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Rock masses existing in nature may experience closed internal stress under the action of geological structures. +is closed internal
stress makes the deformation of the rock mass incompatible, so classic continuum theory is not suitable for analyzing the stress
and deformation of rock masses. In this study, a non-Euclidean model for rock masses was established based on differential
geometry. By choosing the non-Euclidean parameter as the internal variable, a thermodynamic model was constructed. +en,
numerical computation based on the non-Euclidean model was applied to a circular tunnel in a deep rock mass. +e distribution
of internal stress and the effects of rock parameters on the distribution of internal stress were analyzed. +rough our research, we
conclude that the stress field of the deep rockmass consists of classical stress and internal stress and that the internal stress shows a
distinct wavy behavior.+e radius of the fractured zone decreases with an increasing Young’s modulus E and Poisson’s ratio v, but
increases with increasing non-Euclidean parameter ξ.

1. Introduction

In classical continuum theories of rockmechanics, a rock is a
continuous, simply connected body that undergoes defor-
mation, and the deformation satisfies the equations of
compatibility. +e metric tensor for measuring the distances
between material particles in the reference configuration is
Euclidean. However, rock masses existing in nature may
contain closed internal stress. +e internal stress makes the
deformation of the rock incompatible. +erefore, the clas-
sical continuum theory is not suitable for analyzing the
incompatible deformation of rock masses [1–5]. It is nec-
essary to introduce non-Euclidean space to describe the
incompatible deformation, and differential geometry will be
used to describe the closed internal stress.

+e relationship between the continuum theory and
mathematical theory of differential geometry has been
studied by many researchers. Kondo [6] first recognized
the relationship between dislocation theory and non-

Riemannian theory. Later, Anthony [7] pointed out the
relationship of differential geometry to disclinations.
+en, Kroner [8] completed the underlying theory for
defects and differential geometry, including dislocations
and extra matter. +ese investigations established a re-
lation between the parameters of non-Euclidean geom-
etry and elastic strain, bend twist, and quasiplastic strain
of defect theory [9]. +e first non-Euclidean continuum
model to describe the stress-field distribution around
underground working was developed by Myanikov and
Guzev [10]. A modification of this model was presented
by Guzev and used to describe different rock phenomena,
such as zonal disintegration and anomalous deformation
of rock samples [11–15]. Investigations were also un-
dertaken by other researchers, and a non-Euclidean
continuum model was proposed to investigate the zonal
disintegration phenomenon of surrounding rocks by
Zhou and Qian [16–19]. +ese existing models assume
that the undeformed body is in three-dimensional
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Euclidean space. However, there is closed internal stress
in the rock mass.

Suppose there is a flat plate in two dimensions. Due to
uneven heating and mutual expansion, thermal stress will be
generated, and the uneven temperature field causes internal
stress in the plate. If we cut the whole plate into tiny elements
and release each tiny element into its stress-free natural state,
then the flat plate composed of various elements can no
longer be in two-dimensional Euclidean space. However, if
the flat plate is allowed to warp, it will bulge and become a
curved surface. +e plate is a two-dimensional Riemannian
space immersed in three-dimensional Euclidean space R3.
According to this scenario, the undeformed rock mass with
closed internal stress should be regarded as a manifold.

In this study, it is assumed that the undeformed rock
mass with closed internal stress was a manifold. A non-
Euclidean model of rock masses was established based on
differential geometry. By choosing the non-Euclidean pa-
rameter as the internal variable, a thermodynamic model
was constructed. +en, numerical computation based on the
non-Euclidean model was applied to a circular tunnel in a
deep rock mass. +e distribution of internal stress and the
effects of rock parameters on the distribution of internal
stress were then analyzed.

2. Differential Geometry Method

+e initial state of the rock is as a manifold. Moreover, the
manifold is an imagined state of undeformed rock that
occupies a compact and simply connected region. Consider a
material point p in the undeformed body and an m-di-
mensional manifoldM that is referred to as a configuration.
We choose the configuration p ∈U⊂M at time t� t0 as a
reference configuration, such that the subsequent defor-
mation and motion of the current configuration are given by
q ∈V⊂N at time t� t with respect to the reference config-
uration [14] (Figure 1).

For any p ∈M, there exists a neighborhood U of p, such
that U is homeomorphic to an open set in Rm, i.e., the
homeomorphism is φU: U⟶φU (U).

X
i

� φU(p)
i
, (1)

where Xi is the local coordinate of the point p ∈U.
For any q ∈N, there exists a neighborhood V of q, such

that V is homeomorphic to an open set in Rn, i.e., the
homeomorphism is ψV: v⟶ψV (V).

x
i

� ψV(q)
i
, (2)

where xi is the local coordinate of the point q ∈V.
+e deformation of the body is a continuous map from

the initial configuration smooth manifold M to the final
configuration smooth manifold N. F: M⟶N. Compatible
coordinate charts (U, φU) exist at points p ∈M and (V, ψV) at
f(p) ∈N, such that the map

ψV ∘F ∘φ
− 1
U : φU(U)⟶ ψV(V), (3)

is C∞ at the point φU (p).

Moreover, smooth maps F between M and N induce
linear maps between tangent spaces and between cotangent
spaces. F:M⟶N, p ∈M, and q� F(p) ∈V. F∗ is a linear map
of the tangent space induced by F. We define the map F∗:
TpM⟶TqN as follows (Figure 2):

F∗(v)(f) � v(f°F), ∀f ∈ C
∞
F(p). (4)

+e adjoint map of F∗ is F∗: T∗pM⟶T∗qNwhich is called
the differential map induced by F.

F
∗
(df) � d(f°F), df ∈ T

∗
q N. (5)

Xi and xi are the local coordinates of points p and q. +e
deformation map F can be expressed near p by the functions

x
α

� F
α

X
1
, . . . X

m
􏼐 􏼑, 1≤ α≤ n. (6)

+e increment vector dx of point q ∈N in deformed body
N belongs to cotangent space TqN, and the increment dX of
the corresponding point X ∈M in undeformed body M
belongs to tangent space TpM. +ey are related by the dif-
ferential map F∗.

+us, the action of F∗ on the natural basis {dxα, 1≤ α≤ n}
is given by

F
∗ dx

α
( 􏼁 � d x

α°F( 􏼁

� 􏽘
m

1

zF
α

zX
i

􏼠 􏼡dX
i
.

(7)

+e matrix representation of F∗ in the natural bases dx
and dX is exactly the Jacobian matrix (zFα∕zXi)p. +is relates
the infinitesimal line segment dX ∈M to the corresponding
segment dx ∈N.

Map F∗ plays a role in the coordinate transformation
from TqN to TpM. Since no material point vanishes, there is
an inverse relation for F∗:

dx � F
∗− 1

(dX), (8)

where F∗− 1 is the deformation gradient.
A volume element dV in undeformed body M is related

to the volume element dv in deformed body N through
determinant J of the deformation gradient F by dv� JdV.

M
U
p

f

f

φ

N
V

q

RnRm

(X1,...,Xm) (X1,...,Xn)

φ-1

Figure 1:+e initial configuration and final configuration.M is the
manifold of the undeformed body. N is the manifold of the de-
formed body.
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J � detF

� F
∗− 1

F
∗− 1

F
∗− 1

,
(9)

where J is referred to as the Jacobian.
+e deformed body N is a manifold with a topological

structure and smooth structure. During deformation, some
vectors act on it, such as body force and external force. +ey
are vector bundles on N (Figure 3).

N is called the base space. π: E⟶N is a smooth sur-
jective map called a bundle projection, and V�Rs is an
s-dimensional vector space.

If there is no mass flux, the total mass of undeformed
body M is conserved in deformed body N:

􏽚
M
ρ0dv0 � 􏽚

N
ρdv, (10)

where ρ0 and ρ are the mass densities before and after
deformation, respectively. +e time differential form using
Reynold’s transport theorem gives the following mass
conservation law:

dρ
dt

+ ρ∇ · v � 0, (11)

where v is a vector of the tangent bundle and ∇ is the
gradient operator. +e divergence makes a linear map div:
TM⟶C∞M.

Newton’s second law states that in an inertial frame, the
rate of linear momentum is equal to the applied force. Here,
by applying the second law to a continuum region, the linear
momentum of the deformed body N is given by

d
dt

􏽚
Ω
ρvdv � 􏽚

zΩ
tds + 􏽚

Ω
ρbdv, (12)

where t is an external force per unit area called the stress
vector, which acts on the boundary zΩ. It is a tensor of the
tensor bundle T0

1(N), and the body force per unit volume b
acting in volume N is a tensor of tensor bundle TN.

Substituting (12) into (13) yields the following:

ρ
dv

dt
� divσT

+ ρb, (13)

where σ is called the Cauchy stress, which gives a trans-
formation law that maps the unit outward n to the traction t

acting on the surface by t� σTn. σ is a tensor of tensor bundle
T0

2(N), and n is a tensor of tensor bundle T0
1(N).

Now, we need tomeasure the extent of deformation of an
elemental length located at a material point. To do so, we
should introduce a metric on the smooth manifold. If the
metric is a smooth, nondegenerate positive symmetric
second-order covariant tensor field, then the manifold is
called a Riemannian manifold, and the metric is a Rie-
mannian metric. We compare length |dx| with its original
length |dX| by comparing the difference of both lengths as a
squared measure:

|dx|
2

− |dX|
2

� gijdx
idx

j
− GαβdX

αdX
β
, (14)

where gij is the metric tensor of manifold N, and Gαβ is the
metric tensor of manifold M.

Substituting the deformation gradient yields

|dx|
2

− |dX|
2

� gijdx
idx

j
− GαβF

∗ α
i F
∗ β
j dx

idx
j

� gij − GαβF
∗ α
i F
∗ β
j􏼐 􏼑dx

idx
j
.

(15)

+en, the deformation measure can be written as

gij � 2εij + Gij. (16)

+is tensor ε is referred to as a strain tensor.
Furthermore,M and N are two smooth manifolds, and f:

M⟶N is a smooth map. If f is the immersion and h is a
Riemannian metric, then

g � f
∗
h. (17)

where g is the Riemannian metric of M. (17) indicates that
the metric of manifold M can be induced by the differential
map and the metric of manifold of N.

+e Riemann tensor R of the initial configuration is a
function:

Rijkl �
1
2

Gik,jl + Gil,jk − Gil,jk − Gjk,il􏼐 􏼑 + 􏽥Γh.ik
􏽥Γhjl − 􏽥Γh.il

􏽥Γhjk.

(18)

+e Riemann tensor R of the current configuration is a
function.

f
N

R

TqN

M

p q
F

dfT*pM d(fºF)
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F*
F*v

T*qN

TpM
v

F*

ә
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ә
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Figure 2: +e tangent map and differential map. TpM and TqN are the tangent spaces. T∗q (N) and T∗p(M) are the cotangent spaces.
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Rijkl �
1
2

gik,jl + gil,jk − gil,jk − gjk,il􏼐 􏼑 + Γh.ikΓ
h
jl − Γh.ilΓ

h
jk.

(19)

Substituting (18) and (16) into (19), equation (19) can be
rewritten as

Rijkl � εil,jk + εjk.il − εik,jl − εjl,ik􏼐 􏼑. (20)

During excavation in a deep rock mass, a circular tunnel
is a typical plane strain problem.+us, the Riemann tensor R
can be obtained in a two-dimensional manifold as

R1212 � 2
z
2ϵ12

zx
1
zx

2 −
z
2ε11

zx
2
zx

2 −
z
2ε22

zx
1
zx

1.
(21)

+e other component of Rijkl is equal to 0. On the right of
(21) is the compatible condition of classical mechanics. Due
to the existence of closed internal stress, the deformation of
rock masses is not compatible. +en, the tensor contraction
of Rijkl is a second-order tensor Rij, and the components are

Rij �

R

2
0

0
R

2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

, (22)

where R is the tensor contraction of Rij, and R� 2R1212.

3. The Thermodynamics Model and Discussion

Classical thermodynamics provide valuable information that
can assist in the solving of practical problems in many fields
of science and engineering. +e physical state of the system
can be described by variables such as internal energy, en-
tropy energy, and free energy. +ey are decided by inde-
pendent parameters; these parameters are the internal
variables. +e choice of the internal variables is not unique.
It can be decided by the level of the model, the nature of the

thermodynamic system, and the accuracy of the system state.
+e independent parameters consist of external variables
(the strain tensor, deformation gradient, and temperature)
that can be observed and internal variables that relate to the
material properties of the system.

In geotechnical engineering, the strain tensor ε, tem-
perature T, and Riemann tensor Rij can be chosen as external
and internal variables. Now, we consider the deformation
from the initial configuration to the final configuration, and
this deformation is elastic. +us, the Helmholtz free energy
can be rewritten as

_Ψ �
zΨ
zT

_T +
zΨ
zϵij

_εij +
zΨ
zRij

_Rij. (23)

According to the second law of thermodynamics, the
Clausius–Duhem inequality will be

ρ _T
zΨ
zT

+ s􏼠 􏼡 + ρ
zΨ
zϵij

_εij +
zΨ
zRij

_Rij − σij _εij +
q

T
div, T≤ 0,

(24)

where ρ is the density of the body, s is the entropy, q is the
heat flux, and σij is the Cauchy stress tensor. +e inequality
above will be satisfied for any T, Q, h, and ε. +en, the
following thermodynamic restrictions hold true:

σij � ρ
zΨ
zϵij

, (25)

zΨ
zRij

_Rij +
q

T
div, T≤ 0, (26)

s � −
zΨ
zT

. (27)

Equation (25) indicates that the stress tensor is equal to
the derived free energy, in accordance with classical elasticity
theory.

Supposing that the rock material is isotropic at a con-
stant temperature, we can extend the free energy to second
order with

Ψ εij, Rij􏼐 􏼑 �
λ εkkεkk( 􏼁

2
+ μεijεij +

] RijRij􏼐 􏼑

2
+ ξεijRij,

(28)

where λ and μ are Lame’s constants, and ] and ξ are the
parameters related to the internal structure of the rock.
Substituting equation (28) into (25) gives

σij � λεkkδij + 2μεij + ξRij. (29)

+e underground rock experiences the effects of con-
struction and heat, and the deformation will be incompatible
and lead to a nonuniform stress field. A part of the stress will be
lost by the tunnel excavation, but the residual will remain in the
rock. In equation (29), for the initial undeformed body, the
strain tensor is equal to zero. +en, the rock experiences an
initial stress ξRij, which is the self-balancing stress closed in the
rock. +is value is related to the metamorphic and tectonic

N

E

U
q

(x1,
x2. . .)Rm

(y1,
y2 . . .)Rs

ψα,p

π

π-1 (U)

Figure 3: Vector bundles on the manifold. E and N are the smooth
manifolds. E is a vector bundle on N.
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movement of rock. From a physical point of view, the existence
of nonzero self-equilibrated stress fields in a continuous me-
dium is due to the presence of structural defects in the material.

+e stress can be regarded as the sum of classical stress
Σij and tij:

σij � Σij + tij. (30)

According to the principles of thermodynamics with
internal state variables, we define the force Q as

Q � −
zΨ
zRij

� ]Rij + ξεij,

(31)

where Q is a generalized force conjugated to R, which is an
internal variable that relates to the internal stress of the rock
mass and contributes to the dissipation of energy.

Recall that equation (29) can be written as

εij �
1
2μ

σij − λεkkδij − ξRij􏼐 􏼑. (32)

For the deformation from the initial configuration to the
final configuration, the equilibrium and boundary condi-
tions are

σij,j � 0. (33)

Substituting (32) and (33) into (21), we obtain

R �
2(λ + μ)

μ(3λ + 2μ)
Δσkk −

λ + 2μ
2μ(3λ + 2μ)

kΔR. (34)

Because the stress of the rock mass is self-balanced,
Δσkk � 0. Equation (34) can be rewritten as

ΔR + ωR � 0, (35)

where ω � 2μ(3λ + 2μ)/(λ + 2μ)ξ. Equation (44) is Poisson’s
equation, and the solution is

R � AJ0(
��
ω

√
ρ) + BY0(

��
ω

√
ρ), (36)

where J0 and Y0 are the Bessel function and Neumann
function, respectively. A and B are the parameters related to
the structural defects of the material.

Considering a circular tunnel in the plane strain state,
the total stress can be written as

σr � p0 1 −
r
2
0

r
2􏼠 􏼡 + ξAJ0(

��
ω

√
ρ) + ξBY0(

��
ω

√
ρ), (37)

σφ � p0 1 +
r
2
0

r
2􏼠 􏼡 + ξAJ0(

��
ω

√
ρ) + ξBY0(

��
ω

√
ρ). (38)

+e rock mass experiences gravitational stress and in-
ternal stress before excavation. +e construction of under-
ground engineering projects breaks the stress balance, and
so, the stress will redistribute. In the plane strain state, the
shear stress of the internal stress dissipates with the de-
formation, but normal stress still exists in the rock mass and

shows a periodic change with radius. If this stress reaches a
critical value, the rock will break.

4. Analysis Based on Numerical Computations

4.1. Ee Distribution of Internal Stress around a Deep Tunnel.
+e model for numerical computation [20–23] was from
Tangkou mine coal, Shandong Province, China. During the
excavation of the tunnel, the completed roadway was
damaged successively, and the surrounding rock was frac-
tured violently. +e material parameters used in the sim-
ulations were from a depth of 1028m, including a uniaxial
compressive strength of rock σc � 35MPa, Young’s modulus
E� 30GPa, and Poisson’s ratio v � 0.25. +e cross-section of
the tunnel is approximately a circle, and the radius is
r0 � 3m. +e stress of the surrounding rock is equivalent in
vertical and horizontal orientations, and the stress
p0 � 23.4MPa.

Substituting these parameters into equations (37) and
(38), we can obtain

σr � 23.4 1 −
9
r
2􏼠 􏼡 + ξAJ0(3

��
ω

√
) + ξBY0(3

��
ω

√
), (39)

σφ � 23.4 1 +
9
r
2􏼠 􏼡 + ξAJ0(3

��
ω

√
) + ξBY0(3

��
ω

√
). (40)

+e parameter ξ is related to the internal stress of the
rock mass and can be chosen by the radius of the fracture
zone. According to geological observations, the fracture
zone radius rc � 1.58 r0; thus, we have the following
boundary conditions for the function R:

R|r�r0
� 0 ·

dR

dr
|r�rc

� 0. (41)

Substituting (36) into (41) gives

AJ0(3
��
ω

√
) + BY0(3

��
ω

√
) � 0, (42)

��
ω

√
AJ1(4.74

��
ω

√
) + BY1(4.74

��
ω

√
)􏼂 􏼃 � 0. (43)

By solving equations (42) and (43), ω� 7.18 and
ξ � 5.57GPa can be obtained.

Meanwhile, fracture appears when the stresses in the
rock mass reach a certain critical value. From a physical
viewpoint, this means that it is necessary to use a force
criterion, whose fulfillment in a selected region corresponds
to the fracture zone. In this study, the Mises criterion is
applied.

σ1 − σ2( 􏼁
2

+ σ2 − σ3( 􏼁
2

+ σ3 − σ1( 􏼁
2

� 2σ2c . (44)

Substituting (39) and (40) into (44), we obtain
A� 5.05×10− 3 and B� 3.57×10− 3. +us, the relation be-
tween the stress components and radius is shown in Figure 4.
+e distribution of hoop stress and radial stress shows a
distinct wavy behavior. +e range of fluctuation reflects the
magnitude of internal stress and is related to in situ stress
and rock behavior.
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According to the prediction of the numerical compu-
tation, the second crest of the stress is located at 2.36 r0, and
the observation value is 1.58 r0, as shown in Figure 5. +e
prediction value is 31% greater than the observation value
because the fracture of the rock mass at r� rc is a region
failure.

+e fluctuation location and magnitude of the internal
stress were influenced by the parameters of the rock mass,
such as Young’s modulus E, Poisson’s ratio v, and non-
Euclidean parameter ξ, which affected the fracture zone of
the surrounding rock of the tunnel, and the location of the
crest stress is given in Table 1.
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Figure 4: +e distribution of stress with radius (r).
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Figure 5: +e site of crest zones from the computational model. Effects of rock parameters on the distribution of internal stress.

Table 1: Location of crest internal stress in the surrounding rock mass.

Location of crest stress (r/r0)
Young’s modulus E (GPa) Poisson’s ratio v

Non-Euclidean parameter ξ
(GPa)

27 30 33 0.2 0.25 0.3 5.01 5.57 6.13
First 1.69 1.58 1.47 1.63 1.58 1.46 1.43 1.58 1.67
Second 2.37 2.36 2.02 2.29 2.36 2.06 2.01 2.36 2.34
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Figure 6: Effects of Young’s modulus (E) on the distribution of hoop normal stress in surrounding rock mass.
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Figure 7: Location of crest internal stress in the surrounding rock mass with different Young’s moduli. (a) E� 27GPa. (b) E� 30GPa.
(c) E� 33GPa.
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Figure 9: Continued.
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Figures 6 and 7 show the effects of Young’s modulus E on
the distribution of the internal stress crest in the surrounding
rock mass around a deep circle tunnel. It can be observed that
the radius of the internal stress crest decreases with an increase
inYoung’smodulusE.+ese results indicate that themagnitude
of internal stress and energy existing in the rock mass increases
with Young’s modulus. +e larger Young’s modulus is, the
closer the fracture location is to the tunnel.

Figures 8 and 9 show the effects of Poisson’s ratio v on the
distribution of the internal stress crest in the surrounding rock
mass around a deep circle tunnel.+e radius of fractured zones
decreases with an increase in Poisson’s ratio v.

Figures 10 and 11 show the effects of the non-Eu-
clidean parameter ξ on the distribution of the internal
stress crest in the surrounding rock mass around a deep
circle tunnel. It can be observed that the radius of
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Figure 9: Location of crest internal stress in the surrounding rock mass with different Poisson’s ratios. (a) v � 0.2. (b) v � 0.25. (c) v � 0.3.
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Figure 10: Effects of the non-Euclidean parameter ξ on the distribution of hoop normal stress in surrounding rock mass.
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fractured zones increases with an increase in the non-
Euclidean parameter ξ.

5. Conclusions

(1) Because there is closed internal stress in the rock
mass, the deformation of the rock mass is incom-
patible. +e undeformed body is a manifold im-
mersed in three-dimensional Euclidean space. +e
metric tensor of the space is the Riemannian metric
gij instead of the Euclidean metric δij. +e defor-
mation of the rock mass is a continuous map from
the undeformed manifold M to the deformed
manifold N. +e incompatible deformation of the

rock mass is related to the Riemannian curvature
tensor Rijkl of the manifold.

(2) +e rock mass experiences gravitational stress and
internal stress before excavation.+e construction of
underground engineering projects breaks the bal-
ance, and the stress will redistribute. In the plane
strain state, the shear stress of the internal stress
dissipates with the deformation, but normal stress
still exists in the rock mass and shows a periodic
change with radius. If this component reaches a
critical value, the rock will break.

(3) For the rock mass with internal stress, with the
increase of elastic modulus E, the peak value of hoop
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Figure 11: Location of the crest internal stress in surrounding rock mass with different non-Euclidean parameters. (a) ξ � 5.01GPa.
(b) ξ � 5.57GPa. (c) ξ � 6.13GPa.
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stress decreases, and the position of peak stress is
closer to the tunnel. It shows that the harder the rock
mass is, the more severe the damage near the tunnel
surface is. With the increase of Poisson’s ratio v, the
hoop stress of rock mass decreases, which indicates
that the larger Poisson’s ratio v is, the larger the
deformation of rock mass under the same confining
pressure, and more internal stress will be released.
With an increase of non-Euclidean parameter ξ, the
radius of the fractured zone decreases.
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