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 e Internet of ings, or IoT, has been widely recognized as a new perception paradigm for interacting between the digital world
and the physical one. Acting as the interface and integral part of the Internet of  ings, sensors embedded within the network are
the principal components that collect the unprocessed data, and these sensors are usually deployed in unattended, hostile, or harsh
areas, which inevitably makes the sensor readings prone to faults and even anomalies. erefore, the quality of sensor readings will
ultimately a�ect the quality of various data-oriented IoT services, and the sensor data are of vital importance a�ecting the
performance of the system. However, the data anomaly detection is a nontrivial task for IoT because sensors are usually resource-
constrained devices with limited computing, communication, and capacity.  erefore, an e�cient and lightweight detecting
method is needed to meet the requirements. In this study, we deal with the anomaly data by detecting the source sensor nodes
through combination methods of the local outlier factor and time series. Simulations show that the proposed method can
e�ectively detect the anomaly data and presents a better normal data rate.

1. Introduction

 e Internet of  ings, or IoT, has received extensive at-
tention in the past few years by the research community
owning to the progress of computing and real-time con-
nections between data and devices and has been used in
many application �elds such as smart home/o�ce, auto-
mobile, and medical assistance to solve practical problems
[1–3].  e IoT depicts a future computing scenario where
everyday physical objects will be connected to the Internet
and identify themselves [4]. Nowadays, the Internet of
 ings is becoming a more and more important infra-
structure component, and due to the heterogeneity of IoT
devices, the data exchange between IoT sensors and various
applications achieves rapid growth.

However, with the wide spread applications of the IoT,
security threats are also becoming increasingly prominent
[5–8].  e IoT is vulnerable to attacks from communication
channels, which has become a common security problem
[9]. IoT sensor failure may interrupt the system control [10],
thus interrupting the services provided by the IoT system.

 e distributed deployment of IoT sensors makes net-
working more convenient, but it also brings more di�cult
risks [11]. In addition, many IoT applications are of het-
erogeneous components such as di�erent sensors, services,
protocols, and communication technologies like Zigbee,
WiFi, and Bluetooth, which generate the complexity of the
network management [12].  erefore, anomaly data come
into existence accompanied by the threats, attacks, risks,
integration of heterogeneous technologies, and various IoT
applications.

In the �eld of data mining and statistics, anomalies are
usually referred to as either deviants or outliers [13].  e
de�nition of anomaly data given in [14] is that anomaly data
are data points that behave very di�erently from others or
conform to some prede�ned abnormal behaviors.  e
de�nition of anomaly given in [15] is that it is an observation
deviating so much from others to generate uncertainties.
According to [16], the main causes of anomaly data are of
two aspects: (1) internal malfunction, i.e., noise and fault
caused by sensor hardware and software failure; (2) external
in�uence, i.e., speci�c events occur in the places where nodes
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are deployed. Essentially, anomaly-based detection is an
intrusion detection mechanism, it can be used to perceive
important network mode attacks [17], and anomaly detec-
tion refers to identifying suspicious data items, events, or
observations that are significantly different from most other
data [18]. -e application of anomaly detection can make
certain contributions to the IoTdata protection [19], and it is
resource friendly and provides more extensive detection,
which is very suitable for IoT sensor network applications
[20].

Nevertheless, the anomaly data detection is a nontrivial
task for IoT. -e IoTnodes are usually resource-constrained
sensors with low-cost embedded systems [21], and tradi-
tional anomaly detection solutions cannot be directly ap-
plied into IoT [22]. For this reason, it is important that a
trade-off solution be found to the problem with decent
accuracy while bringing minimum overhead.

-is research aims to detect the anomaly sensor data
under the IoTenvironment. Different from other works that
focus on analyzing the sensor data and evaluating the an-
alyzed results by certain rules, according to the dynamic
features of IoTnetworks, our proposed method tries to trace
and identify the source nodes that generate or cause the
anomaly data, and by identifying and confirming the sus-
pected nodes, the anomaly data can be eventually deleted
from the network. -is study uses combination methods of
local outlier factor and time series. -e local outlier factor is
applied to check the abnormal data so as to label the related
sensor node as suspected one. Due to the dynamic changing
environment of the IoTnetwork, nodes might be influenced
by the temporary error or communication interference
resulting in being labeled as suspected nodes. -us time
series method is used to evaluate and further confirm these
potential suspected nodes from the perspective of time
windows.

-e main contribution of this work is to provide a
lightweight yet effective method for anomaly data detection
in IoT sensor networks, due to the fact that sensors in IoT
are usually resource-constrained devices in terms of
computing, communication, and capacity. To this end, both
the methods used in this study are of ease computing.
Specifically, the local outlier factor is a density-based
detecting algorithm which is simpler and not particularly
picky about the distribution of datasets. By contrast, most
of the other anomaly detection algorithms are based on
statistical methods or borrow some clustering algorithms
for anomaly identification; besides, the datasets obeying a
specific probability distribution are usually assumed.
Further, in the time series, instead of directly using tra-
ditional methods, Chebyshev polynomials are applied for
the approximation of time series especially in comparing
the similarity of two time series, which is also lightweight in
computing and can be done through the related polynomial
coefficients.

-e remainder of this study is organized as follows.
Section 2 presents the related works about the anomaly
detection for sensor data and related definitions and clas-
sifications. Section 3 introduces the local outlier factor and
time series methods in detail, on which our proposed

method is based. Simulations are presented in Section 4, and
Section 5 concludes this work.

2. Related Works

Anomaly detection comes from the data mining and sta-
tistics field, and it establishes a standard model to judge
whether the relevant data match the model. According to
[23], the anomaly detection algorithm for sensor data is
classified as three aspects, i.e. (1) statistical method, which
classifies the anomalies by measuring the probability of the
measured data relative to the model; (2) proximity-based
method, which relies on the distance between measured data
to distinguish abnormal data from correct data; (3) pre-
diction-based method, in which the past measurement data
are used to train the model and it can predict the next
measured value in the sensor data.

Machine learning-based anomaly detection methods
have received much attention in the research community.
-e machine learning algorithms are used on the interested
data and train the related models through the pattern ex-
traction [24], based on which the anomaly detection uses
machine learning technology to detect abnormal activities in
network traffic packets [25]. Pathak et al. [4] applied su-
pervised and unsupervised machine learning to solve the
tampering problem of sensors in the Internet of -ings. In
[4], the real-time view of traffic pattern is considered to train
the unsupervised machine learning method based on iso-
lated forest for anomaly detection; it creates labels according
to the traffic pattern, uses the decision tree supervision
method to monitor all Internet of -ings traffic on the
gateway, and sends an alarm to the administrator when an
anomaly is detected.

Kim et al. [13] provided a method for real-time detection
and notification of abnormal conditions through machine
learning by generating synthetic datasets for learning real-
time data anomaly detection algorithms and by testing
models based on gated recursive units and long-term and
short-term memory for predicting time series data anom-
alies. Kim et al. [13] detected and notified abnormal con-
ditions in the worker environment through sensor data. -e
method is based on the prediction-based anomaly detection
method and neural network and is evaluated using synthetic
data generated from time series with trend, season, and noise
components. Kim et al. [13] further explained how to use
neural networks to detect anomalies and how to evaluate the
proposed model. Based on the combination of machine
learning and visual data analysis, Vasily et al. [26] proposed
an anomaly detection method in wireless sensor networks.
Taking a water management system as an example, the
method is tested, and the necessary datasets are generated by
using the software model for testing anomaly detection.

Different from other works that mainly focus on the
network layer and application layer, an adaptive context-
aware anomaly detection method is proposed in [10] which
centers on the physical properties of the IoT sensor system
and identifies anomalous incidents in the environment
properties of the system. -is method uses a sensor asso-
ciation algorithm which can generate sensor fingerprints,
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cluster these fingerprints, and extract the context of the
system. -en, according to the contextual information and
through long short-term memory neural network and
Gaussian estimator, the anomalies in the system together
with the source could be detected.

-rough distinguishing hostile events about the traffic
pattern in the distributed smart space orchestration system,
Reddy et al. [9] presented an anomaly detection system with
characteristic examination. Reddy et al. [9] used a method
based on supervised meta algorithm called bagging (which is
one of the ensemble meta estimator learning technologies
[27] and considers multiple predictors to calculate the ag-
gregation predictor) to classify and process malicious op-
erations and train the classifier-based anomaly detection to
build a clarification model according to the intrusion data
and predict the system by identifying when the system is in
an abnormal state.

-e authors in [16] studied the sensor fault and external
event detection scheme in wireless sensor networks. Based
on spatiotemporal fusion, Chen et al. [16] proposed a dis-
tributed anomaly detection method for wireless sensor
networks based on one-class quarter-spherical support
vector machine (QSSVM). In this method, the QSSVM
model is trained to obtain relevant parameters, then the
trained model is used to classify the streaming data in the
network, and then the abnormal data types are determined
and divided into noise, faults, and events. By converting
unsupervised time series data into supervised form, Das et al.
[28] proposed a segmentation-based anomaly detection
method of IoT sensor data. In order to ensure that the data
are not affected by inherent noise, the method performs
Holt–Winters exponential smoothing [29] on the dataset
and then trains a long-term memory neural network for the
anomaly detection. Blockchain is a distributed network with
some unique functions such as decentralization, transpar-
ency, and system autonomy [30], which can enhance net-
work security and cooperation in the Internet of -ings.

3. Preliminaries

In this research, our proposed method is mainly composed
of two components, i.e., local outlier factor and Chebyshev
polynomials-based time series, and as mentioned previously,
both the components or methods are lightweight in com-
puting and are applicable to resource-constrained IoTsensor
nodes when dealing with anomaly data. -ey are introduced
as follows.

Local outlier factor, or LOF, is a nearest neighbor al-
gorithm. It attributes a fault or outlier score to each sensor
reading based on the number of measurements around its
K-nearest neighbors and the number of measurements
around the sensor reading. Sensor readings with high scores
are flagged as abnormal [31]. Anomalous data or outliers are
treated as sensor data streams that are significantly different
from normal behavioral data, and outlier detection can
detect a high probability of false reads or data corruption,
thereby ensuring the quality of data collected by sensors [32].

LOF is density-based outlier detection which has a
fundamental assumption that the density around a

nonoutlier object should be similar to the density around its
neighborhood, while the density around an outlier object
should be significantly different from that around its
neighborhood. By assigning each data point an outlier factor
that depends on the neighborhood density, it then evaluates
whether the data point is an outlier. -e larger the anomaly
factor of the data is, the more likely the data are anomalous.
-e advantage of LOF is that it gives the degree to which a
data point is an outlier [33].

-e LOF algorithm is constructed on two main com-
ponents, namely, the reachable distance and the local
reachable density [34–36]. Based on the distance between the
object p and each point in its k neighbors, the reachable
distance is defined as

reach − distk(p, o) � max k − dist(o), d(p, o) . (1)

According to themean distance of each data object in the
neighborhood, a density parameter can be obtained, called
the local reachable density, which is defined as

Lrdk(p) �
1

o∈Nk(p)reach − di stk(p, o)/ Nk(p)



. (2)

-rough the mean value of the ratio of the local
reachable density of p to the local reachable density of its
nearest k neighbors, the local outlier factor of p is defined as

LOFk(p) �
o∈Nk(p)Lrdk(o)/Lrdk(p)

Nk(p)



. (3)

-e idea behind LOF algorithm is to calculate outliers by
drawing a circle centered on any but specific data point p, so
that at least k data points are in the circle, and see how dense
the neighborhood around p is [33].

A feature of the data generated by the IoT sensors is that
due to the observed changes in the nature of the phe-
nomenon, the data distribution may change in the network
life cycle, and the anomaly detection technologymust be able
to adapt to the nonstationary data distribution to achieve the
best performance [37]. To this end, the time series approach
is applied in our proposed method.

As mentioned earlier, instead of directly using tradi-
tional time series methods, Chebyshev polynomials are
applied here as a lightweight method for approximating the
time series especially in comparing the similarity of two time
series, in which it is not necessary to calculate all polyno-
mials, and the similarity can be observed by comparing the
related Chebyshev coefficients [38]. In [39], let Pm(t) be a
polynomial of t with degree m and Pm(t) � cos(mcos− 1(t)),
where t ∈ [−1, 1]. Because of cosmθ + cos(m − 2)θ � 2
cosθcos(m − 1)θ, Pm(t) � cos(mcos− 1(t)) can be rewritten
into a recurrence relation, i.e., Pm(t) � 2tPm−1(t) − Pm−2(t),
where m≥ 2. Due to the characteristics of Chebyshev
polynomials, for an arbitrary function f(t), it can be ap-
proximated as f(t) ≈ c0P0 + c1P1 + ... + cmPm, where
c0, ...cm denote the coefficients of Chebyshev polynomials.
Further, according to the Gauss–Chebyshev formula [40],
the coefficients are defined as
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c0 �
1
m



m

j�1
f tj P0 tj  �

1
m



m

j�1
f tj  i � 0

ci �
2
m



m

j�1
f tj Pi tj  1≤ i≤m

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Equation (4) is only applicable to interval functions and
cannot be directly applied to the time series of coefficient
calculation. Discrete sequences need to be extended to in-
terval functions. Assume T � (t1, v1), ..., (tN, vN)  is a time
series where −1≤ t1 < ...< tN ≤ 1 and time t is normalized in
[−1, 1] resulting in the division of interval [−1, 1] into N

disjoint subintervals as follows [39].

Ii �

−1,
t1 + t2

2
  if i � 1

ti−1 + ti

2
,
ti + ti+1

2
  if 2≤ i≤N − 1

tN−1 + tN

2
, 1  if i � N

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

Map vi into an interval function denoted by g(t) � vi

where t ∈ Ii 1≤ i≤N. Being extended into an interval
function, the time series is defined by

f′(t) �
g(t)

�������
w(t) Ii




 , (6)

where t ∈ Ii, 1≤ i≤N, |Ii| is the length of subinterval Ii, and
w(t) is the weight function defined as w(t) � 1/

�����
1 − t2

√
[39].

-e Chebyshev coefficients of time series are now calculated
as follows, and the details of the above calculation steps can
be referred to [39].

c0 �
1
N



N

j�1
f′ tj P0 tj  �

1
N



N

j�1
f tj  i � 0

ci �
2
N



N

j�1
f′ tj Pi tj  1≤ i≤N

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

4. Simulations

An IoT sensor cluster is formed to sense the oxygen content
of a certain workshop. -e oxygen content in an ordinary
workshop environment shall be 18%∼21%, or else ventila-
tion measures shall be taken if it is not within this range.
Each sensor forwards related data to a base station (BS). -e
cluster consists of 80 nodes, of which 20 are malicious nodes
and 60 are normal nodes. Assume that normal sensor nodes
correctly sense and forward the data, while malicious nodes
selectively falsify or modify the normal oxygen content data
into the range rather than 18% ∼ 21% so as to damage the
system. Besides, several other assumptions are also made: (1)

all nodes form a star topology and are evenly distributed in a
circular area centered on a base station; (2) each node has a
unique ID, and the header of each packet includes source
node ID, packet group length, and packet sequence number;
(3) sensor nodes have 1% communication error and the
direct communication between each sensor node and the
base station is also assumed.

-e base station regularly sends oxygen content requests
to the sensor nodes in the network. When a request ends, the
BS node firstly uses the LOF algorithm to analyze the data
received from the network, checks the abnormal data, and
labels its corresponding sender nodes as suspected ones.
Secondly, the time series method is used to track and analyze
the suspected nodes with regard to their subsequent data in
the following requests. When the analysis result is greater
than the given threshold, these nodes are confirmed to be
malicious. -en, the BS will not accept the data from these
malicious nodes any more.

Suppose di and dj are two data time series, and let cdi
and

cdj
be the corresponding vectors of Chebyshev coefficients

with cdi
� [x0, ..., xm] and cdj

� [y0, ..., ym]. By comparing
the corresponding Chebyshev coefficients, the similarity of
the two time series can be obtained. In consideration of
computing simplicity and node energy saving, the Euclidean
distance is applied here and it is defined as

Dist cdi
, cdj

  �

�������������

π
2



m

k�0
xk − yk( 

2




. (8)

A threshold μ is set in this method for measuring the
distance, e.g., if Di st(cdi

, cdj
)≥ μ is established, it indicates

that the result of time series comparison is abnormal, and the
related sensor node is considered malicious and should be
isolated from the network.

In Figures 1–3, we test the normal data rate, or NDR.
NDR is the ratio of the amount of normal data received to
the amount of normal data the base station should receive.m
is the number of Chebyshev coefficients and µ is the
threshold for similarity calculation. len represents the length
of the time series, making it equal to a certain number of
queries initiated by the BS in the different tests. We divide
the simulations into three groups to test the influence of
these three parameters on NDR, respectively.

In Figure 1, as the number of base station queries in-
creases, the NDR values of the three sets of comparison
parameters continue to increase, among which (m� 4,
μ� 0.9, len� 10) is the fastest followed by both (m� 3,
μ� 0.9, len� 10) and (m� 2, μ� 0.9, len� 10), which are
relatively the slowest. For example, for the 100th query, the
NDR values of the three groups are about 0.85, 0.84, and
0.82, respectively. -is is because the time series and related
similarity computations help to expand the anomalous
patterns of anomaly nodes and identify them efficiently. It
can also be noticed in Figure 1 that different coefficients have
different effects on NDR. For example, the NDR at m� 4 is
significantly higher than that at m� 2. But the increase of m
means that more coefficients are needed which will definitely
make the calculation more complicated. It can be seen that
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the NDR at m� 4 is similar to the NDR at m� 3. -erefore,
this study recommends m� 3.

To make the similarity calculation more strict, different
thresholds μ are set in Figure 2. As is shown in the test, more
anomaly nodes are being identified, resulting in higher NDR.
For instance, for the 100th query, the NDR values of the
three groups are about 0.91, 0.90, and 0.86, respectively. Note
that μ should be appropriately reduced; otherwise, normal
nodes will be misjudged as anomaly nodes. -is is because
normal nodes cannot guarantee 100% trouble-free operation
in the event of a communication error or even a dead
battery. As can be seen from Figure 2, the difference between

the NDR at μ� 0.7 and NDR at μ� 0.6 is small, so μ� 0.7 is
recommended. Similar test result trends can also be seen in
Figure 3, where different len values are set. For example, still
for the 100th query, the NDR with len� 25 is around 0.96
and is much higher than the others. Higher len values in-
dicate larger time windows and the higher the len value is,
the better the NDR effect becomes. However, the increase of
len will also increase the complexity of calculation, so it
should be chosen wisely.

5. Conclusions

-e data quality collected by sensor nodes is affected by
anomalies like abnormal events and malicious attacks, and
when the anomaly datasets enter the system, the overall
system performance would be affected making the system
unreliable. -erefore, anomaly detection is a necessary
process to ensure the quality of sensor data before it is used
for analysis and decision making. In the field of Internet of
-ings, anomaly detection is an ongoing research field
aiming to provide protection against abnormal sensor
readings. In addition, due to its low price and commercial
attraction, security has not been given much priority.
-erefore, it is necessary to protect Internet of -ings de-
vices and smart homes from potentially destructive ab-
normal data and related source sensor nodes.
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