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Homogeneous cross-project defect prediction (HCPDP) aims to apply a binary classi�cation model built on source projects to a
target project with the same metrics. However, there is still room for improvement in the performance of the existing HCPDP
models.�is study has proposed a novel approach, including one-to-one andmany-to-one predictions. First, we apply the Jensen-
Shannon divergence to select the most similar source project automatically. Second, relative density estimation is introduced to
choose the suitable instance of the selected source project. �ird, one-to-one and many-to-one prediction models are trained by
the selected instances. Finally, two benchmark datasets are used to evaluate the proposed approach. Compared to the state-of-the-
art methods, the experimental results demonstrated that the proposed approach could improve the prediction performance in the
F1-score, AUC, and G-mean metrics and exhibit strong adaptability to the traditional classi�ers.

1. Introduction

Software defects are inevitable in the process of software
development. Software defects a�ect user experience and
bring economic losses to enterprises. �erefore, it is nec-
essary to help software engineers accurately predict defects
in projects. Recent years have seen an increasing trend in
software defect prediction (Hall et al. [1]; Rahman et al. [2];
Yang et al. [3]; Ghotra et al. [4], Wen et al. [5]; Tang et al. [6];
Jiarpakdee et al. [7]). Previous research has demonstrated
that machine-learning approaches are suitable for software
defect prediction (Menzies et al. [8]; Zimmermann and
Nagappan [9]; Hassan [10]).�e project manager can use the
defect prediction model to determine whether a module has
defects. However, it is di£cult to build an e�ective pre-
diction model if not enough data are available. An alter-
native solution is cross-project defect prediction (CPDP)
(He et al. [11]; Ma et al. [12]; Canfora et al. [13]; Herbold
et al. [14]; Hosseini et al. [15]), which constructs the clas-
si�ers on existing projects with su£cient labeled data and
predicts the defects of the target project. When the metrics
(features) between the source and target projects are the

same, CPDP is called homogeneous cross-project defect
prediction (HCPDP).

Watanabe et al. [16] introduced themetric compensation
method, which revises the metrics of the target project based
on the metrics of the source project. Turhan et al. [17]
calculated the Euclidian distance of each instance and se-
lected the nearest instances to complete defect prediction,
but it was one-phase �ltering. Herbold [18] calculated the
feature vector of each metric and applied two strategies to
select suitable source projects. Fukushima et al. [19] pro-
posed an approach to consider the similarity between the
source and target projects by calculating the Spearman
values. Panichella et al. [20] applied ensemble learning to
improve CPDP performance. Subsequently, two-phase �l-
tering methods (He et al. [21]; He et al. [22]) were proposed
to improve the work of Turhan.�ese pieces of work selected
the source project and applied the �ltering method to
construct the prediction models. Due to the development of
transfer learning, Nam et al. [23] applied transfer compo-
nent analysis to search the feature mapping space for the
source and target projects and constructed the prediction
models. Liu et al. [24] proposed a two-phase transfer
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learning method, which used a source project estimator to
select similar projects by measuring the Euclidian distance.

Most prior studies focused on one-to-one defect pre-
diction, and their findings have proved that selecting a
suitable project is the primary solution for HCPDP. How-
ever, there is still room for improvement in the selection
process, and many-to-one defect prediction is necessary for
a natural environment. )erefore, this paper expands the
Jensen-Shannon (JS) divergence (Zheng et al. [25]) to many-
to-one defect prediction and applies a relative density
strategy together to select the training instances. Unlike
choosing the features in prior studies, JS divergence can keep
all the features and calculate the similarity of two probability
distributions for two projects directly. Moreover, prior work
(Turhan et al. [17]; He et al. [22]; Nam et al. [23]) considered
using distance or probability density to select the training
instance, but it is difficult to choose when the metric di-
mension is high.)is paper presents an alternative to solving
this problem. Although it is not easy to exactly obtain the
probability density of each instance, it is feasible to extract
the proportional relation between the probability densities
of any two instances. )erefore, the relative density is
proposed to reflect the proportional relations for selecting
instances in the projects. Finally, a novel weighting strategy
in many-to-one defect prediction is designed. )e experi-
mental results show that the proposed approach can im-
prove HCPD performance and be adaptable to different
machine-learning algorithms.

)e main contributions of this study are summarized as
follows:

(1) An approach for HCPDP based on the JS divergence
with relative density is designed.

(2) An ensemble weighting strategy based on JS diver-
gence is proposed to build a many-to-one prediction
model.

(3) )e proposed approach is not subject to change in
the learning algorithms.

To evaluate the proposed approach, two benchmark
datasets from NASA (Shepperd et al. [26]) and PROMISE
(Jureczko and Madeyski [27]) were selected. Compared to
the previous studies, one-to-one prediction exhibited av-
erage improvements in the F1-score of 13%∼119% on NASA
and 5%∼33% on PROMISE, in the AUC of 8%∼31% on
NASA and 2%∼30% on PROMISE, in the G-mean by 10%∼
68% on NASA and 3%∼56% on PROMISE; many-to-one
prediction was averagely improved by 10%∼193% of the F1-
score on NASA and 15%∼63% on PROMISE, 1%∼25% of the
AUC on NASA and 3%∼14% on PROMISE, 2%∼75% of the
G-mean on NASA and 10%∼34% on PROMISE. Moreover,
five widely used methods, including Logistic Regression
(LR), Naive Bayesian (NB), Support Vector Machine (SVM),
K-Nearest Neighbor (KNN), and Random Forest (RF), were
selected to test the proposed approach.

)e remainder of this paper is organized as follows:
Section 2 presents the preliminary results related to this
study. )e proposed approach is described in Section 3.
Section 4 gives the experiment setup. )e experiment

results and analysis are shown in Section 5, and Section 6
introduces the threats to validity. Section 7 outlines the
related work, and conclusion and future works are pro-
vided in Section 8.

2. Preliminary

)is section introduces the preliminary result related to the
proposed approach, including Jensen–Shannon divergence
and the relative density estimation strategy.

2.1. Jensen-Shannon Divergence. Feature selection is often
used in CPDP, and filtering, wrapper, and embedded
methods are the main methods. )e filtering method is very
fast, but the selected features may not be useful for the
model. )e advantage of the wrapper method is that
the selected features can improve the effect of the model, but
the disadvantage is that the model needs to be trained many
times to evaluate the effect of the features. )e embedded
method considers the advantages of the above two methods,
but it is difficult to define a criterion for judging whether a
feature is valid or not. )erefore, this paper considered
keeping all the features and chose Jensen-Shannon (JS)
divergence to measure the similarity of two probability
distributions. In probability, JS divergence has the ability to
measure the similarity of two distributions, which is based
on Kullback–Leibler (KL) divergence (Lamberti and Majtey
[28]). Compared with KL divergence, JS divergence has
symmetry, which is suitable for cross-project defect pre-
diction. For example, when A is a target project and B is a
source project, JS (A||B) can be calculated. However, JS (B||
A) is not calculated again because of the symmetry of JS
divergence, that is, the two values are the same. Hence, JS
divergence can reduce the analysis process of CPDP.
Moreover, the range of JS divergence is [0,1], and its value is
a constant, which discriminates the similarity of two projects
more accurately.

Suppose there are two distributions, P and Q, in which P
is the true distribution and Q is the approximate distribu-
tion. )en the KL divergence is defined as

KL(P‖Q) � 􏽘
x∈D

P(x)log
P(x)

Q(x)
. (1)

However, KL divergence is asymmetric. In other words,
KL(P‖Q) ≠KL(Q‖P). )en, the JS divergence is proposed,
and it is represented by (2) as follows:

JS(P‖Q) �
1
2

KL P‖
P + Q

2
􏼒 􏼓 +

1
2

KL Q‖
P + Q

2
􏼒 􏼓. (2)

)enMONTECARLO is used to calculate JS value by (3)
as follows:

DMC(P‖Q) �
1
n

􏽘

n

i�1
logp

xi( 􏼁

q xi( 􏼁
⟶ D(P‖Q). (3)

As described in work (Lamberti & Majtey [28]), )e
smaller the JS divergence, the more similar the source project
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is to the target project. In summary, JS divergence is used to
avoid the selection randomness of source projects.

2.2. Relative Density Estimation Strategy. After a similar
source project is selected, it is necessary to filter the suitable
instances as the training data. If all the instances are used,
noises and outliers will be drawn.)e probability density can
be calculated to distinguish significant instances from
outliers. However, it is difficult to obtain the exact results
when the metric dimension is high. Moreover, it is time-
consuming as well.

)is subsection presents an alternative to solving this
problem. It is not easy to exactly obtain the probability
density of each instance, but it is feasible to extract the
proportional relation of the probability densities between
any two instances. In this study, the relative density reflects
the proportional relation. To calculate the relative density, a
K-nearest neighbors-based probability density estimation
(KNN-PDE) (Fukunaga and Hostetler [29]; Mack and
Rosenblatt [30]; Yu et al. [31]; Zheng et al. [32]) alike strategy
is adopted. KNN-PDE calculates the Kth nearest neighbor
distance of a single instance to measure its probability
density distribution. When the number of instances tends to
infinity, the results obtained from KNN-PDE converge to
the actual probability density distribution.

For each training instance xi, its Kth nearest neighbors
are easy to find, and the distance between them is defined
as dK

i . If dK
i is larger, xi will hold a lower density. For noise

and outliers, they should appear in the region of low
density, so dK

i can be used to measure the significance of
each instance. To obtain a higher value for high-density
instances and a lower value for noise and outliers, the
reciprocal of dK

i can be used. )e reciprocal of the
K-nearest neighbors’ distance of each instance is named as
its relative density. )e relative density between any two
samples is inversely proportional to the Kth nearest
neighbor distance between them.

1/dK
i 1/d

K
j �

d
K
j

d
K
i

. (4)

According to (4), the selection of K is essential. If it is
too small, noise and outliers are challenging to identify, but
if it is too large, some small disjunctions will become
blurred. )e appropriate value for K was discussed in
Section 5. After the estimation process was completed, all
the instances were sorted, and then they were ready for the
instance selection.

3. Proposed Approach

As shown in Figure 1, the proposed approach includes the
training and prediction phases. First, the JS divergence
values between source and target projects are calculated to
select the most similar project. )en, the relative density
information is estimated to select the high-density instances.
Finally, the selected instances are used to train one-to-one
classifiers or many-to-one classifiers. In the prediction
phase, the trained classifiers are evaluated by the target

project, and the prediction results are obtained. Since the
proposed method does not divide the data, cross-validation
is not required. )e details are illustrated as follows.

3.1. Training Phase

3.1.1. JS divergence for Project Selection. Figure 2 describes
the project selection process based on JS divergence. )e
Gaussian mixture model (GMM� {GMMS1, GMMS2, ···,
GMMSn, GMMT}) is generated first based on the source and
target projects. )en, the JS divergence values are acquired
based on equations (2) and (3). If the calculated JS diver-
gence is the lowest, it denotes that the source project is the
most similar to the target project.

3.1.2. Relative density estimation for instance selection.
Since there are still noises and outliers in the source project,
high-density instances are required to select. As shown in
Figure 3, the number of instances N is counted first. Second,
the distance of each instance to its Kth nearest neighbor is
calculated to estimate the relative density. Finally, the in-
stances are sorted by percentage and then selected. )e
parameters of K and percent will be discussed in Section 5.

3.1.3. One-to-One Classifier Training. Some HCPDP models
are one-to-one predictions. )ey use one source project to
construct the model and predict the target project. )is
process is not complex to understand. )e learning algo-
rithms can be selected to train the classifier based on the
selected instances directly.

3.1.4. Many-to-One Classifiers Training. Besides one-to-one
prediction, many-to-one prediction methods aim to add
training data by putting all the source projects together. In
this paper, a dynamic ensemble voting strategy is proposed
to construct classifiers based on JS divergence. As shown in
Figure 4, this paper trains the subclassifiers by the selected
instances in similar source projects. )en, the percentage of
the reciprocal of JS divergence is used as the dynamic voting
weight for each subclassifier, that is, 1/JSi/1/JS1 + 1/JS2 +

. . . + 1/JSnumbers ofsourceprojects. By using this strategy, the
model could guarantee that the selected source projects have
the most significant weight, which can strengthen their
performance.

3.2. Prediction Phase. For one-to-one prediction, we input
the data of the target project into the trained classifier and
obtain the prediction label. For many-to-one prediction,
the target data is sent to each subclassifier, and then the
prediction result is obtained by multiplying the voting
strategy. Finally, the result of each classifier is added to get
the prediction result. If the prediction result is higher than
a threshold of 0.5 (Nam et al. [23]; Zhou et al. [33]; Wan
et al. [34]), an instance is more likely to be highly
defective.
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4. Experiment Setup

4.1. Environment and Datasets. )e experimental environ-
ment is a computer equipped with an Intel Xeon E3-1231
and 16GB RAM, running Windows 10 (64 bit). Two
benchmark datasets, NASA (Shepperd et al. [26]) and
PROMISE (Jureczko andMadeyski [27]; Zhou et al. [33]; Xu
et al. [35]), are collected. Table 1 shows the total number of
instances and defects, and the percentage of defective in-
stances in these datasets.

4.2. Evaluation Metrics. )ree wide metrics are used in this
study:

4.2.1. F1-Score. Software defect prediction is recognized as
a binary classification task. )e final result may be True
Positive (TP), which denotes the number of actually pre-
dicted defective modules; False Positive (FP) denotes the
number of incorrectly predicted non-defective modules;
True Negative (TN) represents the number of correctly
predicted non-defective modules, and False Negative (FN)
represents the number of incorrectly predicted defective
modules. Based on the four results, precision is used to
assess the correctness of a prediction model, Precision �

TP/(TP + FP), and recall is used to evaluate the possibility
of correctly predicted defects, Recall � TP/(TP + FN). In
general, there is a trade-off between the two metrics. For
example, by sacrificing precision, the recall value (Nam
et al. [23]) may be improved. )ese trade-offs make it
difficult to compare the performance of the prediction
models using precision and recall (Kim et al. [36]; Xu et al.
[35]; Wan et al. [34]). For this reason, this paper compares
prediction results using F1-score values, that is,
F1 − score � 2 × Precision × Recall/Precision + Recall.

4.2.2. AUC. AUC is used to estimate the area under the
receiver operating characteristic curve, obtained by a set of
(false positive rate and recall) pairs.

4.2.3. G-Mean. G-mean can reflect the performance
while the data is imbalanced, G − mean ���������������������������

(TN/TN + FP)(TP/TP + FN)
􏽰

.
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Figure 1: )e framework of the proposed approach.
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5. Results and Analysis

In this section, six one-to-one and seven many-to-one
HCPDP methods are selected to compare against the pro-
posed approach. Since all the compared methods use logistic
regression (LR) (Fan et al. [37]) as the underlying classifier,
LR is used to construct the classifier. All the methods were
implemented by following their papers.

5.1. Six One-to-One Prediction Methods Are Described as
Follows

(i) ManualDown (Zhou et al. [33]). It is a simple
unsupervised method, which performs better than
most the existing works. ManualDown has been
recognized as a new baseline method of CPDP.

(ii) Logistic regression (LR) (Fan et al. [37]). It only
constructed an LR classifier to implement one-to-
one defect prediction.

(iii) MT (Zhang et al. [38]). )e authors proposed
Multiple Transformations (MT) to improve pre-
diction performance.

(iv) MT+ (Zhang et al. [38]). )e authors improved MT
to advance the prediction results.

(v) BDA (Xu et al. [36]). )e authors proposed a bal-
anced distribution adaptation (BDA) based transfer
learning method to implement cross-project defect
prediction.

(vi) CORAL (Sun et al. [38]). A method for domain
adaptation was proposed by CORAL, which selected
a similar source project with the target project by
minimizing the distribution difference.

5.2. SevenMany-to-One Prediction Approaches Are Described
as Follows

(i) ManualDown (Zhou et al. [33]). A new baseline
method is proposed by calculating the module size.

(ii) Logistic regression (Fan et al. [37]). )e LR clas-
sifier was constructed to implement many-to-one
defect prediction.

(iii) TCA+ (Nam et al. [23]). An algorithm was pro-
posed to deal with the data pre-processing during
the many-to-one prediction process.

(iv) TPTL (Liu et al. [24]). A source project estimator
was given to select a similar source project and
construct the two-phase prediction model.

(v) ISDA (Jing et al. [39]). )e idea of subclass dis-
criminant analysis (SDA) was introduced into
cross-project defect prediction. )e authors im-
proved SDA to advance prediction performance.

(vi) TDS (Herbold et al. [18]). A method for training
data selection was given, and the authors used
Euclidean distance to measure the difference be-
tween the source and target projects.

(vii) DYCOM (Minku et al. [40]). It was a weighted sum
of multiple pre-trained models from source proj-
ects and 10% of data from the target project.

To check if the proposed approach over other methods
was statistically significant, Friedman’s test (Friedman [41])
is a favorable statistical test to compare over two ways. At 5%
significance level, Friedman’s test rejects the null hypothesis
of “equal” performance among all the comparing methods.
)en Nemenyi’s test (Demiar and Schuurmans [42]) is used
to analyze which methods differ. Moreover, we also apply
Cohen’s d (Cohen [43]) to calculate the effect size, which can
quantify the difference among the methods. )e calculation
formula is shown in (5). Table 2 shows the effect grade
corresponding to Cohen’s d.

Cohen′s d �
M1 − M2����������
σ21 + σ22􏼐 􏼑/2

􏽱 . (5)

5.3. One-to-One Defect Prediction Results and Analysis.
Firstly, Tables 3 and 4 show the JS results of two projects on
NASA and PROMISE. Since the JS result is smaller, the two
projects are more similar. )en we can select the most
similar source project for each target project. In the tables,
the smallest JS value is boldface. For example, if CM1 is the
target project, PC4 is selected as the source project.

After the source project is determined, instance selection
could be completed by following relative density estimation.
)en Tables 5–7 present the experimental results (i.e., F1-
score, AUC, and G-mean) of the proposed approach
compared with the six baseline approaches on NASA and
PROMISE. For each target project, the best results are
highlighted in bold. )e last row in the tables presents the
improvement of our approach over other baseline
approaches.

Compared with the other six methods on two datasets,
the one-to-one prediction method improved F1-score by
3.1%∼15.2% in Table 5. In Table 6, AUC is improved by
3.4%∼16.4%, and G-mean is improved by 3.5%∼20.7% in
Table 7. However, the authors ran the approach of MT+ on
“poi3.0” many times, but the result was still 0. It may not be
suitable to evaluate MT+, and the authors do not also
consider this project in their paper.

Next, Friedman’s andNemenyi’s tests are used to analyze
the performance. First, the corresponding p-values (all less
than 0.05) under the Friedman test are given in Table 8,

S1

S2

Sk

...

D1

D2

Dk

...

Classifiers Voting
(JS divergence reciprocal)

training

training

training

JS divergence for
project selection

Relative density
estimation for
data selection

Figure 4: Many-to-one classifiers training.
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which refers to the differences among the seven methods
from a global perspective. To further visually show the
differences, CD diagrams were used in Figure 5. )e average
rank of each method is marked along the axis. )is study
connected them with a thick line if these approaches are not
significantly different under the Nemenyi test. By investi-
gating Figure 5 and Table 8, the proposed approach sig-
nificantly improves the F1-score, AUC, and G-mean over all
the other methods.

In Table 9, Cohen’s d is used to calculate effect size. )e
proposed one-to-one defect prediction obtained 14 “L” on
NASA datasets, and 9 “L” on PROMISE datasets. It can be
concluded that the proposed approach is significantly better
than the other six one-to-one prediction methods.

Finally, the parameters of K and percent in Figure 6 are
analyzed. To decide the K value, we explore the parameter K

based on the number of instances, and the range is K �

􏼆
��
N

√
/4􏼇, 􏼆

��
N

√
/2􏼇, 􏼆

��
N

√
􏼇, 􏼆2

��
N

√
􏼇, 􏼆4

��
N

√
􏼇􏼈 􏼉, where N is the

number of instances. For the percent value, it represents the
proportion chosen for sorting instances after relative density
estimation, and its range was [0.1, 0.9]. Due to the space
limitation, this paper takes CM1 in NASA and ant 1.7 in
PROMISE as an example. )en the selected source projects
based on JS values are PC4 and xalan2.4, respectively.

Figure 6 plots the variance of the performance with the
variance of K and percent. On the X-axis, 0.1∼0.9 denotes the
proportion of the selected sorting instances. On the Y-axis,
0.25∼4 indicates the choice of K, and the Z-axis indicates the
values of F1-score, AUC, and G-mean, respectively. As in-
vestigated in Figures 6(a)–6(c), when K� 0.25, percent� 0.2,
the F1-score, AUC, and G-mean of PC4CM1 were 0.3609,
0.6747, and 0.6668. In Figures 6(d)–6(f), when K� 4,
percent� 0.7, the F1-score, AUC, and G-mean of xalan2.4
ant1.7 were 0.5714, 0.7338, 0.7289. Hence, the selection of K
and percent are based on the choice of the project.

5.4. Many-to-One Defect Prediction Results and Analysis.
Compared to one-to-one prediction, the proposed many-to-
one prediction has the same process for source project se-
lection and instance section. However, the exact number of
source projects needed to discuss during the process of the
many-to-one prediction, and the corresponding analysis will
be given later.

By the ensemble voting weighting strategy Tables 10–12
show the F1-score, AUC, and G-mean of many-to-one
prediction under the proposed approach compared with the
seven many-to-one methods on NASA and PROMISE. )e
best results are still highlighted in bold, and the last row
presents the improvement of the proposed approach over
other approaches.

According to the results in Table 10, the proposed many-
to-one prediction improved the F1-score by 6.7%∼22.6%. In

Table 1: Properties of projects in two data sets.

Dataset Project Number of instances Number of defects Defect%

NASA

CM1 334 42 12.2
KC1 2095 325 15.5
KC3 200 36 18
MC2 125 44 25.2
MW1 263 27 10.3
PC2 1493 16 1.1
PC4 1379 178 12.9

PROMISE

ant1.7 745 166 22.3
camel1.6 965 188 19.5
ivy2.0 352 40 11.4
jedit4.0 306 75 24.5
log4j1.0 135 34 25.2
lucene2.4 340 203 59.7
poi3.0 442 281 63.6

synapse1.2 256 86 33.6
tomcat6.0 858 77 9.0
velocity1.6 229 78 34.1
xalan2.4 723 110 15.3
xerces1.3 453 69 15.3

Table 2: Cohen’s d effectiveness level.

Cohen’s d Effectiveness level
|d|< 0.2 Negligible (N)
0.2≤ |d|< 0.5 Small (S)
0.5≤ |d|< 0.8 Medium (M)
|d|≥ 0.8 Large (L)

Table 3: )e calculated JS values of two projects on NASA.

Target
Source

CM1 KC1 KC3 MC2 MW1 PC2 PC4
CM1 0 0.6832 0.6795 0.6752 0.6782 0.6864 0.6418
KC1 0.6832 0 0.6878 0.6765 0.6899 0.6909 0.6883
KC3 0.6795 0.6878 0 0.6180 0.6499 0.6842 0.6696
MC2 0.6752 0.6765 0.6180 0 0.6839 0.6928 0.6782
MW1 0.6782 0.6899 0.6499 0.6839 0 0.6745 0.6835
PC2 0.6864 0.6909 0.6842 0.6928 0.6745 0 0.6695
PC4 0.6418 0.6883 0.6696 0.6782 0.6835 0.6695 0
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Table 11, AUC is improved by 2.3%∼7.7%, and G-mean is
improved by 5.8%∼22.8% in Table 12 on NASA and
PROMISE. In these tables, some results are still 0, the rel-
evant project may not be suitable to evaluate, and the authors
do not consider the projects in their papers.

Table 13 gives thep-values (all less than 0.05), which indicate
that all the methods have significant performance differences
between each other. Moreover, the CD diagrams in Figure 7
show that the proposed approach ranks first in all the evaluation
metrics, except ranking second in G-mean on NASA and AUC
on PROMISE. As a whole, many-to-prediction under the
proposed approach significantly improved the F1-score, AUC,
and G-mean over other many-to-one methods.

Similarly, Cohen’s d is used to evaluate effect size. )e
analysis results can be seen in Table 14 and the proposedmany-
to-one defect prediction obtained 10 “L” on NASA datasets,
and 16 “L” on PROMISE datasets. )e proposed approach is
significantly better than the other seven many-to-one pre-
diction methods, and the difference cannot be ignored.

Finally, Figure 8 illustrates the variance of the evaluation
metrics with the numbers of the source projects. It can be
found that when the number of NASA source projects is 3
and the number of PROMISE source projects are 7, the result
is optimal. For example, if “CM1” is the target project, the
selected source projects are PC4, MC2, and MW1.

5.5. Different Learning Methods Analysis. )is section aims
to prove that the proposed is not subject to machine learning
methods, that is, the prediction performance can be im-
proved regardless of which learning method is selected. We
first select four traditional learning methods that are often
applied in CPDP, and they are LR, SVM, KNN, RF, and NB,
respectively.

Since AUC can reveal the classification performance, we
take it as an example. Figure 9 shows the comparison results,
and it can be seen that AUC is improved regardless of which
type of learning method is used to construct the classifier.

Table 4: )e calculated JS values of two projects on PROMISE.

Target
Source

ant1.7 camel1.6 ivy2.0 jedit4.0 log4j1.0 lucene2.4 poi3.0 synapse1.2 Tomcat velocity1.6 xalan2.4 xerces1.3
ant1.7 0 0.6699 0.6802 0.6929 0.6892 0.6839 0.6810 0.6871 0.6929 0.6890 0.6616 0.6858
camel1.6 0.6699 0 0.6873 0.6928 0.6801 0.6731 0.6850 0.6632 0.6926 0.6820 0.6363 0.6908
ivy2.0 0.6802 0.6873 0 0.6924 0.6841 0.6690 0.6919 0.6861 0.6930 0.6849 0.6835 0.6871
jedit4.0 0.6929 0.6928 0.6924 0 0.6931 0.6916 0.6930 0.6931 0.6931 0.6930 0.6927 0.6911
log4j1.0 0.6892 0.6801 0.6841 0.6931 0 0.6750 0.6915 0.6753 0.6929 0.6767 0.6775 0.6916
lucene2.4 0.6839 0.6731 0.6690 0.6916 0.6750 0 0.6877 0.6569 0.6927 0.6873 0.6750 0.6898
poi3.0 0.6810 0.6850 0.6919 0.6930 0.6915 0.6877 0 0.6873 0.6929 0.6921 0.6905 0.6913
synapse1.2 0.6871 0.6632 0.6861 0.6931 0.6753 0.6569 0.6873 0 0.6927 0.6918 0.6702 0.6919
Tomcat 0.6929 0.6926 0.6930 0.6931 0.6929 0.6927 0.6929 0.6927 0 0.6931 0.6923 0.6931
velocity1.6 0.6890 0.6820 0.6849 0.6930 0.6767 0.6873 0.6921 0.6918 0.6931 0 0.6826 0.6890
xalan2.4 0.6616 0.6363 0.6835 0.6927 0.6775 0.6750 0.6905 0.6702 0.6923 0.6826 0 0.6880
xerces1.3 0.6858 0.6908 0.6871 0.6911 0.6916 0.6898 0.6913 0.6919 0.6931 0.6890 0.6880 0

Table 5: F1-score of the proposed approach and six one-to-one prediction methods on NASA and PROMISE.

Target Ours ManualDown LR MT MT+ BDA CORAL

NASA

CM1 0.3609 0.3062 0.2551 0.1935 0.1880 0.2932 0.2549
KC1 0.4451 0.4127 0.2847 0.1916 0.2831 0.4031 0.3526
KC3 0.3830 0.3485 0.3254 0.2273 0.2545 0.3807 0.3810
MC2 0.5882 0.5283 0.3867 0.2525 0.2857 0.4692 0.4214
MW1 0.3443 0.2658 0.1833 0.1399 0.1524 0.3201 0.2446
PC2 0.0732 0.0306 0.0550 0.0295 0.0322 0.0770 0.0571
PC4 0.3286 0.3011 0.3069 0.1133 0.2554 0.2967 0.3015

PROMISE

ant1.7 0.5714 0.5326 0.5102 0.3443 0.3831 0.5246 0.5100
camel1.6 0.3849 0.3463 0.3292 0.2889 0.2940 0.3449 0.3273
ivy2.0 0.3409 0.3271 0.3513 0.2010 0.2132 0.3666 0.3539
jedit4.0 0.5745 0.4978 0.4897 0.3690 0.3667 0.5107 0.4931
log4j1.0 0.5366 0.5347 0.5283 0.2936 0.3248 0.5956 0.5425
lucene2.4 0.6506 0.6237 0.5225 0.6705 0.7421 0.5726 0.5437
poi3.0 0.6427 0.7094 0.5610 0.6943 0.7773 0.5340 0.5774

synapse1.2 0.5946 0.5943 0.5645 0.4566 0.4751 0.5782 0.5696
Tomcat 0.4179 0.2653 0.2938 0.1612 0.1456 0.3268 0.3058

velocity1.6 0.5000 0.5521 0.4372 0.4223 0.4848 0.4605 0.4516
xalan2.4 0.4345 0.4119 0.3625 0.2816 0.2717 0.3948 0.3669
xerces1.3 0.4000 0.3878 0.3924 0.3545 0.4252 0.3568 0.3851

Average 0.4512 0.4198 0.3758 0.2992 0.3345 0.4108 0.3916
Improvement 3.1% 7.5% 15.2% 11.7% 4.0% 6.0%
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To check the difference in learning methods, Figure 10
graphically visualizes the average comparison results of the
proposed approach with five learning methods on two
datasets.When the classifier changes, the proposed approach

still works well. It proves that the proposed approach has
more robust adaptability compared to other learning
methods. However, we cannot easily judge which learning
method is better because it is affected by the datasets.

5.6. Discussion about the Time-Efficiency. To illustrate
whether the running time is acceptable, Tables 15 and 16 give
the average running time of our approach and other ap-
proaches. Compared with TPTL and ISDA, the proposed
approach needs less running time, but more than the other
methods.

Table 7: G-mean of the proposed approach and six one-to-one prediction methods on NASA and PROMISE.

Target Ours ManualDown LR MT MT+ BDA CORAL

NASA

CM1 0.6668 0.6491 0.5612 0.4651 0.4543 0.5814 0.5627
KC1 0.7225 0.7039 0.5114 0.3332 0.3961 0.6270 0.5947
KC3 0.6149 0.5954 0.5605 0.4555 0.4966 0.6050 0.6083
MC2 0.6752 0.6077 0.5078 0.3784 0.4140 0.5779 0.5382
MW1 0.7307 0.6444 0.5062 0.4215 0.4162 0.6777 0.5966
PC2 0.8348 0.6049 0.7552 0.5366 0.5617 0.7902 0.7654
PC4 0.6430 0.6268 0.6017 0.3129 0.5021 0.5759 0.5942

PROMISE

ant1.7 0.7338 0.7338 0.6961 0.5188 0.5946 0.7063 0.6959
camel1.6 0.6168 0.5730 0.5663 0.5158 0.5209 0.5806 0.5654
ivy2.0 0.7051 0.7147 0.6970 0.5143 0.5372 0.7138 0.7005
jedit4.0 0.7323 0.6699 0.6579 0.5228 0.5013 0.6769 0.6612
log4j1.0 0.6948 0.6990 0.6879 0.5209 0.5374 0.7391 0.7000
lucene2.4 0.6894 0.5923 0.5824 0.5068 0.5037 0.6351 0.5995
poi3.0 0.6892 0.6876 0.6136 0.5174 0.5000 0.6265 0.6335

synapse1.2 0.6904 0.6810 0.6646 0.5207 0.5281 0.6793 0.6705
Tomcat 0.7772 0.7040 0.6947 0.5043 0.5320 0.7308 0.7117

velocity1.6 0.6209 0.6378 0.5715 0.5381 0.6008 0.5957 0.5812
xalan2.4 0.6990 0.7256 0.6433 0.5551 0.5416 0.6738 0.6477
xerces1.3 0.6632 0.6943 0.6680 0.6342 0.7207 0.6393 0.6607

Average 0.6947 0.6603 0.6183 0.4880 0.5189 0.6543 0.6362
Improvement 3.5% 7.7% 20.7% 17.6% 4.0% 5.9%

Table 8: )e p-values under Friedman’s test among the seven
methods.

Data set p-valueF1-score p-valueAUC p-valueG-mean

NASA 7.99E-06 4.64E-06 2.10E-06
PROMISE 1.30E-04 6.12E-09 2.32E-08

Table 6: AUC of the proposed methods and six one-to-one prediction approaches on NASA and PROMISE.

Target Ours ManualDown LR MT MT+ BDA CORAL

NASA

CM1 0.6748 0.6574 0.5827 0.5193 0.5250 0.6100 0.5824
KC1 0.7225 0.7183 0.5547 0.5132 0.5403 0.6562 0.6254
KC3 0.6280 0.5969 0.5723 0.5183 0.5115 0.6243 0.6202
MC2 0.6853 0.6083 0.5412 0.5271 0.5621 0.6130 0.5665
MW1 0.7321 0.6558 0.5237 0.5438 0.5575 0.6804 0.6075
PC2 0.8404 0.6098 0.7592 0.5690 0.5793 0.7911 0.7698
PC4 0.6460 0.6334 0.6148 0.5588 0.5723 0.6049 0.6095

PROMISE

ant1.7 0.7338 0.7338 0.6961 0.5188 0.5946 0.7063 0.6959
camel1.6 0.6168 0.5730 0.5663 0.5158 0.5209 0.5806 0.5654
ivy2.0 0.7051 0.7147 0.6970 0.5143 0.5372 0.7138 0.7005
jedit4.0 0.7323 0.6699 0.6579 0.5228 0.5013 0.6769 0.6612
log4j1.0 0.6948 0.6990 0.6879 0.5209 0.5374 0.7391 0.7000
lucene2.4 0.6894 0.5923 0.5824 0.5068 0.5037 0.6351 0.5995
poi3.0 0.6892 0.6876 0.6136 0.5174 0.5000 0.6265 0.6335

synapse1.2 0.6904 0.6810 0.6646 0.5207 0.5281 0.6793 0.6705
Tomcat 0.7772 0.7040 0.6947 0.5043 0.5320 0.7308 0.7117

velocity1.6 0.6209 0.6378 0.5715 0.5381 0.6008 0.5957 0.5812
xalan2.4 0.6990 0.7256 0.6433 0.5551 0.5416 0.6738 0.6477
xerces1.3 0.6632 0.6943 0.6680 0.6342 0.7207 0.6393 0.6607

Average 0.6969 0.6628 0.6259 0.5326 0.5509 0.6620 0.6426
Improvement 3.4% 7.1% 16.4% 14.6% 3.5% 5.4%
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It is necessary to explain why our approach needs more
time. Four components are contained in our approach,
which includes JS calculation for source project selection,
relative density estimation for instance selection, classifier
building, and prediction. )e running time of classifier
building and prediction is less, and they can be ignored. In
Table 17, it can be seen that more time is used for JS cal-
culation and the relative density estimation. As relative
density estimation is based on the selected project, JS cal-
culation is the main reason our approach needs more time.
However, the calculation process does not need to be
updated all the time. Even if a new project is added to the
datasets, we only need to calculate the JS values of the new
project with other projects, instead of recalculating all the JS
values.

6. Threats to Validity

Four potential threats to the validity are described in the
following:

(1) Accuracy of experiments. Most of the compared
works do not provide codes of their methods. )is

study only analyses and implements their methods
by following their papers.

(2) Bias of evaluation measures. In this work, the wide
measures of F1-score, AUC, and G-mean are used
to show the results of the prediction. Other mea-
sures, such as recall, precision, skewed F-measure,
and Matthews correlation coefficient, are not
considered.

(3) Bias of classifiers. Classification is a significant re-
search topic, andmany learningmethods can be used
to build classifiers. As investigated in previous
studies, Logistic regression can achieve better per-
formance. )erefore, this work also applied logistic
regression to build the classifiers. Meanwhile, the
convention learning methods of SVM, KNN, Ran-
dom Forest, and Näıve Bayes are also tested to
evaluate the performance.

(4) Bias of datasets. Several benchmark data sets are
commonly used in the field of cross-project defect
prediction, such as NASA (Shepperd et al. [26]),
PROMISE (Jureczko and Madeyski [27]), AEEEM
(D’Ambros et al. [44]), Relink (Wu et al. [45]), and
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Figure 5: One-to-one comparison of average ranks in F1-score, AUC, and G-mean on two datasets. (a) NASA: F1-score. (b) NASA: AUC.
(c) NASA: G-mean. (d) PROMISE: F1-score. (e) PROMISE: AUC. (f ) PROMISE: G-mean.

Table 9: Cohen’s d of our approach and six one-to-one prediction approaches on NASA and PROMISE.

Dataset Metrics Manualdown LR MT MT+ BDA CORAL

NASA
F1-score 0.3316 (S) 0.8382 (L) 1.7424 (L) 1.3012 (L) 0.3113 (S) 0.5680 (M)
AUC 1.1918 (L) 1.6040 (L) 3.4742 (L) 3.1416 (L) 0.7857 (M) 1.2284 (L)

G-mean 1.2166 (L) 1.6853 (L) 4.0312 (L) 3.8117 (L) 0.9263 (L) 1.3265 (L)

PROMISE
F1-score 0.1913 (N) 0.6076 (M) 0.9499 (L) 0.6422 (M) 0.4063 (S) 0.5259 (M)
AUC 0.3613 (S) 1.0423 (L) 4.1741 (L) 2.7089 (L) 0.5657 (M) 0.8960 (L)

G-mean 0.3795 (S) 0.9651 (L) 2.6940 (L) 1.7510 (L) 0.5961 (M) 0.8471 (L)
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SOFTLAB (Turhan et al. [17]), and some datasets
contain different versions of each project. To
evaluate the prediction performance, this work
chose the widely used NASA and PROMISE as the
datasets.

7. Related Work

Cross-project defect prediction has become one of the most
important topics in software engineering (Rahman et al. [2];
Yang et al. [3]; Ghotra et al. [4]; Herbold et al. [14];Wen et al.
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Figure 6:)e variance of the proposed approach performance with (K) and percent. (a) F1-score of PC4⇒CM1. (b) AUC of PC4⇒CM1.
(c) G-mean of PC4⇒CM1. (d) F1-score of xalan2.4⇒ant1.7. (e) AUC of xalan2.4⇒ant1.7. (f ) G-mean of xalan2.4⇒ant1.7.

Table 10: F1-score of the proposed approach and seven many-to-one prediction methods on two datasets.

Target Ours ManualDown LR MT MT+ BDA CORAL

NASA

CM1 0.3357 0.3265 0.2636 0.3198 0.3121 0.3713 0.2222
KC1 0.4471 0.2723 0.2154 0.3935 0.3174 0.3435 0.1991
KC3 0.4941 0.3207 0.3958 0.3259 0.3932 0.4423 0.2449
MC2 0.5814 0.3095 0.3000 0.4401 0.5688 0.6000 0.0000
MW1 0.3415 0.3308 0.2185 0.2992 0.2821 0.2899 0.0588
PC2 0.0785 0.3483 0.0606 0.0628 0.0132 0.0782 0.0625
PC4 0.3535 0.3430 0.3440 0.2097 0.3030 0.2596 0.1494

PROMISE

ant1.7 0.5742 0.4830 0.5673 0.5408 0.5070 0.4990 0.4990
camel1.6 0.3774 0.4994 0.3103 0.3294 0.3862 0.3859 0.1017
ivy2.0 0.4324 0.4897 0.3916 0.3448 0.3125 0.3314 0.4062
jedit4.0 0.6215 0.4832 0.5150 0.4905 0.5185 0.4257 0.4567
log4j1.0 0.6750 0.4826 0.5952 0.5167 0.5417 0.5275 0.3182
lucene2.4 0.6923 0.4640 0.4730 0.5257 0.5714 0.6138 0.6322
poi3.0 0.7474 0.4390 0.5902 0.5246 0.7713 0.8066 0.2310

synapse1.2 0.6703 0.4781 0.5810 0.6069 0.6071 0.4550 0.3793
Tomcat 0.3718 0.5129 0.3385 0.3095 0.2590 0.2145 0.2136

velocity1.6 0.5548 0.4799 0.5098 0.4654 0.5083 0.6145 0.1176
xalan2.4 0.4469 0.4963 0.4085 0.4036 0.3573 0.2874 0.3290
xerces1.3 0.5294 0.4879 0.4082 0.4296 0.3945 0.4636 0.4107

Average 0.4908 0.4235 0.3940 0.3968 0.4171 0.4216 0.2648
Improvement 6.7% 9.7% 9.4% 7.4% 6.9% 22.6%
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[5]). In practice, researchers have recognized it as a binary
classification problem, that is, they model the defective data
to train a machine learning model. Due to insufficient
training data in the source projects, the researchers try to

build a bridge from the source project to the target project.
)ey utilize the information from the source projects and
transfer it to the target project. )e following will give the
related studies only.

For one-to-one defect prediction, Sun et al. [38] de-
scribed an effective and efficient method for domain ad-
aptation called CORAL, which minimized the distribution
difference between source and target projects. Zhang et al.
[46] applied different transformations to explore whether
the cross-project defect prediction is affected and proposed
Multiple Transformations (MT) and MT+ to improve

Table 11: AUC of the proposed approach and seven many-to-one prediction methods on two datasets.

Target Ours ManualDown LR MT MT+ BDA CORAL

NASA

CM1 0.6582 0.7165 0.5865 0.7168 0.6954 0.7134 0.5131
KC1 0.7155 0.7097 0.5381 0.7360 0.6756 0.6316 0.5746
KC3 0.7063 0.7089 0.6389 0.5992 0.6306 0.6822 0.5183
MC2 0.6792 0.7031 0.5118 0.6130 0.6748 0.6987 0.6622
MW1 0.7300 0.7132 0.5734 0.7521 0.7349 0.6776 0.5403
PC2 0.8499 0.6523 0.8117 0.8966 0.7043 0.8724 0.6648
PC4 0.6655 0.7469 0.6522 0.5205 0.6511 0.5764 0.5316

PROMISE

ant1.7 0.7457 0.6549 0.7414 0.7864 0.6556 0.6952 0.7574
camel1.6 0.6106 0.6640 0.5526 0.5842 0.6312 0.6171 0.5561
ivy2.0 0.7782 0.6556 0.7298 0.7065 0.6794 0.6881 0.7683
jedit4.0 0.7649 0.6585 0.6806 0.7050 0.6656 0.5914 0.6885
log4j1.0 0.8030 0.6580 0.7439 0.7616 0.6622 0.6896 0.7312
lucene2.4 0.7225 0.6657 0.5885 0.6494 0.5389 0.5704 0.6772
poi3.0 0.7493 0.6532 0.6621 0.7349 0.6990 0.7504 0.7432

synapse1.2 0.7516 0.6582 0.6817 0.7725 0.7476 0.5735 0.7201
Tomcat 0.7633 0.6596 0.7336 0.7553 0.7466 0.5993 0.7232

velocity1.6 0.6631 0.6597 0.6308 0.6411 0.5033 0.7002 0.6825
xalan2.4 0.7266 0.6573 0.6814 0.7519 0.6655 0.5674 0.7078
xerces1.3 0.7858 0.6545 0.6766 0.7553 0.7824 0.7394 0.7834

Average 0.7300 0.6763 0.6535 0.7073 0.6707 0.6650 0.6602
Improvement 5.4% 7.7% 2.3% 5.9% 6.5% 7.0%

Table 12: G-mean of the proposed approach and seven many-to-one prediction methods on two datasets.

Target Ours ManualDown LR MT MT+ BDA CORAL

NASA

CM1 0.6525 0.6984 0.5576 0.4494 0.4377 0.7130 0.4876
KC1 0.7148 0.6930 0.4235 0.5104 0.4325 0.6284 0.6096
KC3 0.6955 0.6958 0.6292 0.4628 0.5029 0.6809 0.6225
MC2 0.6700 0.6891 0.4381 0.5393 0.6112 0.6816 0.0000
MW1 0.7284 0.7008 0.5660 0.4225 0.4052 0.6746 0.3583
PC2 0.8454 0.6461 0.8019 0.1796 0.0815 0.8630 0.2487
PC4 0.6612 0.7306 0.6433 0.3516 0.4250 0.5624 0.5010

PROMISE

ant1.7 0.7449 0.6502 0.7408 0.6258 0.5864 0.6927 0.5833
camel1.6 0.6032 0.6591 0.5390 0.4571 0.4859 0.6167 0.4495
ivy2.0 0.7779 0.6514 0.7292 0.5318 0.4330 0.6880 0.7050
jedit4.0 0.7643 0.6537 0.6721 0.6027 0.5928 0.5801 0.6758
log4j1.0 0.8030 0.6533 0.7438 0.6036 0.6111 0.6894 0.7408
lucene2.4 0.7076 0.6594 0.5357 0.6000 0.5766 0.5704 0.6299
poi3.0 0.7424 0.6472 0.6267 0.6137 0.7151 0.7495 0.5508

synapse1.2 0.7510 0.6531 0.6774 0.6797 0.6462 0.5688 0.7250
Tomcat 0.7632 0.6557 0.7333 0.4323 0.3856 0.5979 0.6241

velocity1.6 0.6536 0.6545 0.6171 0.5681 0.5772 0.7002 0.6924
xalan2.4 0.7266 0.6531 0.6775 0.5172 0.4662 0.5620 0.4429
xerces1.3 0.7858 0.6502 0.6696 0.5476 0.4957 0.7394 0.5233

Average 0.7259 0.6681 0.6327 0.5103 0.4983 0.6610 0.5353
Improvement 5.8% 9.3% 21.6% 22.8% 6.5% 19.1%

Table 13: )e p-values under Friedman test of our approach and
seven many-to-one prediction approaches.

Data set p-valueF1-score p-valueAUC p-valueG-mean

NASA 2.38E-04 3.31E-02 8.94E-05
PROMISE 1.30E-04 5.21E-05 2.56E-06
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Figure 7: Many-to-one comparison of average ranks in F1-score, AUC, and G-mean on two datasets. (a) NASA: F1-score. (b) NASA: AUC.
(c) NASA: G-mean. (d) PROMISE: F1-score. (e) PROMISE: AUC. (f ) PROMISE: G-mean.

Table 14: Cohen’s d of our approach and seven many-to-one prediction approaches on NASA dataset.

Dataset Metrics ManualDown LR MT MT+ BDA CORAL

NASA
F1-score 0.5137 (M) 0.9428 (L) 0.6253 (M) 0.4204 (S) 0.2374 (S) 1.9947 (L)
AUC 0.1657 (N) 1.2675 (L) 0.2657 (S) 0.7041 (M) 0.2958 (S) 2.3613 (L)

G-mean 0.3527 (S) 1.3615 (L) 3.2539 (L) 2.5772 (L) 0.3157 (S) 2.0158 (L)

PROMISE
F1-score 0.8531 (L) 0.7585 (M) 0.9331 (L) 0.6151 (M) 0.6386 (M) 1.5802 (L)
AUC 2.1955 (L) 1.1560 (L) 0.3895 (S) 1.1235 (L) 1.5271 (L) 0.4996 (S)

G-mean 2.1127 (L) 1.1506 (L) 2.7476 (L) 2.4973 (L) 1.4508 (L) 1.5486 (L)
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Figure 8: )e variance of the evaluation metrics with the numbers of the source projects. (a) F1-score of NASA. (b) AUC of NASA. (c) G-
mean of NASA. (d) F1-score of PROMISE. (e) AUC of PROMISE. (f ) G-mean of PROMISE.
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Figure 9: Learning methods comparison results in AUC on two datasets. (a) NASA. (b) PROMISE.
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Figure 10: Comparison of average ranks in F1-score on NASA and PROMISE. (a) One-to-one prediction on NASA. (b) Many-to-one
prediction on NASA. (c) One-to-one prediction on PROMISE. (d) Many-to-one prediction on PROMISE.

Table 15: Average running time of one-to-one approaches on NASA and PROMISE.

Data set
Running time of approach (second)

Ours LR MT MT+ BDA Coral
NASA 228.6 4.4 29.5 36.2 70.5 5.0
PROMISE 528.2 7.7 58.2 79.2 104.8 9.6

Table 16: Average running time of many-to-one approaches on NASA and PROMISE.

Data set
Running time of approach (second)

Ours LR TCA+ TPTL ISDA Lt TDS Dycom
NASA 524.2 2.7 8.1 2420.6 12495.7 0.2 0.2 4.1
PROMISE 924.0 1.7 14.1 1395.2 18830.4 0.4 0.3 5.9
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prediction performance. Xu et al. [35] introduced a balanced
distribution adaptation-based transfer learning method to
implement defect prediction, which improved the existing
methods’ performance. In this study, we compare those one-
to-one models with our one-to-one approach.

For many-to-one defect prediction, Herbold [18] utilized
distance-based strategies to select training data in many-to-
one defect prediction. )e results show their method can
achieve good performance. Nam et al. [23] extended their
work to TCA+ with a preprocessing data method and
conducted it on one-to-one and many-to-one predictions.
Minku et al. [40] proposed a transfer learning model for
Dycom based on the work (Nam et al. [23]). Dycom is a
weighted sum of transferred models trained by various
source projects. Jing et al. [39] proposed a method called
subclass discriminant analysis, which can learn features from
original metrics and make the distributions of source and
target projects stable. Liu et al. [24] proposed a two-phase
transfer learning model (TPTL) for CPDP. )ey introduced
a source project estimator to choose similar source projects
and built the two prediction models. By combining the
prediction results of the two models, they further improved
the final performance. In this study, we compare the above
models with our many-to-one approach.

Besides homogeneous defect prediction, heterogeneous
defect prediction has recently become a great process. Gong
et al. [47] utilized the thought of stratification embedded in
the nearest neighbor to produce evolving training datasets
with balanced data. Zou et al. [48] proposed a method named
Joint Feature representation with double marginalized
denoising auto-encoders to learn the global and local features,
and they introduced local data gravitation between source and
target domains to determine instance weight in the learning
process (Zou et al. [49]). Jin et al. [50] used two support vector
machines to implement domain adaptation to match data
distribution. Mehta and Patnaik [51] used various ensemble
machine learning techniques to improve classification per-
formance. In the future, we will study heterogeneous defect
prediction based on the state-of-the-art model.

From the abovementioned literature, it can be concluded
that there are two significant problems in CPDP research.)e
first problem is that the source and target project data usually
exhibit significantly different distributions. Since the source
and target projects might be implemented by different pro-
gramming languages or companies, the same metrics in the
source and target project data might have different distri-
butions. )e second problem is that there are no standard
metrics between the source and target project data. It is
difficult to predict the defects in the target project using

conventional methods to build models on the source project
data. )erefore, many efforts have been made to solve these
two problems in recent years, and this study focuses on the
solution to the first problem. In the future, standardized tools
will be developed based on more experiments.

8. Conclusion and Future Works

)is paper studies the limitations of prior studies and proposes a
novel approach. First, to avoid the randomness of the source
project selection, Jensen-Shannon divergence is used tomeasure
the similarity between source and target projects automatically.
Subsequently, relative density information is introduced to filter
noise and outliers in similar source projects. Posteriorly, the
one-to-one defect prediction model is constructed based on the
most similar source project directly, and themany-to-one defect
prediction model is built by a proposed ensemble weight
strategy based on Jensen-Shannon divergence. Finally, the
models predict the potential defects in the target project.

Experimental results on the benchmark datasets of
NASA and PROMISE indicate that our approach can im-
prove the F1-score, AUC, and G-mean. Moreover, the re-
sults also prove that the proposed approach is adaptive
regardless of the type of learning method.

In further work, we will select more defect data sets to
evaluate the effectiveness of the proposed approach.
Moreover, the proposed approach will be improved, such as
combing domain adaptation analysis, to implement het-
erogeneous defect prediction.
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