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Aiming at the nonlinear, nonstationary, and time series characteristics of power load, this study proposes a load forecasting
method based on empirical mode decomposition and particle swarm optimization of the gated recurrent unit neural network.
First, the original power load data are decomposed into a limited number of modal components and a residual component by
using empirical modal decomposition to reduce the nonstationarity and complexity of the load sequence and decrease the
association between di�erent IMFs. �e subsequences build prediction models based on the gated recurrent unit neural network,
respectively, and use the particle swarm algorithm to optimize the network-related hyperparameters to increase the parameter
accuracy of the model; �nally, superimpose the prediction results of each subsequence to obtain the �nal load prediction value.
�e results of the case study show that compared with the traditional forecasting algorithm, the proposed EMD-PSO-GRU
forecasting model method can better dig the trend information of forecasting, �t the load curve better, and have higher
forecasting accuracy.

1. Introduction

Accurate load forecasting is an important guarantee for
stable operation of power grids, scheduling optimization,
and reducing operating costs [1]. Smart grid provides a high-
quality and massive database for load forecasting. With the
rapid evolution of the energy Internet [2], it is more urgent
and important to study algorithms with the ability to process
big data and high forecasting accuracy. �e accuracy of the
model has important signi�cance and high engineering
application value [3, 4].

In terms of load forecasting, traditional forecasting
models such as autoregression (AR), although fast in op-
eration, have high data requirements and lack the ability to
adapt and predict.�e robustness is poor, and it is di�cult to
meet the requirements of load forecasting [5]. In recent
years, the development of arti�cial intelligence technology
has provided ideas for solving these problems, but some new

problems are still derived. Xiangyu et al. [6] used a deep
belief network to quickly analyze complex in¡uencing fac-
tors, which improves the prediction accuracy, but it only
targets regional loads and lacks adaptability. Wu et al. [7]
used a parallelized multicore support vector machine (SVM)
for load prediction, and the prediction error is reduced to a
certain extent compared with a single-core SVM, but it lacks
the consideration of the correlation between time series data.
Shi and Zhang [8] considered the training di�erences of
di�erent algorithms and proposed a stacking load fore-
casting model embedded with various machine learning
algorithms. �is model ensures good accuracy in forecast-
ing, but the cost of model integration is too high and the time
is long. With the growing development of deep learning, the
gated recurrent unit network as a kind of the special RNN
model [9, 10] is widely used to predict events in time series
due to the introduction of modules with “memory function”
in its structure [11], but it has two de�ciencies, namely, the
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model learning rate and the number of neurons in the
hidden layer, which are difficult to determine. Among them,
the learning rate determines the training effect of the model,
and the number of neurons in the hidden layer affects the
fitting effect of the model. Usually, these parameters are
determined by experience and are uncertain, which leads to
a decrease in the accuracy of the model.

Similar to other neural networks, GRU’s model pa-
rameters often need to be selected by human experience, and
the fitting ability, training speed, and prediction effect of
different model parameters are quite different. In order to
more reasonably determine the model parameters of GRU
and improve the stability of power load forecasting, a
method is proposed based on EMD-PSO to optimize GRU
network hyperparameters. )rough example analysis, the
prediction results verify the effectiveness of the proposed
model.

2. Model Theory

2.1. Empirical Mode Decomposition. EMD is a decomposi-
tion method, which can decompose the signal according to
the specific time scale features of the data and adaptively
decompose the local feature signals on different time scales
to obtain IMF and residual signals with different charac-
teristics. Each IMF component obtained by decomposition
has a certain physical meaning. It represents the variable
components of various time scales contained in the raw load
data, and the residual term represents the basic trend of the
load sequence. )e specific EMD steps for a given original
time series x(t) are as follows [12, 13]:

(1) Identify maximum and minimum points in the
original sequence x(t), use the cubic spline inter-
polation method to respectively fit xup(t) and
xlow(t), and calculate the mean m(t) of the upper
and lower envelopes.

m(t) �
xup(t) + xlow(t) 

2
. (1)

(2) Calculate the difference between the original se-
quence x(t) and the envelope mean m(t), denoted as
h(t).

h(t) � x(t) − m(t). (2)

(3) Determine whether h(t) satisfies the IMF con-
straints; if not, use it as a new input sequence, and
repeat steps (1) to (2) until the constraints are met; if
so, h(t) is the first IMF component, denoted as
c1(t) � h(t), and separates c1(t) from the original
sequence x(t) to obtain r1(t).

r1(t) � x(t) − c1(t). (3)

(4) r1(t) is regarded as a new original sequence, and the
abovementioned smoothing steps are repeated to
obtain the remaining IMF components and one
remaining component. )e final result of EMD can
be expressed as

x(t) � 
n

i�1
ci(t) + rn(t). (4)

In the formula: ci(t) is the i-th intrinsic mode function
component; rn(t) is the residual component, representing
the trend term of the original series.

By using the empirical mode decomposition method,
different components can be decomposed from the load time
series to form a series of subsequence components [14].
Compared with the original series, the subsequence has
stronger stationarity to improve accuracy.

2.2. Gated Recurrent Unit Neural Network. )e GRU net-
work optimizes LSTM’s three gate functions, integrates
oblivion gates and input gates into one update gate [15–17],
and mixes neuronal and hidden states simultaneously. )is
can effectively mitigate the following problems: GRU ad-
dresses the “vanishing gradient” of RNN networks and
reduces the training time of the model. GRU network basic
structure is shown in Figure 1.

)e calculation formula of the internal structure is

rt � σ Wr · ht−1, xt ( ,

zt � σ Wz · ht−1, xt ( ,

ht � ϕ Wh
· rt × ht−1, xt  ,

ht � I − zt(  × ht−1 + zt × ht,

yt � σ Wo · ht( .

(5)

xt, ht−1, rt, zt, ht, and yt, respectively, represent the input
vector, the state memory variable at the previous moment, the
state of the reset gate, the state of the update gate, e-th state of
the current candidate set, and the output vector; Wr, Wz, Wh

,
andWo are the weight parameters; I represents identitymatrix;
[ ] represents vector connection; · represents matrix dot
product; × represents matrix product; σ represents sigmoid
activation function; and ϕ represents tanh activation function.
)e mathematical description of σ and ϕ is as follows:

σ(x) �
1

1 + e− x,

ϕ(x) �
ex

− e− x

ex
+ e−x .

(6)

GRU networks use update gates and reset gates as core
modules. xt and ht−1 at the previous moment is input into
the update gate after the sigmoid nonlinear transformation
to determine the state of the previousmoment.)e reset gate
controls the amount of information written to the candidate
set, stores the information at the previous moment through
ht−1 times I − zt, and records the information at the current
moment through ht times zt.

2.3. Particle Swarm Optimization Algorithm. In PSO, each
particle has an initial velocity and position, and the fitness
value of the particle is determined by the fitness function
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[18]. In the iteration, each particle can store the searched
optimal position, and its velocity determines the direction
and distance of flight [19]. )e particles update their speed
and position by comparing the fitness values, the optimal
value detected by the particle itself is the individual extre-
mum, and the optimal solution detected by the entire
population is the global extremum [20]:

vi(t + 1) � ωvi(t) + c1R1 R
b
i (t) − xi(t) 

+ c2R2 R
b
g(t) − xi(t) ,

xi(t + 1) � xi(t) + vi(t + 1).

(7)

In the formula, t is the number of iterations; vi(t) is the
speed of the i-th particle in t iterations; ω is the inertia
weight; c1, c2 are the cognitive coefficients; R1, R2 are
uniformly distributed random numbers; Rb/i(t) is the in-
dividual historical optimal position of a particle i; Rb/g(t) is
the historical optimal position of the group; xi(t) is the
position of the particle in t iterations.

)e inertia weight ω is an important parameter of PSO.
)e larger the weight, the stronger the global search ability of
the algorithm; the smaller the weight, the stronger the local
search ability of the algorithm [21, 22]. )e dynamic ad-
justment of the inertial weight is adopted.

ω(n) � ωmax − ωmax − ωmin( 
n

nmax
 , (8)

where ωmax represents the maximum weight, ωmin repre-
sents the minimum weight, and nmax is the maximum
number of iterations.

3. EMD-PSOOptimizes the PredictionModel of
GRU Hyperparameters

3.1. PSO Optimizes the GRU Hyperparameter Model. )e
PSO algorithm is a random search and parallel optimization
algorithm, which has the characteristics of simplicity, good
robustness, and fast convergence speed, and has a high
probability of finding the global optimal solution to the

problem [23]. )e algorithm optimizes the hyperparameters
of the GRU and establishes a load forecasting model with
higher accuracy. In the GRU model, two hyperparameters
have a positive effect on the prediction performance of the
model, namely, the number of GRU neurons and the
learning rate. Taking these two key parameters as the
characteristics of particle optimization, the PSO algorithm is
used to adjust and optimize the GRU model. )e flowchart
of the PSO-GRU load forecasting model is shown in
Figure 2.

3.2. EMD-PSO-GRU (EPG) Load Forecasting Model. )e
load sequence is complex and nonstationary. )e decom-
posed components are input to the GRUmodel and the PSO
algorithm is used to optimize the GRU model hyper-
parameters. Finally, superimpose the prediction results of
each component to get the final prediction value. To improve
prediction accuracy, this study proposes the EMD-PSO-
GRU hybrid prediction model architecture shown in
Figure 3.

)e specific steps for building a model are as follows.

(1) )e original load time series is divided into several
subsequences by EMD

(2) Divide each subsequence into a training set and a
validation set and normalize the dataset. Since the
GRU model is highly sensitive to the data scale, the
original data have a large difference in the order of
magnitude; in order to avoid that the change of larger
value will cover the change in smaller value, it is
necessary to constrain the input data to a similar
order of magnitude to avoid affecting the effect of
power load forecasting due to the large individual
input value. )e dataset is between [0, 1] to reinforce
the convergence speed of GRU.

(3) Learn the complex relationship between input and
output variables in each subsequence by building a
GRU network and through the PSO algorithm to
determine the optimal GRU network
hyperparameters

(4) Use the trained GRU network to predict the sub-
sequence and deformalize the prediction result to
obtain the real prediction value

(5) Add the prediction results of each subsequence to
obtain the final result of the load

3.3.ModelEvaluationMetrics. To evaluate the performance
of the prediction model, MAPE and RMSE are used as
evaluation indicators [24–33], which are defined as
follows:

yMAPE �
1
n



n

i�1

yi − yi




yi

× 100%,

yRMSE �

������������


n
i�1 yi − yi( 

2

n



,

(9)
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Figure 1: GRU network structure.
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where yi is the actual load value on the i-th day; yi is the load
forecast value on the i-th day; n is the number of samples in
the test set.

4. EMD-PSOOptimizes the PredictionModel of
GRU Hyperparameters

To verify the scientificity and reliability of the load fore-
casting model based on EMD-PSO-GRU proposed in this
study, the power load data of a specific area from January 1,
2016, toMay 8, 2020, are used. Figure 4 shows the raw data of
the average daily load, with a total of 1588 data samples
divided into a training set and test set with a ratio of 9 :1, in
which the training set data has 1430 data and the test set has
158 data.

4.1. EMDDecomposition. )e load data are decomposed by
EMD, and it is decomposed step by step from high frequency
to low frequency into 9 IMF components and a residual
component. )e decomposition result is shown in Figure 5.
Compared with the original power load sequence, the
decomposed components become more stable in turn. )e
nine IMF components, respectively, reflect the influence of
different influencing factors on the load data at different
scales, and the residual component represents the long-term
change trend of the load sequence.

4.2. Model Parameter Settings. )e number of PSO pop-
ulation sizes is set to 8, the dimension of population opti-
mization is set to 2, the maximum number of iterations is set
to 10, the learning factors c1 � 2, c2 � 2, and the inertia
weights are set to wmax � 1.2, wmin � 0.8. )e range of the
number of neurons is set to [1, 60], and the range of the
learning rate is set to [0.001, 0.01].

4.3. Hyperparameter Optimization Results. )e predictive
performance of a GRU network depends on the choice of
parameters for building the network, such as the learning
rate and the number of hidden layer nodes.)e learning rate
and the number of hidden layer nodes in the GRU network
are determined by the PSO optimization. Table 1 shows the
optimal learning rate and optimal number of hidden layer
nodes for the GRU network for each IMF.

In order to verify the superiority of the EMD-PSO-GRU
hybrid prediction model, PSO-GRU, GRU, SVM, and RNN
models were established under the same prediction process
for comparative analysis.

4.4. Load Forecasting Result Analysis. Each model is trained
with the data of the training set, the prediction results are
compared and verified with the data of the test set, and the
MAPE and RMSE evaluation indicators are selected to
evaluate the accuracy of the prediction model. )e

Load time series data

data preprocessing

test set Training set

Set the parameters of the 
population

GRU network 
prediction model

Calculate the fitness value 
of the particle

Update individual extrema and 
group extremum

Has the maximum number of
iterations been reached?

Obtain the optimal set of hyperparameters

GRU-LSTM network 
prediction model

Iterative prediction is performed, and the output 
prediction results are evaluated in combination with 

the evaluation indicators.

Finish

Initialize the position and 
velocity of the particle swarm

Yes

No

Figure 2: Flowchart of the PSO-LSTM load prediction model.

4 Scientific Programming



comparison results of the test set are shown in Figure 6. In
order to more clearly see the prediction performance of each
model, the error rates of the last two months on the test set
are selected for comparison, and the comparison chart is
shown in Figure 7. It can be seen from Figures 6 and 7 that
among the five models of EMD-PSO-GRU, PSO-GRU,

GRU, SVM, and RNN, the overall fitting effect of the EMD-
PSO-GRU model and the fitting effect at the peaks and
troughs of the waves, )e combined effect is better, and the
error rate is obviously smaller. It can be seen that the
empirical mode decomposition can stabilize the data with
strong volatility and then predict it, which can effectively
improve the prediction accuracy of the model.

)e prediction accuracy evaluation results of each model
are shown in Figure 8, and the quantitative indicators of each
evaluation result are shown in Table 2. )e accuracy eval-
uation results of the evaluation indicators of the EMD-PSO-
GRU model are the best, and the prediction effect of the
SVMmodel is the worst.)eMAPE index of the EMD-PSO-
GRU model is 1.678%, and the RMSE index is 259.32.
Compared with the PSO-GRU prediction model, the MAPE
is reduced by 24.92%, and the RMSE is reduced by 28.85%.
Strong data stabilization before prediction can effectively
improve the prediction accuracy of the model. )eMAPE of
PSO-GRU is 2.235%, and the RMSE is 364.48. Compared
with the GRU model, its MAPE is reduced by 19.78%, and
the RMSE is reduced by 25.60%. Due to the influence of
experience, adaptively finding the optimal solution of
hyperparameters is very important to improve the predic-
tion performance of GRU, which can better improve the
prediction accuracy.

original load data

Empirical Mode Decomposition

IMF1 IMF2 IMFn Residualę ę

GRU1 GRU2 GRUn GRUn+1ę ę

PSO
optimization ę ę

PSO
optimization

PSO
optimization

PSO
optimization

prediction1 prediction2 predictionn Predictionn+1

Accumulate and reconstruct to 
get the final predicted value

Forecast Error Analysis

Figure 3: EMD-PSO-GRU combined prediction flowchart.
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Table 1: Hyperparameter optimization results for each IMF.

Sequence components )e number of neurons in the hidden layer Learning rate
IMF1 36 0.0092
IMF2 52 0.0082
IMF3 42 0.0063
IMF4 38 0.0086
IMF5 40 0.0055
IMF6 55 0.0037
IMF7 56 0.0036
IMF8 38 0.0035
IMF9 53 0.0086
RES 38 0.0065
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Figure 6: Comparison of prediction results of each model.
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Figure 7: Comparison of the prediction results error rates of each
model in the last two months on the test set.
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5. Conclusions

A load forecasting method based on the EMD-PSO-GRU is
proposed. First, the data are subjected to variational modal
decomposition, preprocessing, and division of the sample
dataset, and then, a GRU neural network forecasting model
is established for each subsequence. )e PSO algorithm is
used to optimize the hyperparameters of the GRU neural
network, and finally, the respective sequence prediction
results are accumulated to obtain the final load prediction
value. )e method proposed has the following merits:

(1) )e EMD decomposition method can well mine the
essential features such as cycles and trends in the
sequence

(2) Show good advantages of the GRU network in the
field of data mining. )e GRU network has a unique
network structure and strong learning ability for
time series data.

(3) )e PSO algorithm has stronger global optimization
ability and convergence speed by adding nonlinearly
changing inertia weights, avoiding the drawbacks of
traditional manual selection of hyperparameters, and

can independently optimize the hyperparameters of
the network model

(4) )e prediction accuracy of the “decomposition-
prediction-reconstruction” method is higher. )e
proposed method demonstrates better prediction
accuracy compared with the existing artificial in-
telligence prediction methods.
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