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*e detection methods based on deep learning networks have attracted widespread interest in industrial manufacture. However,
the existing methods are mainly trapped by a large amount of training data with excellent labels and also show difficulty for the
simultaneous detection of multiple defects in practical detection. *erefore, in this article, a defect detection method based on
improved semisupervised multitask generative adversarial network (iSSMT-GAN) is proposed for generating better image
features and improving classification accuracy. First, the training data are manually labeled according to the types of defects, and
the generative adversarial network (GAN) is constructed according to the reliable annotations about defects. *us, a classification
decision surface for the detection of multitype defects is formed in the discriminative network of GAN in an integrated manner.
Moreover, the semisupervised samples generated by the discriminative network give the generative network feedback for en-
hancing the image features and avoiding gradient disappearance or overfitting. Finally, the experimental results show that the
proposed method can generate high-quality image features compared with the classic GAN. Furthermore, this increase in
classification accuracy of RegNet model, MobileNet v3 model, VGG-19 model, and AlexNet-based transfer learning is 3.13%,
2.30%, 2.48%, and 3.12%, respectively.

1. Introduction

With the development of artificial intelligence and precision
machining techniques, the quality requirements of industrial
products are also increasing. However, machining defects
are inevitable in industrial manufacture. Since machined
surface defects may have a disadvantageous effect on the
properties and quality of industrial products, the defect
detection and analysis of the industrial products are
regarded as an important process for controlling the quality
and increasing the commercial value. Recently, machine
vision technology has been used extensively to test the
production quality, such as defect detection [1], industrial
diagnostics [2], and other fields [3]. At the same time, to
increase the accuracy of defect detection, academic re-
searchers and the industry have developed many effective

detection methods and conducted many research activities,
such as deep neural network (DNN) [4, 5], logistic re-
gression (LR) [6], deep belief network (DBN) [7], and other
methods [8]. Among these approaches, with the advance-
ment and research of deep learning techniques, the defect
detection methods based on DNN have become popular,
which automatically learn image features from a large scale
of training data through the multilayer neural networks
[9, 10]. *erefore, the methods have automatic feature ex-
traction and powerful learning capabilities and have been
successful in various fields of power electronics [11], mi-
croelectronics [6], and other fields [12]. *e feature maps of
different layers and deep CNN were used by Chen et al. [13]
to classify the fastener defects of the support devices, and the
public dataset with excellent labels was used in the exper-
iments. Mei et al. [14] proposed a method to localize and

Hindawi
Scientific Programming
Volume 2022, Article ID 4481495, 17 pages
https://doi.org/10.1155/2022/4481495

mailto:zhaoxm@gdcc.com.cn
https://orcid.org/0000-0002-0105-5367
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4481495


detect defect-free data for model training, and the perfor-
mance of model was evaluated on the KTH-TIPS2 datasets.
He et al. [15] proposed an effective defect detection method
based on DNN and focused on industrial manufacture: steel
plate defect inspection. *e performance of DNN was
evaluated on the defect datasets: NEU-DET and NEU-CLS,
and each class of the defect datasets has 300 images. *e
defect detection methods based on DNN have been ex-
tensively used in industrial application. However, the
methods have their own disadvantages. *e DNNs, which
perform entirely on benchmark datasets, may perform
poorly in practical detection [16, 17]. Generally, the ad-
vantageous performance of these detection methods based
on DNN depends on a large amount of training data with
excellent labels [18]. However, collecting defect images at
large scale is expensive due to the particularly low proba-
bility of defect occurrence, and the types of the samples are
difficult to balance. Most prior works have been limited by
small training sample sizes, which impact the power to
detect effects and the reproducibility of results.

For the problem of small samples, many academic
researchers use the image enhancement method to expand
the training samples. *ree image enhancement ap-
proaches based on the characteristics of the synthetic image
were designed by Ding et al. [19] to expand the training
dataset. *ese methods could increase the performance of
CNN in defect detection. However, this method can only
expand the single image, and the quality of the generated
samples is poor, and the training dataset expansion effect is
not ideal. As a solution, the generative adversarial network
(GAN) can quickly reconstruct or generate images with
various patterns or enhance the quality of the training
dataset, which has displayed hopeful performance in
generating sample images [20, 21]. At present, the GAN has
been extensively used in different fields, such as image
restoration [22] and speech enhancement [23]. A deep
convolutional GAN (DCGAN) was proposed by Radford
et al. [24], which normalizes the input in batches, and it has
achieved better results in image generation. Although GAN
has gained popularity, it still has some fatal deficiencies.
*e GAN has some problems that the network structure is
unstable, and training GAN itself is difficult. To solve the
problem, several methods [25, 26] were proposed. An ef-
ficient detection approach based on improved GAN
(iGAN) was developed by Wang et al. [27] for machined
surfaces. *e iGAN is similar to an extension of the classic
GAN. On this basis, many methods have produced satis-
fying efficacies in semisupervised image classification by
improving the structure of the DCGAN model. An im-
proved conditional DCGAN model was proposed by Yang
et al. [28] which could effectively improve the accuracy of
image recognition, but this method was considered to be
commercially time-consuming. *e improved GAN has a
more stable architecture than the classic DCGAN by ap-
plying some constraints on GAN. *us, it is necessary to
optimize the constraints of the DCGAN. *e information
maximizing generative adversarial net (InfoGAN) was
designed by Chen et al. [29] to learn entangled represen-
tations in an unsupervised method. An adversarial learning

approach was developed by Hu et al. [30] to increase the
accuracy of semantic segmentation by connecting the
cross-entropy loss with the adversarial loss of the proposed
method. For the problem that the existing methods mostly
depend on weakly labeled images, Zhang et al. [20] pro-
posed a semisupervised GAN (SSGAN) with two subnet-
works to expand the training dataset, and the proposed
method could improve semantic segmentation accuracy
with fewer annotations. *e performance of the above
methods is enhanced to a certain extent compared with
CNN. *e GAN has been widely used in many related
detection tasks and requires significant computational
resources in software implementations and a large amount
of data for training. Because training GAN itself (a deep
generative model) will rely on sufficient samples, if it is not
ensured, GAN will be overfitted and will collapse. In other
words, these techniques pursue prediction accuracy at the
expense of computational efficiency. Moreover, the dis-
criminator of the GAN is mainly dichotomous classifica-
tion, which is challenging to apply on the detection of
multitype defects. However, the application of the multi-
task GANs, exceptionally for surface detection using small
samples, is still rare, which deserves more attention.

In practical detection, the existing methods are mainly
trapped by a large amount of training data with excellent
labels and also show difficulty for the simultaneous detection
of multiple defects. If the number of the training datasets is
not sufficiently large and the training datasets are imbal-
anced, training the defect detection method from scratch is
likely prone to overfitting in the detection of multitype
defects. *erefore, in this article, a surface defect detection
method based on improved semisupervised multitask gen-
erative adversarial network (iSSMT-GAN) is proposed to
reduce overfitting caused by the lack of training samples.*e
primary contributions of this paper are summarized as
follows:

(1) *e training dataset is manually labeled according to
the type of the defect, and a classification decision
surface for the detection of multitype defects is
formed in the adversity-discriminator link of iSSMT-
GAN in an integrated manner. *e discriminative
network inputs both real and fake samples and
distinguishes whether its input is real or not. Its
output result is used as the basis for the classification
decision surface for the detection of multitype
defects.

(2) *e structure of iSSMT-GAN is improved, and the
multitask noise is introduced in the generative
network of GAN. Moreover, the semisupervised
samples generated by the discriminative network
give the generative network feedback to guide the
generative network, which is an efficient way to avoid
overfitting. More specifically, in the discriminator of
iSSMT-GAN, the probability of judging the au-
thenticity of the multitask sample output by the
discriminator is returned to the generator, and the
resulting latent code from the discriminator can be
fed back to guide the generative model.
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*is article is organized in the following manner. Section
2 indicates the problem formulation and motivation and
introduces the network structure of GAN. Section 3 presents
the improved semisupervised multitask generative adver-
sarial network (iSSMT-GAN), and the semisupervised
samples generated by the discriminative network give the
generative network feedback. *e experiment results are
reported to verify the efficacy of the proposed methodology
in Section 4. Finally, Section 5 gives the conclusions and
future work.

2. Problem Formulation and Motivation

2.1. Problem Formulation. In practical manufacture, the
industrial products usually includemultitype defects, such as
bump defects, hole defects, burr defects, oxidation defects,
and so on. Collecting defect images at large scale is expensive
due to the particularly low probability of defect occurrence,
and it leads to a series of difficulties in the defect detection
process due to imbalanced datasets. *e main problems of
surface defect detection are summarized as follows:

(1) In practical detection, the detection methods based
on DNN are prone to overfitting and weak gener-
alization ability during training due to the unbal-
anced training dataset and the small number of
samples. It further leads to low accuracy and recall in
actual product testing [6, 10, 11].

(2) At this stage, the discriminator of the GAN is mainly
dichotomous classification, which is challenging to
apply on the detection of multitype defects. How-
ever, the detection of multitype defects is a signifi-
cant topic in actual industrial applications.

(3) Although many experts and scholars have adopted
GAN for image defect detection at this stage, the
problem of gradient disappearance or overfitting of
the GAN is straightforward to occur during the
learning process of data.

In this article, a defect detection method based on im-
proved semisupervised multitask generative adversarial
network (iSSMT-GAN) is proposed for generating better
image features and improving classification accuracy. First,
the iSSMT-GAN is used to predict the potential distribution
of the training dataset and reconstruct the image of mul-
titype defects. By integrating the advantages of GAN, it can
solve the problems, such as small sample size, not noticeable
features, and weak generalization ability in practical de-
tection. From the perspective of sample feature quality and
multitask classification recognition, the classification accu-
racy and recall are improved.

2.2. Generative Adversarial Network. *e GAN is a frame-
work for estimating generative models through an adver-
sarial process [31]. *e GAN framework contains two
separate networks, the generative network G and the dis-
criminative network D. *e basic framework of GAN is
shown in Figure 1.

In Figure 1, the generative network G is trained to
generate the fake samples from the latent variable z. In GAN,
the generating network can quickly learn the target data
distribution. *e objective function of the generative net-
work is shown in the following equation [31]:

min
G

max
D

E
x∼Pr

[ln D(x)] + E
x∼Pg

[ln(1 − D(x))], (1)

where E(·) refers to the calculation of the expected values,
D(x) is the output of the discriminative network, and Pr and
Pg refer to the distribution of real and generated sample
data, respectively.

*e discriminative network inputs both real data and
generated data and distinguishes whether its input is real or
not. *e objective function of the discriminative network is
shown in the following formula:

max
D

E
x∼Pr

[ln D(x)] + E
x∼Pg

[ln(1 − D(x))]. (2)

*erefore, the optimization problem of GAN is a
minimization-maximization problem. *e discriminative
network and the generative network play the two-player
mini-max game with the value function V(D, G) [19]:

V(D, G) � Ex∼pdata(x)[ln D(x)]

+ Ez∼pz(z)[ln(1 − D(G(z)))],
(3)

where x represents the actual sample data used for training,
pdata(x) is the distribution of samples, D(x) is the output
result of the discriminative network, z is the noise of the
input, pz(z) is the distribution of known noise z, and
D(G(z)) represents the probability that the generated data
are differentiated to be an actual sample after passing
through the discriminator.

3. Improved Semisupervised Multitask
Generative Adversarial Network

For generating better image features and improving the
classification accuracy, an improved semisupervised mul-
titask generative adversarial network (iSSMT-GAN) is
proposed to reduce overfitting caused by the lack of training
samples. In the iSSMT-GAN, the multitask noise is intro-
duced in the generator of GAN according to the reliable
annotations about multitype defects. In generating multitask
samples, a low-rank space is formed, and a classification
decision surface is formed in the adversarial discriminator of

�e latent variable
z

Generative network
G

Real data
x

Discriminative network
D Real/Fake?

G (z)

x

Figure 1: *e basic framework of GAN.
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GAN. At the same time, the resulting latent code from the
discriminative network can be fed back to guide the gen-
erative model. *e framework of the improved semi-
supervised multitask generative adversarial network
(iSSMT-GAN) is illustrated in Figure 2.

*e framework of iSSMT-GAN contains four parts: the
generative network, the discriminative network, the semi-
supervised samples generated by the discriminative network
giving the generative network feedback, and the classifica-
tion decision surface for the detection of multitype defects.

(1) *e generative network G is constrained with MSE,
and the prediction of total variation loss and image
features extracted by CNN, which forces the gen-
erated data to be more realistic [24] and the batch
normalization layer can be used to solve the prob-
lems of gradient disappearance and gradient
explosion.

(2) *e discriminative network D inputs both real and
fake data and distinguishes whether its input is real
or not, and the output result is used as the basis for
the classification decision surface for the detection of
multitype defects. At the same time, the semi-
supervised samples generated by the discriminative
network give the generative network feedback.

(3) *e classification decision surface for the detection
of multitype defects performs multitask classification
tasks based on the scene-prejudged defect labels and
the output results of the discriminative network.
*us, a classification decision surface for the de-
tection of multitype defects is formed in the ad-
versity-discriminator link of iSSMT-GAN in an
integrated manner.

*e difference between the proposed iSSMT-GAN and
the classic GAN is summarized as follows:

(1) In the discriminative network of iSSMT-GAN, a
classification decision surface for the detection of
multitype defects is formed by labeling sample defect
images and supervising the discriminator.

(2) According to the annotation result and the results of
the discriminative network, the semisupervised
samples generated by the discriminative network
give the generative network feedback to guide the
generative network, which is an efficient way to avoid
overfitting, so that many more characteristic sample
images are generated through the generation
network.

3.1. Multitask Discriminative Network. In the iSSMT-GAN,
a multitask discriminative network is built by constructing a
classification decision surface for the detection of multitype
defects according to reliable annotations about multitype
defects. Firstly, the discriminator makes a preliminary
judgment based on the manual labels of defects. *en, the
GAN performs dichotomous classification tasks in different
defects. Finally, a classification decision surface for detecting

multitype defects is formed in an integrated manner. *e
schematic diagram for the multitask discriminative network
is shown in Figure 3.

At the same time, the multitasking noise w is treated as
an input variable to the generative network. In the training
process, the GAN can generate samples closer to the real
samples distribution from the given multitasking noise w.
*e multitasking noise w is introduced in the detection task
facing multiple scene modes, and a low-rank space shared by
multiple tasks is formed in generating multitask samples.

*e discriminative network is constructed using a
convolution layer and fully connected layers, and LeakyR-
eLU is selected as each convolution layer’s activation
function. Each convolutional block consists of three major
components, including a convolutional layer, a LeakyReLU
activation layer, and a batch normalization layer [32].

*e loss function is an essential part of the GAN, and it
can directly determine the performance of the network
model. According to the structure of GAN, the total loss
value can be calculated as the sum of the counter loss and
content loss. Its application is shown in the following
formula:

L � LGAN + λLX, (4)

where LGAN is the counter loss, LX is the content loss, and λ
is a constant.

To optimize the parameters of our proposed model, the
loss function using mean square error (MSE) can be defined
as follows [23]:

Lossp �
1
m

􏽘

m

i�1
Pdata xi( 􏼁 − Pz xi( 􏼁( 􏼁

2
, (5)

where Pdata(x) is the real image, Pz(x) is the generated
image, and m is the number of training datasets.

*e optimization of the model is achieved byminimizing
the confrontation loss and the residual feedback of MSE.*e
loss function of GAN is shown as follows:

Loss � LossG + LossP. (6)

3.2. 2e Semisupervised Sample Feedback. *e structure of
iSSMT-GAN uses a simple factored continuous input noise
vector z. *erefore, the noise vector z may be used by the
generative network in an extremely involved mode, causing
various scales of the noise vector z to be discordant to the
semantic characteristics of the image [24].

In this article, the input noise vectors are divided into
two parts instead of using a single incompressible noise
vector: (i) z represents the source of unstructured noise; (ii) c

represents the latent code. Define the set of methodic latent
variables by c1, c2, . . . , cL. *en, a factored distribution can
be assumed, given by the following formula [24]:

P c1, c2, . . . , cL( 􏼁 � 􏽙
L

i�1
P ci( 􏼁. (7)
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For the concise and clear notation, the latent code c will
be used to represent the connection of all latent variables ci.

An unsupervised way is proposed to discover these latent
factors. *en, the input to the generative network is the
latent code c and the incompressible noise, and the form of
generative network becomes G(z, c). However, the gener-
ative network can neglect the attached latent code c by
searching a solution that meets the following condition:

PG

x

c
􏼒 􏼓 � PG(x). (8)

Moreover, in order to generate or reconstruct the images
that are more suitable for defect detection, the semi-
supervised samples c generated by the discriminative net-
work are fed back to the generative network. *erefore, the
defect detection is performed after high-resolution images
are generated, and the accuracy of detection is improved by
improving the structure of GANmodel. *e structure of the
semisupervised sample feedback is shown in Figure 4.

In iSSMT-GAN, the structure of the semisupervised
sample feedback is formed according to the discriminant
results. In the discriminator of iSSMT-GAN, the probability
of judging the authenticity of the multitask sample output by
the discriminator is returned to the generator and the
semisupervised samples generated by the discriminative
network give the generative network feedback. In the
feedback process, the classification result after the image
label is carried corresponds to the signal input to the gen-
erator after scene prediction, which has a semisupervised
effect.

4. Experiments and Discussion

In this section, the experiments are divided into two parts:
Section 4.1. presents the experimental methods and Section
4.2. presents the experimental results.

4.1. Experimental Methods

4.1.1. Dataset. To verify the efficacy of the proposed method,
comparative evaluation experiments using the NEU-DET
dataset and the PCB dataset (self-built dataset) were con-
ducted, and the performance of the proposed iSSMT-GAN is
further tested on the NEU-DET dataset and PCB dataset.
NEU surface defect is a public defect classification dataset
[16], including six different classes from hot-rolled steel
plates, such as inclusion, patches, crazing, rolled-in scales,
scratches, and pitted surface. Each class has 300 images.
Examples of defect images are shown in Figure 5.

However, collecting defect images at large scale is ex-
pensive due to the particularly low probability of defect
occurrence, and the types of the samples are difficult to
balance. *e highly imbalanced datasets are common in
many pattern recognition tasks. *e severe class imbalance
of training datasets is still a significant point that needs to be
addressed. *e PCB dataset is collected by AOI detection
equipment from real detection scenarios of a company. *e
PCB dataset (self-built dataset) contains 3569 images with a
size of 161× 161. *ere are six types of defects, including
open circuit defects, bump defects, hole defects, residual

Real data Samples

The incompressible
noise z

The latent code
c

G
Generative

network
G (z)

D (G(z))
Discriminative

network

... ...

real/fake

The classification decision surface
for the detection of multi-type defects

The latent
code c

The semi-supervised samples
feedback 

Figure 2: *e structure of the iSSMT-GAN.

Image
annotation

Image
samples

of defects

Defect 1
Real

Fake

Defect 2

Defect
task n

GAN

Real

Fake
GAN

Real

Fake
GAN

The class-
ifycation
decision
surface

Figure 3: *e schematic diagram for multitask discriminative
network.

The latent code
c

The
multitasking

noise w

Real data
x 

Discriminative
network D

Real

Fake

Generative
network G

The latent
code c

The semi-supervised samples feedback

Figure 4: *e structure of the semisupervised sample feedback.
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(a) (b)

(c) (d)

(e) (f )

Figure 5: Examples of defect images with annotations in NEU. (a) Inclusion. (b) Patches. (c) Crazing. (d) Pitted surface. (e) Rolled-in scale.
(f ) Scratches.
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copper defects, burr defects, and oxidation defects. We
manually label 3569 images at first. *e dataset contains
2,923 training images and 646 test images of 6 classes. Table 1
shows that this PCB dataset is small in size and the dataset is
highly unbalanced. *e size of all the images was adjusted to
96 × 96. Figure 6 shows the different types of defects for the
dataset.

4.1.2. Experimental Environment. *e data are employed to
verify the proposed method. *e experimental environment
is described as follows: deep learning open source frame-
work PyTorch [6]. *e experiments are performed on the
computer with Intel Core i7 processor at 3.4 GHz with 8GB
memory.

4.1.3. Evaluation Indicators. In this experiment, model
discrimination was assessed using machine learning eval-
uation metrics, including precision, F1 score, accuracy, and
recall. Among them, accuracy is used to evaluate the
method’s ability to accurately find samples.*e recall is used
to evaluate the method’s ability to find a certain type of
sample in the dataset. *ese indexes are defined as follows:

precision �
TP

TP + FP
,

recall �
TP

TP + FN
,

F1 � 2 ·
precision · recall
precision + recall

,

accuracy �
TN + TP

TN + FN + TP + FP
,

(9)

where TN, FN, TP, and FP represent the number of true
negatives, false negatives, true positives, and false positives,
respectively.

4.2. Experiment Result. Comparative evaluation experi-
ments were conducted using PCB dataset. Table 1 shows that
this PCB dataset is small in size and the dataset is highly
unbalanced. In response to the problems, the proposed
iSSMT-GAN and the traditional DCGAN were used to
expand the size of the training dataset and generate a bal-
anced training dataset. Finally, the defect detection ap-
proaches based on deep learning were applied for the
expanded datasets in the experiments.

4.2.1. Training of the Proposed iSSMT-GAN. To verify the
efficacy of the proposed iSSMT-GAN to generate images, the
classic DCGAN [24] and the proposed iSSMT-GAN are
trained on each category of training data for 2000 epochs,
respectively. *e number of image channels was set to 3. In
the training process, the number of training epochs was
2000, the optimizer used in this experiment was Adam, the
initial learning rate was 0.002, and a batch size of 25 was
used.

*e iSSMT-GAN and the DCGAN were used for en-
hancing dataset from the real sample images of patches of the
NEU-DETdataset, respectively. Figure 7 shows the generated
images using iSSMT-GAN and DCGAN on the NEU-DET
dataset after training at 1000 epochs. Figure 8 shows the
generated images using iSSMT-GAN and DCGAN on the
NEU-DET dataset after training at 2000 epochs.

*e iSSMT-GAN and the DCGAN were used for en-
hancing the dataset from the real sample images of hole
defects of PCB dataset, respectively. Figure 9 shows the real
sample images of hole defects in the dataset. Figure 10 shows
the generated images using iSSMT-GAN and DCGAN on
the PCB dataset after training at 1000 epochs. Figure 11
shows the generated images using iSSMT-GAN and
DCGAN on the PCB dataset after training at 2000 epochs.

Figures 10 and 11 show that since the generative network
and the discriminative network are continually changing
during training, the generated image will change. *e quality
of samples suggests that the quality of training data impacts
the generated images performance of the iSSMT-GAN and
DCGANmethods. Figures 10(a), 10(b), 11(a), and 11(b) show
that the image features generated by proposed iSSMT-GAN
are more apparent and more obvious than the images gen-
erated by DCGAN using the NEU-DETdataset and the PCB
dataset, respectively. From Figures 10(a) and 11(a), when the
number of training epochs is 1000, there will be a gradient
explosion phenomenon. Increasing the number of images in
training data can eliminate overfitting, strengthen general-
izability, and improve the performance of the training dataset.

In contrast, the generated images using iSSMT-GAN
disclose much-detailed high-resolution features, and the
image quality is uniform with the training data. It has been
proven that selecting the appropriate training images in the
iSSMT-GAN can efficiently improve the dataset quality. *e
iSSMT-GAN approach requires a long training time, and
real-time capability was influenced by the computational
resources. Figure 12 shows the loss results of the generator
and the discriminator on the NEU-DET dataset. Figure 13
shows the loss results of the generator and the discriminator
on the PCB dataset.

*e proposed method is also compared with that based
on DCGAN [24] in the experiments. Since 2018, the
DCGAN has been successful in addressing the problem of
limited labeled training samples in the CIFAR-10 dataset
and ImageNet-1k dataset. From Figures 12(a) and 13(a),
the experiment results indicate that the DCGAN model
presents a phenomenon of overfitting during training.
Because training DCGAN itself (a deep generative model)
will rely on sufficient samples, if it is not ensured, GAN will
be overfitted and will collapse. From Figures 12(a) and
13(a), the experiment results show that the training
DCGAN model suffers from a certain degree of overfitting,
and the experiment results are not unexpected. On the one
hand, this may be due to the small size of the training
dataset. On the other hand, the training dataset contains
more complex data than the CIFAR-10 dataset. In the
comparative experiment, the proposed iSSMT-GAN is
trained using the same dataset. *e proposed method
displays better results under the same conditions.

Scientific Programming 7



Table 1: *e distribution of sample sizes in the PCB dataset.

Category
Training data Test data

Original
dataset

*e dataset expanded
by DCGAN

*e dataset expanded
by iSSMT-GAN

Original
dataset DCGAN expand iSSMT-GAN

expand
Open circuit
defects 140 300 300 40 100 100

Bump defects 1105 300 300 196 100 100
Hole defects 1115 300 300 204 100 100
Residual copper defects 236 300 300 97 100 100
Burr defects 127 300 300 47 100 100
Oxidation
defects 200 300 300 62 100 100

Total data 2923 1800 1800 646 600 600

(a) (b)

(c) (d)

Figure 6: Continued.
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(e) (f )

Figure 6: Different types of defects for dataset. (a) Open circuit defects. (b) Bump defects. (c) Hole defects. (d) Residual copper defects.
(e) Burr defects. (f ) Oxidation defects.

(a)

Figure 7: Continued.
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(b)

Figure 7: *e generated images using iSSMT-GAN and DCGAN on the NEU-DETdataset after training at 1000 epochs. (a) *e DCGAN.
(b) *e proposed iSSMT-GAN.

(a)

Figure 8: Continued.
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Figures 12 and 13 show the loss changes of the
generator and discriminator during training. From
Figures 12(a) and 13(a), the training loss values of the
generator and discriminator oscillate more and more
violently. Because the discriminator and the generator are
in a dynamic game, the training process of iSSMT-GAN is
commonly unsteady. From Figures 12(b) and 13(b), it is
clear that the generator and the discriminator improved
via the adversarial process. *e training loss values of the
generator and discriminator converge well, despite the
fluctuating phenomenon in the process of training. At the
same time, the generator learns to reconstruct or generate
more realistic images, which become
pyramidally difficult for the discriminative network to
discriminate as not real, as observed from the downward
trend in the loss values of the discriminative network and
upward trend in the loss values of the generative network
curves in early epochs. In the iSSMT-GAN, the loss value
decreased significantly during the training period of
0–500 epochs and then decreased steadily. *e loss value
of the discriminator closer to 0 indicates that the dis-
criminator can discriminate the real image and the
generated image.

In practice, we believe that the improved discriminative
network can improve the performance of the generative
network to some extent.

4.2.2. Defect Detection Experiment. In the experiment, the
PCB dataset was separated into two parts, including the
training dataset and the test dataset. At the same time, the
proposed iSSMT-GAN and DCGAN are used to increase the
size of the dataset. *e distribution of sample sizes in the
dataset is shown in Table 1. In contrast, the generated image
method can change the distribution of the dataset.

To verify the efficacy of two different training datasets
expanded by the proposed iSSMT-GAN and the classic
DCGAN [24], respectively, the defect detectionmodels, such
as AlexNet-based transfer learning [9], the VGG-19 model
[10], the MobileNet v3 model [12], and the RegNet model,
were trained with the two different datasets. From Table 1,
the expanded dataset has the problem of the imbalance
problem in the training data. To avoid overfitting, we also
tested the detection model on the imbalanced datasets by 10-
fold cross-validation. *e number of training epochs was set
as 300, the batch size was 64, and the learning rate was 0.002.

*e training accuracy and loss value of AlexNet-based
transfer learning training are shown in Figure 14. *e
training accuracy and loss value of VGG-19 model training
are shown in Figure 15. *e testing performance of each
model is shown in Table 2.

From Figures 14 and 15 and Table 2, the accuracy in-
creases with epoch number and eventually reaches the
maximum (98.43%, 93.10%, 95.31%, and 93.75%) in the

(b)

Figure 8: *e generated images using iSSMT-GAN and DCGAN on the NEU-DETdataset after training at 2000 epochs. (a) *e DCGAN.
(b) *e proposed iSSMT-GAN.
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Figure 9: *e real sample image of hole defects.

(a)

Figure 10: Continued.
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(b)

Figure 10: *e generated images using iSSMT-GAN and DCGAN on the PCB dataset after training at 1000 epochs. (a) *e DCGAN.
(b) *e proposed iSSMT-GAN.

(a)

Figure 11: Continued.

Scientific Programming 13



training process of AlexNet-based transfer learning, the
VGG-19 model, the MobileNet v3 model, and the RegNet
model, respectively. From Table 2, the experiment results
show that the classification accuracy of AlexNet-based

transfer learning method is 98.43%, in the training dataset
expanded by iSSMT-GAN. *e classification accuracy of
AlexNet-based transfer learning method is 95.31%, in the
training dataset expanded by DCGAN. Figures 14(a) and

(b)

Figure 11: *e generated images using iSSMT-GAN and DCGAN on the PCB dataset after training at 2000 epochs. (a) *e DCGAN.
(b) *e proposed iSSMT-GAN.
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Figure 12:*e loss results of the generator and the discriminator on the NEU-DETdataset. (a)*e DCGAN [24]. (b)*e proposed iSSMT-
GAN.
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Figure 13:*e loss results of the generator and the discriminator on the PCB dataset. (a)*e DCGAN [24]. (b)*e proposed iSSMT-GAN.
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Figure 14: *e training accuracy and loss value of AlexNet-based transfer learning training. (a) In the dataset expanded by DCGAN [24].
(b) In the dataset expanded by iSSMT-GAN.
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Figure 15: *e training accuracy and loss value of RegNet model training. (a) In the dataset expanded by DCGAN [24]. (b) In the dataset
expanded by iSSMT-GAN.
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14(b) show that the training loss values of the AlexNet-based
transfer learning training converge well, and the loss value at
the beginning of themodel training is tremendous, but as the
training process progresses, the loss value extends to de-
crease on the whole. On the training dataset, the VGG-19
model begins to converge after about 75 epochs, and the
convergence process is stable.

*is increase in classification accuracy of RegNet model,
MobileNet v3 model, VGG-19 model, and AlexNet-based
transfer learning is 3.13%, 2.30%, 2.48%, and 3.12%, re-
spectively. In the dataset expanded by iSSMT-GAN, Alex-
Net-based transfer learning showed the F1 score of 0.9817,
reflecting a superior recall performance and precision.
*erefore, the dataset expanded by the proposed iSSMT-
GAN turns out to be the best option, considering the
performance and accuracy of defect detection.

In summary, through the analysis of classification quality
and classification cost indicators, the proposed system can
not only generate better image feature but also improve the
classification accuracy. *e proposed iSSMT-GAN model
displays better results under the same conditions. In con-
trast, the value of classification accuracy in VGG-19 model
only increases slightly from 90.62% to 93.10%. In general, the
developed iSSMT-GAN model is efficient for generating
better image features compared with DCGAN and im-
proving the classification accuracy using the same dataset.

5. Conclusions

In this article, a defect detection method based on an im-
proved semisupervised multitask generative adversarial
network (iSSMT-GAN) is proposed. *e training data are
classified and manually labeled according to the type of
defects, and the iSSMT-GAN is constructed according to
reliable annotations about defects. *us, a classification
decision surface for the detection of multitype defects is
formed in the discriminative network of GAN. *e appli-
cability and feasibility of the proposed iSSMT-GAN model
are verified on the PCB dataset (self-built dataset) to expand
the size of the training dataset, and this increase in classi-
fication accuracy of RegNet model, MobileNet v3 model,
VGG-19 model, and AlexNet-based transfer learning is
3.13%, 2.30%, 2.48%, and 3.12%, respectively. Experiment
results are presented to verify the proposed method. *is
research mainly focuses on the defect detection on the PCB
surface. It is noted that micron-level defects are widespread
in industrial products. Our future research will focus on
reconstructing or generating micron-level image, so that the

test approach adapts to the classification of micron-level
defects.
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