
Research Article
MarinePredatorsAlgorithmBasedonAdaptiveWeight andChaos
Factor and Its Application

Shujun Liang,1 Youmei Pan,2 Huanlong Zhang ,2 Jie Zhang,2 Fengxian Wang,2

and Zhiwu Chen 2

1Software Engineering College, Zhengzhou University of Light Industry, Zhengzhou 450002, China
2College of Electric and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China

Correspondence should be addressed to Zhiwu Chen; 1980652007@qq.com

Received 11 January 2022; Revised 20 July 2022; Accepted 16 August 2022; Published 29 September 2022

Academic Editor: Pengwei Wang

Copyright © 2022 Shujun Liang et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Aiming at the problems of uneven distribution of initialized populations and unbalanced exploration and exploitation leading to
slow convergence, low convergence accuracy, and easy to fall into local optimality of marine predators algorithm (MPA), a marine
predators algorithm based on adaptive weight and chaos factor is proposed (ACMPA), the algorithm is applied to the traveling
salesman problem (TSP), and the shortest path planning and research are carried out for the traveling salesman problem. Firstly,
the improved adaptive weight strategy is used to balance the exploration and exploitation stage of the algorithm and improve the
convergence accuracy of the algorithm. Secondly, the chaos factor is used to replace the random factor, and the ergodicity of the
chaos factor is used to make it easier for predators to jump out of local optimization and enhance the optimization ability of the
algorithm. Finally, 10 benchmark test functions, the CEC2015 test set, and the CEC2017 test set are used to evaluate the ef-
fectiveness of the ACMPA.�e results show that, compared with the other four intelligent optimization algorithms, the improved
ACMPA achieves better results in both mean and standard deviation, and the algorithm has a better e�ect on the shortest
path problem.

1. Introduction

Travel salesman problem [1] is a typical combinatorial
optimization problem, which can be simply described as
�nding an optimal closed path that can traverse all locations
in the shortest time given the distance between some lo-
cations, and each location is visited only once. For the TSP
problem, the emerging intelligent optimization algorithm
has been well applied to this problem. �e core of the in-
telligent optimization algorithm comes from the simulation
of natural biological behavior, and the optimal solution is
obtained by searching for the optimal value in global ex-
ploration and local exploitation [2, 3]. At the same time,
more and more scholars have improved the algorithm and
applied it to the traveling salesman problem [4, 5].

Metaheuristic algorithms proposed in recent years, such
as Monarch Butter�y Optimization (MBO) [6], mainly
simulate the migration and adaptation behavior of monarch

butter�ies. �e position of each butter�y represents a fea-
sible solution. �e butter�y population is distributed in two
continents, migrating and adapting to the environment.
Zheng et al. proposed a slime mold algorithm (SMA) [7],
which simulated the behavior and morphological changes of
slime mold in the foraging process. Slime mold would de-
termine the weight of each individual’s location according to
the objective conditions of the current location and update
the location through the weight index. Oliva et al. proposed
the Moth Swarm Algorithm (MSA) [8], which simulates the
behavior of moths �ying toward the moon at night in nature,
divides the moths into di�erent types of moths, and carries
out group cooperation, which balances the detection and
mining capabilities of the algorithm to some extent. Alabool
et al. proposed the Harris Hawks Optimization (HHO) [9],
which simulates the behavior of Harris Hawks hunting
rabbits and carries out unique cooperative foraging activities
with other family members in the group.

Hindawi
Scientific Programming
Volume 2022, Article ID 4623980, 12 pages
https://doi.org/10.1155/2022/4623980

mailto:1980652007@qq.com
https://orcid.org/0000-0002-5130-5555
https://orcid.org/0000-0001-6230-7858
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4623980

.e marine predators algorithm is a novel metainspired
optimization algorithm proposed by Faramarzi et al. in 2020,
which simulates the behavior of predators attacking prey
through Brownian motion and Lévy motion, and the op-
timization process is divided into three stages [10]. Predator
and prey will move in two different ways according to
different speed ratios in these three stages. Although the
MPA has made great achievements in optimization [11, 12],
it still has the problems of slow convergence speed and easy
to fall into local optimization. Mohamed Abd Elaziz et al.
[13] proposed an enhanced marine predators algorithm,
which introduces a differential evolution operator into the
original marine predators algorithm, enhances the global
exploration ability of the MPA, and improves the ability of
the algorithm to jump out of the local optimal solution. Ma
et al. [14] proposed an improvedmarine predators algorithm
(MSIMPA), which uses a chaotic opposition learning
strategy to generate a high-quality initial population and
introduces an adaptive t-distribution mutation operator to
update population to improve population quality and op-
timization accuracy. Oszust [15] proposed a new local escape
operator (LEO-MPA), which uses new candidate solutions
to replace part of the worst solutions to deal with premature
convergence and significantly improve the optimization.
Abdel-basset et al. [16] proposed an improved marine
predators algorithm (IMPA). By introducing the ranking-
based diversity reduction (RDR) strategy, the IMPA
searched for the optimal individual position to replace the
particles with poor effect many consecutive times so as to
improve the convergence performance of the algorithm. But
the convergence performance of the marine predators al-
gorithm still needs to be improved. Chu et al. [17] proposed a
whale optimization algorithm based on adaptive weight and
simulated annealing, which adaptively adjusted the distur-
bance value according to the distance between the individual
whale and the optimal one so as to balance the exploration
and exploitation of the algorithm. Deng et al. [18] proposed a
particle swarm optimization algorithm based on the
neighborhood velocity imitation strategy, and the algorithm
imitates the velocity of the optimal particle in the neigh-
borhood, adaptively adjusts the convergence performance of
the algorithm, and adopts the centroid mutation strategy to
enhance the ability of the algorithm to jump out of the local
extremum. Zhang et al. [19] proposed an improved whale
optimization algorithm, which added an adaptive weight
strategy in the later stage of local exploitation to improve the
local search ability of the algorithm so as to improve the
convergence accuracy of the algorithm. Although the
adaptive weight strategy has been well applied in the opti-
mization algorithm, it is seldom applied in the marine
predators algorithm, and the convergence accuracy is low.

In order to improve the convergence speed and jump out
of the local optimal solution of the MPA, a marine predators
algorithm based on adaptive weight and chaos factor
strategy is proposed in this paper. Firstly, the adaptive
weight is combined with the step length of the algorithm,
which gives a larger weight to the step length in the early
stage of optimization to improve the global search ability of
the algorithm and gives smaller weight to the step length in

the later stage of exploitation to achieve rapid convergence.
Secondly, the ergodicity of the logistic chaos function is used
to replace the random vector in the process of optimization
to improve the ability to jump out of the local optimal
solution..irdly, the simulation results of 10 benchmark test
functions, the CEC2015 test set, and the CEC2017 test set
show that the experimental results demonstrate the effec-
tiveness of the ACMPA. Finally, the ACMPA is applied to
the TSP problem, and the superiority of the ACMPA
compared with the MPA is verified.

In this paper, we use chaotic mapping instead of random
initialization so that the initial population distribution has
the same probability at each location in each search region,
the distribution is more uniform, which is conducive to the
next iteration, and it is easier for the algorithm to find the
global optimum. .e introduction of the adaptive weight
strategy makes it easier to find the global optimum in the
exploration phase with larger step lengths and in the ex-
ploitation phase with smaller step lengths. By the above two
methods, the convergence speed and convergence accuracy
of the algorithm are improved.

In general, this paper proposes a marine predators al-
gorithm based on adaptive weight and chaos factor. In
Section 2, the marine predators algorithm (MPA) is intro-
duced, in Section 3, the method to improve MPA is pro-
posed, in Section 4, the results of the test function are
introduced and analyzed, and finally, in Section 5, the work
is summarized.

2. Marine Predators Algorithm

.e marine predators algorithm is a new metaheuristic
optimization algorithm, which simulates the behavior of
predators preying on prey in nature and searches for the best
proxy position through Brownian motion and Lévy motion
[20]. .e MPA optimization process is as follows:

(1) Initialization phase:
.e MPA is similar to the majority heuristic opti-
mization algorithm in the initialization stage. Its
initial solution is distributed in the whole solution
space by random strategy, and the specific expres-
sions are as follows:

X0 � Xmin + rand Xmax − Xmin(􏼁, (1)

where Xmax and Xmin are the maximum and the
minimum bounds of variables and ran d is a uniform
random number between 0 and 1.

(2) .e optimization process of the original MPA is
divided into three parts according to different speed
ratios, and each part has different tasks to simulate
the movement process of predators and prey in
space, which is summarized as follows:
Stage 1. When the number of iterations is in the first
third of the maximum number of iterations (when
the predator is faster than the prey), this stage be-
longs to the exploration stage. At this time, the best

2 Scientific Programming

strategy of the predator is not to move. .e specific
expression is as follows:

While Iter<
1
3
Max iter

stepsizei � RB ⊗ Elitei − RB ⊗Preyi(􏼁 (i � 1, 2, ..., N),

Preyi � Preyi + P · R⊗ stepsizei

(2)

where Iter is the current iteration number, Max iter
is the maximum iteration number, stepsicei is the
moving step size, RB is the random vector generated
by Brownian motion, Elitei is the elite matrix con-
structed by the top predator with the best fitness,
Preyi is the prey matrix with the same dimension as
the elite matrix, Nis the population number, P is a
constant, the recommended value is 0.5 [21], and R is
a random vector evenly distributed between [0,1].
Stage 2. When the number of iterations is between
one-third and two-thirds of the maximum number
of iterations (when the speed of the predator is the
same as that of the prey), this stage is a process of
trying to change from the exploration stage to the
exploitation stage. At this time, the population is
divided into two parts, one for global exploration, the
predator for exploration by Brownian motion, the
other for local exploitation, and the prey for ex-
ploitation by Lévy motion.
.e first half of the population motion expression is
as follows:

While
1
3
Max iter< Iter<

2
3
Max iter

stepsizei � RL ⊗ Elitei − RL ⊗Preyi(􏼁 i � 1, 2, ...,
N

2
􏼒 􏼓

Preyi � Preyi + P · R⊗ stepsizei

.

(3)

.e last half of the population motion expression is
as follows:

While
1
3
Max iter<Iter<

2
3
Max iter

stepsizei � RB⊗ RB⊗Elitei −Preyi(􏼁 i �
N

2
, ...,N􏼒 􏼓

Preyi �Elitei + P · CF⊗stepsizei

, (4)

where RL is the random vector generated by Lévy
motion, CF is the adaptive parameter controlling the
predator step size, and the formula is as follows:

CF � 1 −
Iter

Max iter
􏼒 􏼓

2∗Iter/Maxiter()
. (5)

Stage 3. When the number of iterations is in the last
two-thirds of the maximum number of iterations
(when the predator is slower than the prey), this
stage is the exploitation stage, and the predator
adopts the Lévy migration strategy. .e specific
expression is as follows:

While Iter>
2
3
Max iter

stepsizei � RL ⊗ RL ⊗Elitei − Preyi(􏼁 (i � 1, 2, ..., N).

Preyi � Elitei + P · CF⊗ stepsizei

(6)

(3) In addition to the above stages, the actions of
predators will also be affected by the environment,
such as eddy current effect or fish gather device
FADs, and transferred to other hunting areas; that is,
predators will have 80% of the time looking for prey,
while 20% of their time will be transferred to other
hunting areas to increase their ability to jump out of
the local optimal solution, a strategy to avoid the
premature convergence problem; specific expression
is as follows:

Preyi

Preyi + CF Xmin + R⊗ Xmax − Xmin(􏼁􏼂 􏼃⊗U ifr≤FADs

Preyi + [FADs(1− r)] Preyr1 −Preyr2(􏼁 ifr>FADs
,􏼨

(7)

where FADs � 0.2 is the probability of being affected
in the optimization process. U is a binary vector
group containing 0 and 1. If the generated random
vector is less than 0.2, the array is 0; if the random
vector is greater than 0.2, the array is 1. r1 and r2 are
random indexes of the prey matrix.

3. Improved Marine Predators Algorithms

Aiming at the problems of easy imbalance in exploitation
and exploration and easy to fall into local optimization of
marine predators algorithm, an improved algorithm of
adaptive weight and chaos factor is proposed. .e specific
improvement method is as follows.

3.1. Adaptive Weight. .e weight factor balances the im-
portant parameters of global exploration and local exploi-
tation in the optimization algorithm [22]. In the early stage
of the algorithm, the particles in the space are scattered and
chaotic. When the weight is given a large value, it will
enhance the global search ability of the algorithm and
quickly find the optimal area in a large range. In the late stage
of the algorithm, the particles in the space will be con-
centrated in a certain area. When the weight is given a small
value, the local search ability of the algorithm can be im-
proved, and the convergence speed can be accelerated [23].
.erefore, appropriate weight parameters can improve the
optimization performance of the algorithm.

Scientific Programming 3

Inspired by literature [24, 25], a new adaptive weight
strategy is proposed to replace the original step size formula,
and a larger step size is given in the early stage of the al-
gorithm, which is beneficial to increasing the search step size
and realizing global search. In the later stage of the algo-
rithm, the algorithm gradually converges, and individuals
begin to conduct local search. At this time, a small step is
given to reduce the search distance, which is beneficial to the
local detailed search and improves the convergence accuracy
of the algorithm. From formula (5), MPA step length for-
mula, it can be seen that, in the early stage of the algorithm,
the step distance is small, which is not conducive to the
predator’s search for the whole world. It is in the process of
trying to change from the exploration stage to the exploi-
tation stage, and the sudden increase in step size is not
conducive to the balance between exploration and exploi-
tation; in the later stage of the algorithm, the algorithm is in a
period of rapid convergence, but the step distance is reduced,
which is not conducive to the convergence of the algorithm.
.erefore, the improved step length formula is

CF � ωmax − ωmax − ωmin(􏼁 · 1 −
t

Maxiter
􏼠 􏼡

2.5− t/Maxiter()

,

(8)

whereωmax andωmin are themaximum andminimum values
of inertia weight. When the inertia weight ωmax � 1 and
ωmin � 0.001, the algorithm can maintain good perfor-
mance, make the step size curve conform to the previous
step growth, increase the global search ability, and gradually
reduce the step size spacing with the increase of the number
of iterations to achieve rapid convergence.

3.2. Logistic Chaos Factor. Chaos mapping is an aperiodic
function with ergodicity and randomness. Due to its unique
advantages, it has been widely used as a global optimization
processing mechanism [26]. Many scholars have applied
chaos theory to intelligent optimization algorithms and
achieved good results [27, 28]. (1) Replace some random
parameters in the algorithm with sequences generated by the
chaotic system. (2) .e results of the chaotic system are
applied to search space to improve the local search ability of
the algorithm.

However, there are limitations of a single chaotic
mapping, and speaking of multiple chaotic maps incorpo-
rated into the algorithm separately, randomly, in parallel, or
selectively, the effect will be greatly improved [29]. In this
paper, we combine four chaotic mappings in parallel instead
of one chaotic mapping; compared with random numbers,
chaos can form a nonrepetitive and uniform state within a
certain range [30]. Random number R is in the early stage of
the algorithm. If uneven particle distribution and overlap are
explored in the early stage, the global nonconvergence of the
algorithm will be affected, and the convergence accuracy of
the algorithmwill be affected..erefore, mixed chaos is used
to replace the random number R, and its expression is as
follows:

R1n+1 � μ · R1,n 1 − R1,n􏼐 􏼑

R2n+1 � β · R2,n 1 − R2,n · R2,n􏼐 􏼑

R3n+1 �
α · sin R3,n􏼐 􏼑

4

R4n+1 � 1.07 · (7.86 · R4,n−

23.31 · R4,n̂ 2 + 28.75 · R4,n̂ 3

− 13.302857 · R4,n̂ 4,

(9)

where Rn ∈ [0, 1], μ belongs to the chaos parameter, and
μ ∈ (0, 4]. .e experiment shows that when μ value is 4, β
value is 2.59, and α value is 3.8.

3.3. ACMPA Steps. First, the initialization is performed by
chaotic mapping to determine the position of each indi-
vidual in the population. Second, when the number of it-
erations is less than 1/3 of the total number of iterations, the
position is updated by replacing the R value in (2) with the R
value in (9); when the number of iterations is greater than 1/
3 of the total number of iterations and less than 2/3 of the
total number of iterations, half of the populations are
updated by (3) (bringing the result of (9) into (3)), and
others are updated by (4) (bringing the result of (8) into 3);
when the number of iterations is greater than 2/3 of the total
number of iterations, it is updated by (6) (bringing the result
of (8) into (6)). Finally, the number of iterations is judged to
be satisfied; otherwise, the iterations are repeated. .e rel-
evant flowchart of the algorithm is shown in Figure 1.

4. Simulation Experiment and Result Analysis

4.1.ParameterSettings. In this paper, the population size of
marine predators is set as 100, dimension D � 10, and the
maximum iteration number is 1000. .e simulation ex-
periment environment is Windows 10 system, 16 G
memory, and MATLAB R2019a. In this paper, four op-
timization algorithms, including the marine predators
algorithm (MPA) [20], Moth-Flame Algorithm (MFO)
[30], Chimp Optimization Algorithm (ChoA) [31], and
Sine Cosine Algorithm (SCA) [32], are selected to com-
pare the effectiveness of ACMPA. Parameter settings of
various algorithms are shown in Table 1. To make the
experimental results more authoritative, all hyper-
parameters in Table 1 are those presented in the original
paper [20, 31–33].

4.2. Complexity Analysis. In optimization algorithms,
complexity is often used to analyze the quality of algorithm
operation time (time complexity) and space (space com-
plexity). Among them, we usually use the time complexity to
evaluate the efficiency of the algorithm and use the space
complexity to evaluate the quality of the running space.
Since the variables of the algorithm are not added or reduced
in this paper, the space complexity has not changed, so it will

4 Scientific Programming

not be discussed here. Big O is used to represent the time
complexity of the improved algorithm, in which the added
improved strategy only changes the detection step of the
algorithm and hardly affects the time complexity of the
algorithm; that is, O (ACMPA)�O (MPA). In this im-
provement, although the time complexity does not change,
the accuracy of the optimal value is greatly improved
compared with the original algorithm. By analysis, the
complexity of the algorithm after improvement is

O(Max iter∗ (n∗D + fit∗ n)) , where fit is the cost of
function evaluation.

4.3. Optimization Comparison of 10 Benchmark Test
Functions. In order to better test the effectiveness of the
improved marine predator algorithm ACMPA, 10 different
test functions in the benchmark test function were selected
to conduct experiments on the algorithm. Among the 10 test
functions, f1 − f4 are unimodal functions, and the peak
value of this function has only one optimal value, which can
be used to test the convergence speed of different algorithms.
f5 − f8 are multimodal functions, which have a large
number of local optimal values. If the tested function can
effectively achieve good convergence accuracy, it indicates
that the algorithm has the ability to jump out of the local
optimal solution. f9 − f10 are multichannel low-dimen-
sional functions with a small number of local minima, which

Calculate population fitness and construct elite
matrix to realize Marine memory storage

Begin

Initialize the
population

I<N/2

Formula (9) is used to replace
the original R value, and the

prey position is updated
according to Formula (3)

Formula (8) is used to change
the step size adaptively, and
the prey position is updated

according to Formula (4)

Formula (9) is used to replace
the original R value, and the

prey position is updated
according to Formula (2)

Formula (8) is used to change
the step size adaptively, and
the prey position is updated

according to Formula (6)

Recalculate the fitness of each
prey and update the predator

position

Calculate and update FADs
effect

Finish

No

Yes

Yes No

Iter <T

Max_iter/3<Iter<2*Max_iter/3Iter<Max_iter/3 Iter>2*Max_iter/3

Figure 1: Algorithm flowchart.

Table 1: Algorithm parameter settings.

Algorithm Parameter
ACMPA FADs � 0.2; P � 0.5
MPA FADs � 0.2, P � 0.5, and R � rand
MFO b � 1
ChoA r � rand; μ ∈ [0, 1]

SCA a � 2; r4 � rand

Scientific Programming 5

can be used to test the comprehensive ability of the function.
.e details of each function are listed in Table 2.

In order to ensure the rationality of the algorithm, the
ACMPA and other comparison algorithms were indepen-
dently run 30 times, and their average value and standard
deviation were recorded. .e best results were marked in a
deepened font. Table 2 shows the average and standard
deviation of the five algorithms. Figure 1 shows the curve
convergence of each algorithm under 10 test functions.

It can be seen from Table 3 that the improved ACMPA
generally shows good results, ACMPA has been greatly
improved on unimodal functions f1, f2, f3, and f4, and
the highest solution accuracy reaches 1.17788e-82, which
shows that, after adding adaptive weight and chaos factor,
the algorithm step size gradually decreases with the increase
of iteration times, and the particles in the space are dis-
tributed evenly, which balances the exploration and ex-
ploitation stages of the algorithm. Formultimodal
functions f5, f6, f7, and f8, the algorithm basically

reaches the optimal value, which shows that the algorithm
can jump out of the local optimal solution. For multi-
channel low-dimensional functions f9 and f10, the im-
proved algorithm and the original algorithm are both
optimal in terms of average value, and ACMPA is better in
standard deviation.

As shown in Figure 2, on unimodal functions f1, f2, f3,
and f4, the convergence speed and convergence accuracy of the
ACMPA are greatly improved compared with MPA, which
indicates that the global search ability of the algorithm is im-
proved in the global search space. For multimodal functions,
f5, f6, an df7, ACMPA, MPA, ChOA, and SCA have good
convergence accuracy, but ACMPA is faster than other algo-
rithms in convergence speed, which indicates that the algorithm
has the ability to jump out of the local optimum after falling into
the local optimum. Formultichannel low-dimensional functions
f8 and f9, the convergence performance of ACMPA is also
optimal. Generally speaking, ACMPA has a certain improve-
ment in convergence speed and convergence accuracy.

Table 2: Introduction of benchmark functions.

Function Dim Scope Minimum
f1(x) � 􏽐

D
i�1 x2

i 30 [−100, 100] 0
f2(x) � 􏽐

D
i�1 |xi| + 􏽑

D
i�1 |xi| 10 [−10, 10] 0

f3(x) � 􏽐
D
i�1 (􏽐

i
j−1 xj)

2 10 [−100, 100] 0
f4(x) � max |xi|, 1≤ i≤ n􏼈 􏼉 10 [−100, 100] 0
f5 � 􏽐

D
i�1 ix4

i + random[0, 1) 10 [−1.28, 1.28] 0
f6(x) � 􏽐

D
i�1[x2

i − 10 cos (2πxi)] + 10D 10 [−5.12, 5.12] 0

f7(x) � −20 exp (−0.2
����������

1/D 􏽐
D
i�1 x2

i

􏽱

) − exp (1/D 􏽐
D
i�1 cos (2πxi)) + 20 + e 10 [−32, 32] 0

f8(x) � 1/4000􏽐
D
i�1 x2

i − 􏽑
D
i�1 cos (xi/

�
i

√
) + 1􏽐

D
i�1 x2

i
10 [−600, 600] 0

f9(x) � (1/500 + 􏽐
25
i�1 1/j + 􏽐

2
i�1 (xi aij)

6)− 1 2 [−65.536, 65.536] 0
f10(x) � 􏽐

11
i�1[ai − x1(b2i + bix2)/b2i + bix3 + x4]

2 4 [−5, 5] 0

Table 3: Comparison of optimization results of benchmark test functions.

Function Result ACMPA ChoA MFO MPA SCA

f1 Ave 1.4547e-84 3.3747e-75 1.2929e-32 4.4914e-65 3.3693e-35
Std 2.3378e-84 1.7719e-74 2.2985e-32 1.6501e-64 1.3574e-34

f2 Ave 6.6421e-57 3.6967e-47 1.8681e-19 8.0445e-39 1.0473e-24
Std 2.4495e-56 1.9534e-48 1.7940e-19 1.3648e-38 1.5119e-24

f3 Ave 1.08424e-50 1.1830e-37 8.0371e-12 1.5264e-34 9.0355e-17
Std 3.71256e-60 6.4715e-37 1.5424e-11 5.7895e-34 3.3919e-16

f4 Ave 1.7589e-39 1.2554e-24 3.0230e-10 2.3507e-27 5.3163e-13
Std 5.7318e-39 3.7076e-24 6.7830e-10 2.9474e-27 1.2047e-12

f5 Ave 1.1536e-04 1.1885e-04 1.3902e-03 1.9046e-04 3.0483e-04
Std 1.0551e-04 7.8796e-05 5.5616e-04 1.2141e-04 2.8847e-04

f6 Ave 0 5.5816e-09 13.4674 0 0
Std 0 3.0572e-08 11.5827 0 0

f7 Ave 8.8817e-16 6.0527 4.5593e-15 8.8817e-16 3.8487e-15
Std 0 9.1719 6.4863e-16 0 1.3466e-15

f8 Ave 0 0.0282 0.1265 0 0.0363
Std 0 0.0602 0.0619 0 0.0945

f9 Ave 0.9980 0.9980 1.0311 0.9980 1.0641
Std 0 1.3084e-06 0.1814 0 0.3622

f10 Ave 3.0748e-04 1.2484e-03 8.9213e-04 3.0748e-04 6.8870e-04
Std 8.5518e-19 1.7323e-05 2.9622e-04 3.8762e-18 4.0040e-04

6 Scientific Programming

In order to further test the effectiveness of the improved
algorithm, the Wilcoxon signed-rank test is used to test the
algorithm. .eWilcoxon signed-rank test is a nonparametric
test method, which can analyze the statistical parameters of

the optimized algorithm. In this experiment, the p-value index
is used to judge whether there is a statistically significant
difference between the two algorithms. When the p-value is
less than 0.05, it indicates that there is a significant difference

x2 x1

x2 x1

x2 x1

x2 x1

x2 x1

x2 x1

f 1 f 2

f 3 f 4

f 5 f 6

f 7 f 8

f 9 f 10

Objective spaceObjective space

Objective space

Objective space Objective space

Objective spaceObjective space

Objective space

10-40

10-15

10-20

10-4

10-3

10-2

10-1

10-15

10-10

10-5

100

105

10-10

10-5

100

105

10-30

10-20

10-10

100

1010

10-40

10-4

10-15

100

101

10-10

10-5

100

105

10-2

10-0

102

10-20

100

Be
st

sc
or

e o
bt

ai
ne

d
so

 fa
r

Be
st

sc
or

e o
bt

ai
ne

d
so

 fa
r

Be
st

sc
or

e o
bt

ai
ne

d
so

 fa
r

Be
st

sc
or

e o
bt

ai
ne

d
so

 fa
r

Be
st

sc
or

e o
bt

ai
ne

d
so

 fa
r

Be
st

sc
or

e o
bt

ai
ne

d
so

 fa
r

Be
st

sc
or

e o
bt

ai
ne

d
so

 fa
r

Be
st

sc
or

e o
bt

ai
ne

d
so

 fa
r

100

-100 -100

100
0

0 0

501

F4
(x

1,x
2)

100

5

-5 -5

5
0

0 0

x2 x1

5

-5 -5

50 0

40
60

20F6
(x

1,x
2)

80

0

50

F8
(x

1,x
2)

100

500

-500 -500

500

0

0 0

4

#105

2

F1
0(

x 1,x
2)

100
0

-100 -100
0

100

1
0

2
3

F3
(x

1,x
2) 4

5
#104

1
0

0.5
0-0.5

-1 -1 -0.5 0 0.5

2
3

F5
(x

1,x
2)

10
5
0

0 0

15
20

20

-20-20

20

F7
(x

1,x
2)

200
100

100 100

-100-100

0

0 0

300
400

F9
(x

1,x
2)

-100
0

100

x2 x1 0
Iteration

1000500

Objective space
100

10-50

10-100Be
st

sc
or

e o
bt

ai
ne

d
so

 fa
r

-100
0

100
0

0.5
1

F1
(x

1,x
2) 1.5

2
#104

Function Topology

Function TopologyFunction Topology

Function Topology Function Topology

Function TopologyFunction Topology

Function Topology Function Topology

x2 x1

Objective space

10-40

10-20

100

Be
st

sc
or

e o
bt

ai
ne

d
so

 fa
r

-100-100
100

0100
0 0

5000

F2
(x

1,x
2)

10000

Function Topology

0
Iteration

1000500

0
Iteration

10005000
Iteration

1000500

0
Iteration

1000500

0
Iteration

1000500

0
Iteration

1000500 0
Iteration

1000500

0
Iteration

1000500

0
Iteration

1000500

ACMPA
MPA
MFO

ChOA
SCA

Figure 2: Convergence curves of various algorithms.

Scientific Programming 7

between the proposed algorithm and the comparison algo-
rithm. Table 4 shows the comparison of experimental results
between the ACMPA and other optimization algorithms.

Table 4 shows the simulation results of the Wilcoxon
signed-rank test. It can be seen from the table that the sig-
nificance level p values are all less than 0.05, whichmeans that
theACMPAhas significant advantages over other algorithms.

4.4. CEC2015 Test Set Experimental Comparison. In order to
verify that the ACMPA has better optimization perfor-
mance, this paper selects 15 test functions in the CEC2015
test set [33] to compare five optimization algorithms, among
which C1 − C2 test functions are unimodal functions, C3 −

C9 are multimodal functions, C10 − C12 are hybrid func-
tions, and C13 − C15 are composition functions. .e con-
vergence speed and accuracy of the function and the overall
performance of the algorithm are tested, respectively. In this
experiment, the population size N � 100 and the maximum

iterationMax iter � 1000 were set..e experimental results
are best expressed in a deepened font. .e results of the
ACMPA and other algorithms are compared in Table 5.

From Table 5, it can be seen that the test functions C1 −

C15 and the improved algorithm ACMPA can achieve the
best data in average and standard deviation compared with
the other four algorithms, which effectively verifies that the
MPA can improve the overall performance of the algorithm
after adding adaptive weight and chaos factors. So far, the
feasibility and effectiveness of the ACMPAhave been proved.

4.5. CEC2017 Test Set Experimental Comparison. In order to
further verify the effectiveness of the ACMPA, the CEC2017
test set [34] is selected to compare the ACMPA and four
algorithms such as MPA, MFO, ChoA, and SCA. .e
CEC2017 test set has a total of 30 test functions, among
which F1 − F3 are unimodal functions, to test the

Table 5: Comparison of CEC2015 test function algorithms.

Function Result ACMPA MPA MFO ChOA SCA

C1 Ave 100 100 1.4367e + 02 1.9867e + 02 1.9406e + 02
Std 6.2236e-12 8.3599e-10 31.3966 15.6369 24.4470

C2 Ave 200 200 2.0133e + 02 2.2343e + 02 2.2912e + 02
Std 3.5954e-09 4.1162e-09 7.3185 15.1857 15.6238

C3 Ave 300 300 3.0004e + 02 3.0004e + 02 3.0003e + 02
Std 5.5409e-13 1.2952e-12 0.1830 0.5332 0.1304

C4 Ave 400.0102 400.0524 400.6603 401.7285 401.8974
Std 0.0064 0.0460 0.3867 0.5680 0.3179

C5 Ave 500 500 500 500.3483 500.1672
Std 3.9467e-13 8.8980e-13 0.00e + 00 0.7670 0.0808

C6 Ave 600 600 601.3449 608.7733 612.8731
Std 1.2219e-10 1.4504e-10 2.6639 4.4299 5.1286

C7 Ave 699.9999 699.9999 700.5513 705.1753 701.6148
Std 4.8709e-11 1.2783e-10 1.1859 5.3929 0.9748

C8 Ave 800 800 800.0203 802.0496 800.4230
Std 2.3476e-10 1.1634e-09 4.3201e-02 2.2464 0.07425

C9 Ave 907.0017 907.6713 933.6712 949.6334 922.3368
Std 1.2232 1.4662 3.9071 4.7009 14.8927

C10 Ave 1.0701e + 03 1.0703e + 03 1074 1.2937e + 04 8.6890e + 03
Std 1.0522 1.8241 1.9033e + 03 5.6000e + 02 1.5992e + 03

C11 Ave 1100.4948 1100.6903 1102.2503 1105.5146 1104.4510
Std 0.6012 0.9643 1.0535 3.2987 0.7902

C12 Ave 1200.2276 1200.2466 1306.1335 1708.0688 1414.3597
Std 5.1716e-02 0.0631 87.7573 1.9049e + 02 24.9596

C13 Ave 1353.8668 1358.6005 1516.5927 2091.4406 1685.0403
Std 56.9207 59.8232 67.9113 3.3472e + 02 36.5153

C14 Ave 1538.0583 1586.8077 2473.4767 2698.8810 2526.0234
Std 142.4978 189.4950 1.9160e + 02 1.9410e + 02 138.0687

C15 Ave 1640.0000 1640.0013 1683.5216 2152.7014 1816.9235
Std 1.5346e-05 8.5698e-04 75.7575 1.6498e + 02 40.3826

Table 4: Wilcoxon signed-rank test results.

Function p-value
ACMPA to CHoA 0.0077
ACMPA to MFO 0.0051
ACMPA to MPA 0.0431
ACMPA to SCA 0.0077

8 Scientific Programming

convergence speed and accuracy of the algorithm. .e F2
function has been ruled out due to instability [35]. F4 − F10
multimodal functions test whether the function can

effectively jump out of the local optimal solution. F11 − F20
are hybrid functions, and F21 − F30 are composite functions
to test the overall performance of the function.

Table 6: Comparison of CEC2017 test function algorithms.

Function Result ACMPA MPA MFO ChOA SCA

F1 Ave 100.0028 100.0031 2.3422e + 06 1.1551e + 09 5.6391e + 08
Std 4.3941E-04 2.3829e-03 1.2789e + 07 1.1074e + 09 2.1562e + 08

F3 Ave 300 300 5.8487e + 03 1.8962e + 03 1.0424e + 03
Std 2.2027e-08 2.7266e-08 8.2107e + 03 6.3536e + 02 3.1214e + 02

F4 Ave 400 400 4.1325e + 02 5.3241e + 02 4.3947e + 02
Std 1.1974e-07 8.4773e-08 24.8459 1.1234e + 02 23.0909

F5 Ave 5.0735e + 02 5.0776e + 02 5.2609e + 02 5.5061e + 02 5.4575e + 02
Std 2.2033 2.4566 8.7353 7.8088 8.0603

F6 Ave 6.0000e + 02 6.0007e + 02 6.0072e + 02 6.2374e + 02 6.1572e + 02
Std 1.0454e-04 1.5006e-04 2.3146 7.1808 3.2753

F11 Ave 1.1012e + 03 1.1015e + 03 1.1953e + 03 1.2437e + 03 1.1799e + 03
Std 0.8453 0.8496 72.8008 78.4126 30.4272

F12 Ave 1.2060e + 03 1.2045e + 03 4.9034e + 05 3.9895e + 05 1.0786e + 07
Std 5.0054 5.6945 1.8664e + 06 3.7667e + 06 8.7799e + 06

F13 Ave 1.3036e + 03 1.3040e + 03 1.0345e + 04 1.7719e + 04 2.2340e + 04
Std 2.0029 2.0985 1.0702e + 04 7.7592e + 03 1.8245e + 04

F14 Ave 1.4030e + 03 1.4025e + 03 2.0643e + 03 4.7000e + 03 1.5597e + 03
Std 2.00654 4.4315 6.7003e + 02 1.4554e + 03 53.5723

F15 Ave 1.5002e + 03 1.5005e + 03 4.8513e + 03 8.6770e + 03 2.8796e + 03
Std 0.3083 0.4553 3.3089e + 03 7.1903e + 03 1.5268e + 03

F16 Ave 1.6008e + 03 1.6008e + 03 1.6927e + 03 1.8382e + 03 1.6958e + 03
Std 0.3727 0.5454 92.0091 80.4113 51.4587

F17 Ave 1.7087e + 03 1.7288e + 03 1.7938e + 03 1.7735e + 03 1.7701e + 03
Std 7.3446 8.1711 19.9024 16.0423 12.5332

F18 Ave 1.8010e + 03 1.8035e + 03 2.0567e + 04 2.9153e + 04 8.1438e + 04
Std 7.4186e-01 2.7993 1.4960e + 04 1.2987e + 04 5.3922e + 04

F19 Ave 1.9003e + 03 1.9011e + 03 8.6479e + 03 1.6903e + 04 4.4967e + 03
Std 0.3909 0.4350 8.8960e + 03 2.6356e + 03 3.8910e + 03

F20 Ave 2.0113E + 03 2.0095e + 03 2.0486e + 03 2.1414e + 03 2.0805e + 03
Std 5.2539 9.0082 45.6560 66.5820 15.5710

F21 Ave 2200 2200 2.2630e + 03 2.2824e + 03 2.2187e + 03
Std 1.1151e-05 1.2767e-05 65.2106 64.8760 33.6048

F22 Ave 2.2406e + 03 2.2508e + 03 2.3040e + 03 2.7652e + 03 2.3496e + 03
Std 49.7553 50.7507 16.5592 5.4232e + 02 31.2560

F23 Ave 2.5728e + 03 2.5815e + 03 2.6247e + 03 2.6529e + 03 2.6503e + 03
Std 38.4263 85.5243 10.0225 5.1754 7.8379

F24 Ave 2.4933e + 03 2500 2.7504e + 03 2.7954e + 03 2.7710e + 03
Std 2.91e-06 25.3706 48.0576 1.8565e + 01 44.2710

F25 Ave 2.8382e + 03 2.8778e + 03 2.9309e + 03 2.9838e + 03 2.9563e + 03
Std 121.12 75.5298 27.5676 54.7609 17.2074

F26 Ave 2.6832e + 03 2.6933e + 03 2.9820e + 03 3.5103e + 03 3.0519e + 03
Std 101.48 101.4840 34.8850 4.1445e + 02 26.8695

F27 Ave 3.0885e + 03 3.0887e + 03 3.0924e + 03 3.0991e + 03 3.1019e + 03
Std 0.6793 0.7179 1.6937 4.3551 2.1492

F28 Ave 3.0600e + 03 3.0800e + 03 3.2907e + 03 3.2405e + 03 3.2512e + 03
Std 54.7722 76.1120 1.0547e + 02 6.7944 51.4405

F29 Ave 3.1328e + 03 3.1362e + 03 3.4067e + 03 3.2686e + 03 3.4146e + 03
Std 4.9434 4.6382 1.0321e + 02 60.9215 21.9284

F30 Ave 3.3971e + 03 3.3970e + 03 4.4095e + 05 2.0085e + 06 6.3930e + 05
Std 4.3737 3.9169 3.1864e + 05 2.6075e + 06 4.2434e + 05

Scientific Programming 9

Set dimension D � 10, the population number N � 100,
and the maximum number of iterations Max iter � 1000.
.e average value and standard deviation of each algorithm
were recorded independently 30 times, and the optimal
value was marked with a deepened font. .e results of the
ACMPA and other comparison algorithms are shown in
Table 6.

It can be seen from Table 6 that the ACMPA significantly
improves the average and standard deviation of 29 test
functions. On a few functions F6, F10, F14, F16, F20, and
F30, the average value of the improved function ACMPA
fails to reach the optimal value, but in other test functions,
the average value is better than other comparison algo-
rithms. It shows that the convergence speed and conver-
gence precision of the marine predators algorithm are

improved by adding adaptive weight and chaos factor, which
verifies the effectiveness of the improved algorithm.

4.6. Runtime Overhead. .e runtime overhead of each al-
gorithmis shown in the table (the algorithmis calculatedwithin
theCEC2017 function library, the number of populations is 30,
and the number of iterations is 100). From the data in Table 7,
we can conclude that the difference in running time between

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
City location

0 0.2 0.4 0.6 0.8 1 1.2 1.4
X

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Y

Traveling salesman trajectory

0 1000 2000 3000 4000 5000
Maxiter

4

6

8

10

12

14

16

18

Cu
rr

en
t o

pt
im

al
 so

lu
tio

n

Convergence curve

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
City location

0 0.2 0.4 0.6 0.8 1 1.2 1.4
X

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Y

Traveling salesman trajectory

0 1000 2000 3000 4000 5000
Maxiter

4

6

8

10

12

14

16

18

Cu
rr

en
t o

pt
im

al
 so

lu
tio

n

Convergence curve

(b)

Figure 3: Comparative experimental diagram of the two algorithms. (a).e shortest path length of theMPA. (b).e shortest path length of
the AMPA.

Table 7: .e results of runtime overhead.

Algorithm Runtime overhead (s)
MPA 40.73
ACMPA 44.41
SCA 15.76
MFO 17.27
ChOA 145.84

Table 8: Shortest path length of two algorithms.

Algorithm MPA ACMPA
Mean 5.522221 5.135867
Std 0.268217 0.094553

10 Scientific Programming

the improved algorithm and the previous algorithm is not
significant. But from the analysis above, we can conclude that
the effect of the improved algorithm increases significantly.

5. ACMPA Based on Traveling
Salesman Problem

5.1. Traveling Salesman Problem Description. .e TSP
problem, also known as the salesman problem, is mainly
described as a salesman going to sell products in several
cities. .e salesman starts from a certain city and requires to
pass through each city, and each city can only be visited so
that the total path is the shortest. Set the city node set as
X � x1, x2, ..., xn􏼈 􏼉 and the distance between cities as
d(xi, xi+1), and the objective function of the shortest path is

f � min 􏽘 d xi,xi+1() + d xn,x1(). (10)

5.2. Traveling SalesmanAlgorithmTest. .e number of cities
is set as 40, and the maximum iteration is 5000. In this
experiment, the ACMPA and MPA are compared and an-
alyzed. Table 8 shows the optimal access path length of 40
cities and the path length calculated by the two algorithms.
Figures 3(a) and 3(b) show the shortest path length results of
the two algorithms, respectively. For the TSP problem, we
conducted 30 experiments and took the mean and variance
to compare the degree of superiority of the results, and the
results are shown in Table 8. From Table 8, we can get the
following conclusions. .e improved MPA has a better way
to handle this problem.

It can be seen from Table 8 and Figure 3 that the path
simulation of 40 city coordinates and the path optimization
using the ACMPA are closer to the optimal solution, which
has a great improvement in the path optimization compared
with the MPA. In general, the ACMPA is effective in solving
the traveling salesman problem.

6. Conclusion

Aiming at the problems of the MPA, like unbalanced ex-
ploration and exploitation, vulnerability to local extreme
points, and so on, this paper proposes a marine predators
algorithm based on adaptive weight and chaos factor.

Firstly, the adaptive weight is set as a dynamic step, and a
large step length is given in the early stage of the algorithm to
carry out an effective global search, which improves the
convergence speed of the algorithm. At the same time, with
the increase of the number of iterations, the step length is
gradually reduced, which is more conducive to local careful
search in the later stage and maintains the balance between
algorithm exploration and exploitation. Secondly, logistic
chaos mapping is used to replace random numbers; due to
the ergodicity and randomness of the chaotic system, the
scattered particles in space can effectively avoid repeated
folding and improve the ability of the algorithm to fall into
the local optimal solution. Applying the ACMPA to the TSP
problem effectively improves the optimization accuracy of
the original algorithm in practical applications. Finally, the

application algorithm is compared and tested, which proves
the effectiveness of the ACMPA. In the future research, the
improved marine predators algorithm will be applied to
large-scale engineering practice to further exploit the ad-
vantages of the optimization algorithm.

Data Availability

.e data used to support the findings of the study are
available from the corresponding author upon request.

Conflicts of Interest

.e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Authors’ Contributions

Shujun Liang contributed to conceptualization, methodol-
ogy, investigation, original draft preparation, and review and
editing of the paper. Youmei Pan contributed to investi-
gation and writing the original draft. Huanlong Zhang
contributed to methodology and editing and review of the
paper. Jie Zhang contributed to conceptualization and
methodology. Fengxian Wang contributed to conceptuali-
zation, methodology, and investigation. Zhiwu Chen con-
tributed to review and editing of the paper.

Acknowledgments

.is work was supported by the National Natural Science
Foundation of China (61873246, 62072416, 62006213,
6167241, and 61702462), the Program for Science & Tech-
nology Innovation Talents in Universities of Henan Province
(21HASTIT028), the Natural Science Foundation of Henan
(202300410495), and the Zhongyuan Science and Tech-
nology Innovation Leadership Program (214200510026).

References

[1] D. L. Applegate, R. E. Bixby, V. Chvátal, and J. Cook, “.e
traveling salesman problem,” 9e Traveling Salesman Prob-
lem, Princeton university press, 2011.

[2] H. Zhang, Y. Pan, J. Zhang, K. Dai, and Y. Feng, “Tent chaos
and nonlinear convergence factor whale optimization algo-
rithm,” International Journal of Innovative Computing, In-
formation and Control, vol. 17, no. 2, pp. 687–700, 2021.

[3] Q. Meng and M. Zhang, “MULTI-RESOURCE EQUILIB-
RIUM OPTIMIZATION OF SCIENTIFIC research PROJ-
ECTS based ON PIGEON COLONY algorithm,”
International Journal of Innovative Computing, Information
and Control, vol. 16, no. 5, pp. 1667–1680, 2020.

[4] X. Ran, X. Zhou, M. Lei, W. Tepsan, and W. Deng, “A novel
k-means clustering algorithm with a noise algorithm for
capturing urban hotspots,” Applied Sciences, vol. 11, no. 23,
Article ID 11202, 2021.

[5] M. M. Krishna, N. Panda, and S. K. Majhi, “Solving traveling
salesman problem using hybridization of rider optimization
and spotted hyena optimization algorithm,” Expert Systems
with Applications, vol. 183, Article ID 115353, 2021.

Scientific Programming 11

[6] G. G. Wang, S. Deb, and Z. Cui, “Monarch butterfly opti-
mization,” Neural Computing & Applications, vol. 31, no. 7,
pp. 1995–2014, 2019.

[7] S. Li, H. Chen, M.Wang, A. A. Heidari, and S. Mirjalili, “Slime
mould algorithm: a new method for stochastic optimization,”
Future Generation Computer Systems, vol. 111, pp. 300–323,
2020.

[8] G. G. Wang, “Moth search algorithm: a bio-inspired meta-
heuristic algorithm for global optimization problems,”
Memetic Computing, vol. 10, no. 2, pp. 151–164, 2018.

[9] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and
H. Chen, “Harris hawks optimization: algorithm and appli-
cations,” Future Generation Computer Systems, vol. 97,
pp. 849–872, 2019.

[10] A. Faramarzi, M. Heidarinejad, S. Mirjalili, and A. H. Gandomi,
“Marine predators algorithm: a nature-inspired metaheuristic,”
Expert Systems with Applications, vol. 152, Article ID 113377,
2020.

[11] M. Abdel-Basset, R. Mohamed, M. Elhoseny,
R. K. Chakrabortty, and M. Ryan, “A hybrid COVID-19
detection model using an improved marine predators algo-
rithm and a ranking-based diversity reduction strategy,” IEEE
Access, vol. 8, pp. 79521–79540, 2020.

[12] M. Abdel-Basset, R. Mohamed, M. Elhoseny, A. K. Bashir,
A. Jolfaei, and N. Kumar, “Energy-aware marine predators
algorithm for task scheduling in IoTbased fog computing
applications,” IEEE Transactions on Industrial Informatics,
2020.

[13] M. Abd Elaziz, S. B..anikanti, I. A. Ibrahim et al., “Enhanced
Marine Predators Algorithm for identifying static and dy-
namic Photovoltaic models parameters,” Energy Conversion
and Management, vol. 236, Article ID 113971, 2021.

[14] C. Ma, G. H. Zeng, and B. Huang, “Marine Predator Algo-
rithm Based on Chaotic Opposition Learning and Group
Learning,” Computer Engineering and Applications, vol. 58,
pp. 1–14, 2021.

[15] M. Oszust, “Enhanced Marine Predators Algorithm with
Local Escaping Operator for Global Optimization,” Knowl-
edge-Based Systems, vol. 232, Article ID 107467, 2021.

[16] M. Abdel-Basset, R.Mohamed,M. Elhoseny, R. K. Chakrabortty,
and M. Ryan, “A hybrid COVID-19 detection model using an
improved marine predators algorithm and a ranking-based di-
versity reduction strategy,” IEEE Access, vol. 8, pp. 79521–79540,
2020.

[17] D. Chu, H. Chen, and G. Wang, “Whale optimization algo-
rithm based on adaptive weight and simulated annealing,”
Acta Electronica Sinica, vol. 47, no. 5, pp. 992–999, 2019.

[18] H. Deng, J. Li, and K. Hu, “Particle swarm optimization based
on imitate neighborhood velocity strategy,” Computer Engi-
neering And Design, vol. 41, no. 10, pp. 2803–2811, 2020.

[19] Y. Zhang and F. Chen, “A modified whale optimization al-
gorithm,” Computer Engineering, vol. 44, no. 03, pp. 208–219,
2018.

[20] M. A. Soliman, H. M. Hasanien, and A. Alkuhayli, “Marine
predators algorithm for parameters identification of triple-
diode photovoltaic models,” IEEE Access, vol. 8,
pp. 155832–155842, 2020.

[21] M. Abdel-Basset, R. Mohamed, M. Elhoseny, A. K. Bashir,
A. Jolfaei, and N. Kumar, “Energy-aware marine predators
algorithm for task scheduling in IoT-based fog computing
applications,” IEEE Transactions on Industrial Informatics,
vol. 17, no. 7, pp. 5068–5076, 2021.

[22] M. Weiel, M. Götz, A. Klein, D. Coquelin, R. Floca, and
A. Schug, “Dynamic particle swarm optimization of

biomolecular simulation parameters with flexible objective
functions,” Nature Machine Intelligence, vol. 3, pp. 727–734,
2021.

[23] X. L. Zhang, Q. F. Wang, and W. L. Ji, “An improved particle
swarm optimization algorithm for adaptive inertial weight,”
Microelectronics & Computer, vol. 36, no. 3, pp. 66–70, 2019.

[24] D.M. Zhang, Z. Y. Chen, and Z. Y. Xin, H. Zhang andW. Yan,
Salp swarm algorithm based on craziness and adaptive,”
Control and Decision, vol. 35, no. 9, pp. 2112–2120, 2020.

[25] H. G. Zhu, L. Q. Tian, and N. Chen, “Dynamic adaptive
inertial weight particle swarm optimization algorithm based
on chaos optimization,” Journal of North Institute of Science
and Technology, vol. 18, no. 5, pp. 88–95, 2020.

[26] R. Sheik and A. Kaveh, “A survey of chaos embedded meta-
heuristic algorithms, International Journal of Optimization in
Civil Engineering,” Int.j.optim.civil Eng, vol. 3, no. 4,
pp. 617–633, 2013.

[27] F. B. Demir, T. Tuncer, and A. F. Kocamaz, “A chaotic op-
timization method based on logistic-sine map for numerical
function optimization,” Neural Computing & Applications,
vol. 32, no. 17, pp. 14227–14239, 2020.

[28] H. M. Mohammed, S. U. Umar, and T. A. Rashid, “A sys-
tematic and meta-analysis survey of whale optimization al-
gorithm,” Computational Intelligence and Neuroscience,
vol. 2019, p. 1, 2019.

[29] Z. Song, S. Gao, Y. Yu, J. Sun, and Y. Todo, “Multiple chaos
embedded gravitational search algorithm,” IEICE Transac-
tions on Information and Systems, vol. E100.D, no. 4,
pp. 888–900, 2017.

[30] R. Zhuo and W. Q. Wang, “Self-adaptive salp swarm algo-
rithm with chaotic mapping and dynamic learning,” Com-
puter Engineering And Design, vol. 42, no. 7, pp. 1963–1972,
2021.

[31] S. Mirjalili, “Moth-flame optimization algorithm: a novel
nature-inspired heuristic paradigm,” Knowledge-Based Sys-
tems, vol. 89, pp. 228–249, 2015.

[32] M. Khishe and M. R. Mosavi, “Chimp optimization algo-
rithm,” Expert Systems with Applications, vol. 149, Article ID
113338, 2020.

[33] S. Mirjalili, “SCA: a sine cosine algorithm for solving opti-
mization problems,” Knowledge-Based Systems, vol. 96,
pp. 120–133, 2016.

[34] Q. Chen, B. Liu, Q. Zhang, J. Liang, P. Suganthan, and B. Qu,
“Problem Definitions and Evaluation Criteria for CEC 2015
Special Session on Bound Constrained Single-Objective
Computationally Expensive Numerical Optimization,”
Computational Intelligence Laboratory, Zhengzhou University,
Technical Report”, Zhengzhou, China and Nanyang Tech-
nological University, Zhengzhou, China, 2014.

[35] A. W. Mohamed, A. A. Hadi, A. M. Fattouh, and K. M. Jambi,
“LSHADE with semi-parameter adaptation hybrid with
CMA-ES for solving CEC 2017 benchmark problems,” IEEE
Congress on evolutionary computation, pp. 145–152, Donostia,
Spain, June 2017.

12 Scientific Programming

