to the low-contrast character-
istics of local region. Figure 12 illustrates its stylization
results and shows the comparison with that from the
domain transform method (Figure 12(f )). Obviously, our

method can produce a more detailed edges effect.
Figure 12(c) shows that our method can produce a much
more coherent abstraction effect.

4.5. Time Consumption. Here, we analyze the time cost of
our method. Table 4 documents the time cost statistics of our
experiments that are conducted on a computer with 12GB
RAM and Intel Xeon E5630 CPU, 2 × 2.53 GHz. *e
dominated time cost of our method is mainly expended on
the Laplacian construction and wavelet transform operation,

(a) (b) (c) (d)

(e)

Figure 9: W1 level detail manipulation comparison. First row: (a) input image; (b) our result was obtained with δ1 � 20; (c) EAW result
by Fattal et al.; domain transform (DT) result by Gastal et al. (d); (e) WLS result. Second row: the algorithms zoom in effects in the black box
of the input image. *e results of EAW, DT, and WLS are presented by Gastal et al. (a) Input, (b) our, (c) EAW, (d) DT, and (e) WLS.
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(a) (b) (c)

Figure 11: HDR tone manipulation and close-up effects. *e first row shows the whole effects, and the second row shows the close-up
effects. (a) Our algorithm. (b) Domain transform. (c) WLS. *e close-up effects show that our technique effectively protects structural
features, which is the highlight one.

(a) (b) (c)

(d) (e) (f )

Figure 10: First row: (a) residual level with t � 3; (b) W1 level is enhanced (δ1 � 35); (c) result of all detail enhancement (δ1 � 20, δ2 � 10,
and δ3 � 5); same input as Figure 9. Second row: medical image enhancement; (d) CT image of head; (e) residual level R3 (t � 3); (f ) result of
W1 detail enhancement (δ1 � 20).
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which is linear to the number of image pixels. Benefiting
from the Krylov subspace projection technique, the cost of
wavelet transform can be drastically reduced.

5. Conclusions

In this paper, we have devised a novel theoretic approach for
data-specific anisotropic wavelet definition and its appli-
cation in edge-preserving image processing. *e proposed
wavelets are derived from the negative first-order derivative
of the fundamental solution to heat diffusion with respect to
time. Given weighted undirected graph representation of
specific image, heat diffusion in image is depicted by the heat
equation, which is governed by the global Laplacian matrix.
*en the wavelets are constructed locally by further
employing the Laplacian eigensystem for the computation of
heat kernels and their derivatives. We process images by
diffusion-relevant multiscale wavelet transforms. On the
computational level, the numerical implementation of the
algorithm can be fast accomplished using the Krylov

subspace projection technique. We have also demonstrated
the effectiveness of our method by qualitatively and quan-
titatively comparing the experimental results with several
state-of-the-art techniques.
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(a) (b) (c)

(d) (e) (f )

Figure 12: Stylization of image. (a) and (d) Residual level R1 and smoothing image with σs � 100 and σr � 0.45, respectively. (b) and
(e) Edges from the gradient magnitude of (a) and (d). (c) and (f) Stylization by our algorithm and DT. (a) Residual level R1. (b) Our edges.
(c) Our stylization. (d) DT smoothing. (e) DT edges. (f ) DT stylization.

Table 4: Time consumption (in seconds).

Data Pixel Laplacian Wavelet transform
Figure 8 1041144 401.41 88.86
Figure 9 426400 27.01 34.31
Figure 10 65536 13.04 5.27
Figure 11 393216 9.16 5.01
Figure 12 252150 60.93 19.79

Table 3: Image contrast ratio and PSNR.

Style Our DT WLS
Contrast ratio 30.11 23.94 25.56
PSNR 5.71 dB 5.74 dB 5.72 dB
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