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Transfer learning attempts to use the knowledge learned from one task and apply it to improve the learning of a separate but
similar task. �is article proposes to evaluate this technique’s e�ectiveness in classifying images from the medical domain. �e
article presents a model TrFEMNet (Transfer Learning with Feature ExtractionModules Network), for classifying medical images.
Feature representations from General Feature Extraction Module (GFEM) and Speci�c Feature Extraction Module (SFEM) are
input to a projection head and the classi�cation module to learn the target data. �e aim is to extract representations at di�erent
levels of hierarchy and use them for the �nal representation learning. To compare with TrFEMNet, we have trained three other
models with transfer learning. Experiments on the COVID-19 dataset, brain MRI binary classi�cation, and brain MRI multiclass
data show that TrFEMNet performs comparably to the other models. Pretrained model ResNet50 trained on a large image dataset,
the ImageNet, is used as the base model.

1. Introduction

Transfer learning is the paradigm of learning that aims to
transfer knowledge from one task to another, which is
somewhat related [1]. In deep neural networks, the �rst layer
often learns the general features, and eventually, by the last
layer, the speci�c features are learned [2]. For example, the
di�erent nodes will learn features speci�c to a particular
class in the last layers of a neural network. In this research
work, we have studied the transferability of learning, with
the variation in the number of layers trained as feature
extraction modules. �is can be helpful because a lot of the
low-level features that have been learned from a vast amount
of readily available data can be used for another task that
may have less amount of useable data. Often, when the
dataset on which the model is to be built is less, we opt for
transfer learning. A network is trained on data like our
dataset, such as image data, and the knowledge is transferred
to a di�erent task, such as the diagnosis of X-ray images. For
this, some layers of the old network are retrained on this new
dataset. If we retrain all the parameters in our network, then
this initial training phase on image recognition is sometimes

called pretraining. �en, we update all the weights and train
on the target data by �ne-tuning. Figure 1 depicts the general
proposed methodology used in this study.

In this study, we have taken the brain magnetic reso-
nance images (MRIs) and COVID-19 X-rays to evaluate the
e�ectiveness of transfer learning. Magnetic resonance im-
aging is the most used technique for identifying brain tu-
mors. MRI may detect these tumors with the help of an
expert or a doctor’s opinion. In this research, we apply
transfer learning with the feature extraction modules from
which the representations are input to a projection head. A
softmax classi�er classi�es the learned features. We name
our model TrFEMNet, which is e�ective because features
from di�erent levels of the hierarchy contribute to the �nal
classi�cation process. We believe that combining features
from di�erent levels of the hierarchy by a projection head is a
novel contribution and results in e�ective outcomes, as seen
from the experiments. �is model is evaluated for the
identi�cation of tumors from brain MRI images or COVID-
19 and viral pneumonia cases from COVID-19 X-ray im-
ages.�e ResNet 50 model has been taken and pretrained on
the ImageNet dataset.
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'e highlights of this article are as follows:

(1) Preprocessing, data augmentation, and normaliza-
tion of images.

(2) Presenting a mathematical formulation for transfer
learning.

(3) Proposing the model TrFEMNet, with feature rep-
resentation by the GFEM and SFEM, with a pro-
jection head comprising of a two-layer multilayer
perceptron with nonlinearity, on the pretrained
ResNet50 model

(4) Evaluating the results of experiments with BrainMRI
2-class, brain MRI multiclass, and COVID-19 X-ray
dataset.

Sensitivity, specificity, F1-score, and accuracy are used to
evaluate the classifiers’ performance. 'e rest of the article is
organized as follows. Section 2 presents the literature review,
Section 3 presents the mathematical formulation of transfer
learning, Section 4 presents the materials and methods, and
Section 5 presents the results. Finally, Sections 6 and 7
present the discussion and conclusion.

2. Literature Review

Numerous studies on the brain MRI classification have been
carried out. Varuna Shree et al. [3] presented a model that
uses a discrete wavelet transform (DWT) for feature ex-
traction, statistical features to reduce the number of features,
and a blended artificial neural network for brain MRI
classification. In this research, they obtained 98% accuracy.
'e authors in Ref. [4] present a content-based brain tumor
detection system. 'ey design a feature extraction frame-
work using the VGG19 convolutional neural network
(CNN)model with closed-formmetric learning.'e authors
in Ref. [5] propose a method of predicting CT images from
MRI images, showing that their method is very robust. A
model for tumor classification and segmentation was pre-
sented by Ali and Davut Hanbay [6], yielding a classification
accuracy of 97.18%. Sajid et al. [7] introduced the data
augmentation methodology to the original dataset and then
processed it with the convolutional neural network (CNN)
method; the softmax function was employed in the classifier
on both original and enhanced data, upon which the ac-
curacy was 94.58%. Sachdeva et al. [8] applied the region of
interest (ROI) approach to an MRI dataset. 'e ROI images
were then segmented to eliminate tissue and color features.
'en, they chose the most efficient characteristics using the
genetic algorithms (GA) and went through the classification
procedure. 'ey obtained an accuracy of 94.9% in their
study.

Nazir, Wahid, and Ali Khan described a new approach
for automated brain tumor MRI identification and classi-
fication [9]. 'e data were classified into two parts: benign
and malignant. In the presented paradigm, there are three
basic phases. Filter methods were used to eliminate image
noise in the first step. In the second stage, the features were
used to derive the mean color moment of each image in the
dataset. In the last stage, an artificial neural network (ANN)
categorized the feature set of color moments with 91.8
percent classification accuracy. In Ref. [10], the author
applied various deep learning techniques to classify Benign
andmalignant tumors.'ey achieved 98.49% accuracy using
a hybrid approach of CNN and SVM.

Navid et al. [11] proposed a deep learning model with
generative adversarial networks in the multiclassification of
MRI images. 'ey used the GAN on several MRI datasets,
including meningioma, glioma, and pituitary tumors and
then used a six-layer deep learning model to achieve an
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Figure 1: 'e workflow of the model is shown. In the transfer
learning procedure, the input passes through GFEM (General
Feature ExtractionModule) and SFEM (Specific Feature Extraction
Module), and the features extracted are passed through a projection
head and then to the classifier to give the final output.
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overall accuracy of 95.60 percent. Chakraborty [12] has
created a dataset on Kaggle, upon which several researchers
have applied machine learning techniques and built models.
Habibzadeh et al. [13] apply pretrained deep learningmodels
for automatic white blood cell classification, and these
models perform very well. 'e authors in Refs. [14, 15]
present a review of image enhancement techniques and work
with fewer data. Fayaz et al. [16] incorporated feature ex-
traction methods and converted images to three-channel
mode; the final accuracy achieved was 92.5% with the KNN
classifier. Tajik et al. [17] proposed a texture overcome
matrix model. 'ey used the different feature extraction
methods such as PCA, index approach, and Gabor filtering
to obtain an accuracy of 96.67%. Togacar et al. [18] employed
the CNN and SVM to achieve 96.77% accuracy with the
masks produced by the hypercolumn approach in the
suggested method.

In Ref. [19], the author used MobileNetv2 to select the
features. 'ey generated the 1000 features using Mobile-
Netv2 and used iterative neighborhood component analysis
to find the most important features. 'ese features are
trained using SVM and obtained an accuracy of 99.10%. 'e
dataset used 444 images related to three types of tumor
diseases and the rest with no tumor. 'e authors of Ref. [20]
obtained a 95.75 percent accuracy using the CNN model
with 22 layers with the transfer learning approach.'ey used
the 22 layers in their proposedmodel, and the dataset used in
this study comprised three main kinds of tumors. 'e au-
thors in [21] developed the model for segmentation and
detecting brain tumors. 'ey used Berkeley’s wavelet
transformation and the deep learning model for image
segmentation in this research. 'ey also used the GLCM
method for extracting the features from segmented images.
In this research, the author obtained an accuracy of 98.5%.
'e author of Ref. [22] tested many approaches for classi-
fication, including support vector machines (SVMs),
K-nearest neighbors (KNNs), binary decision trees (BDTs),
random forest (RF), and ensemble methods, and obtained a
high accuracy of 97% utilizing the SVM classifier. 'e au-
thors of Ref. [23] employed the ResNet architecture with
data suspension encoding and fusion layer to achieve a 98.02
percent accuracy. 'e dataset used in this study included
three types of tumor images. 'e author of Ref. [24]
compared the findings using three distinct datasets. 'e
author proposed a scalable range-based adaptive bilateral
filter to reduce noise from pictures in this article. 'e fully
convolutional network was then used for segmentation.
'ey were able to achieve a 97% accuracy rate. Several other
researchers have also applied various transformation tech-
niques to improve the quality of images used for classifi-
cation [25, 26]. 'e authors in Ref. [27] propose a
convolutional neural network model with dilations to
classify different types of brain tumors and achieve an ac-
curacy of 97%. 'e authors in Ref. [28] have applied several
optimizers on CNN models for brain tumor segmentation
and found that the Adam optimizer had the best accuracy of
99.2% in enhancing the CNN ability in classification and
segmentation. In contrast, others in Ref. [29] aim at im-
proving feature extraction by using a texture amortization

map (TAM). Several researchers have also extensively
studied the application of deep neural networks such as
hybrid networks [30], capsule networks [31], and con-
volutional networks [32–35].

3. Transfer Learning—Overview and Notations

Transfer learning is a very powerful idea in deep learning since
we can take the knowledge a neural network has learned from
one task and apply that knowledge to a separate task [36–39].
'e transformation of each original feature into a learned
representation for knowledge transfer preserves the properties
or the potential structures of the data and finds the corre-
spondence between features [40].We first present the notations
used for a better explanation of concepts. In this work, we
assume that the labels for all data instances are available. Hence,
supervised classification is performed. However, our notations
are broadly adapted from Ref. [40].

Definition 1. A DomainD comprises a feature space FS

and a label space FS, so D � FS,FS{ }. 'e set of data
instances comprises elements belonging to the feature space
FS.

Definition 2. A TaskT is composed of a label spaceY and a
function f to be learned such thatT � Y, f . 'e function
f is often also called amodel or predictor since it predicts the
values of y for unknown x.

Definition 3. A learned model (function) lf is defined as
lf � L(D,T). It may be noted that lf is the model we are
interested in improving upon since f is not known to us.

Consider a scenario where a network learns to rec-
ognize objects like cars and trucks, and then uses that
knowledge or uses part of that knowledge to improve the
task of reading X-ray scans. Here, we have a source do-
main Ds of images and task Ts of identifying the labels
of cars and trucks in the source domain. 'us, the source
domain Ds can be presented as follows:
Ds � (x, y)|xi ∈ X

s, yi ∈ Y
s, i � 1, 2, . . . , ns}, and let

the learned model be lfs.

Definition 4. Given Ds,Ts,Dt,TtTransfer Learning uti-
lizes the knowledge from the source domain to improve the
performance of lft on the target domain Dt.

Definition 5. We thus state that lft∗ � lfs
trans (Dt,Tt),

where lft∗ is the model learned by applying for knowledge
transfer from lfs, on Dt,Tt; while lft � L(Dt,Tt).

In other words, by transfer learning, one can use the
knowledge from the taskTs of identifying the labels cars and
trucks in the source domain Ds of images to improve upon
the target taskTt of reading X-ray images for the presence of
a disease, from the target domain of X-ray images.

'e scenario addressed in this research work is homo-
geneous, inductive transfer learning, and we apply the
feature-based and parameter-based approach [41]. We aim
at investigating whether lft∗ is an improvement on lft

(please refer to Definition 5).

Scientific Programming 3



4. Materials and Methods

'ree datasets have been used in this study. Two datasets are
for brainMRI classification, namely, 2-class and 4-class data,
and one 3-class dataset for COVID X-ray images.

4.1. Dataset Description

4.1.1. COVID-19 X-Ray 3-Class Dataset. 'is dataset is
available on Kaggle [42]. It contains 111 samples of COVID-
19 class and 70 samples of a normal class, and 70 samples of
viral pneumonia class with 512 × 512 size. We generated 500
samples of each class using the data augmentation technique;
median filters and histogram equalization were applied and
resized the image into 224 × 224 size. Hence, there were 1500
samples (with an equal number of classes) for training.'ere
are 26 COVID-19 samples, 20 normal samples, and 20 viral
pneumonia samples for testing in the original dataset. In this
dataset, the skull boundary technique was not applied.

4.1.2. Brain MRI Tumor 2-Class Dataset. 'e dataset used in
this study is available on the Kaggle repository [12]. 'e
dataset includes normal and tumor samples, with 98 samples
belonging to the tumor and 155 samples to the normal. A
total of 253 images were associated with the patients’ MRI
brain scans. 'e image quality is not great because of the
multiple resolutions, and each image has a different reso-
lution. 'e format of images is JPEG. In this article, the
images were converted to grayscale, and the skull’s border
was found by removing the image’s background color. 'is
is to remove any extra color that may be present outside of
the skull. As a result, it provided the original image’s
contour. 'e data were split into 195 samples for training
and 60 samples (30 of each class) for testing. Data aug-
mentation techniques [18–20] were used to enhance the
training samples to 6412. Median filters and histogram
equalization were applied. All images of the original dataset
have different resolutions with sizes 512 × 512. We resized
the size of all images to 224 × 224 for further processing. All
the images are normalized between 0 and 1.

4.1.3. Brain MRI Tumor 4-Class Dataset. 'is dataset is
available on the Kaggle website [43]. 'is dataset contains
300 samples of glioma tumor, 306 samples of meningioma
tumor, 405 samples of no tumor, and 300 samples of pi-
tuitary tumor class. Apart from this, the dataset also contains
100 samples of glioma tumors, 115 samples of meningioma
tumors, 105 samples of no tumors, and 74 samples of pi-
tuitary tumors for testing purposes. No data augmentation
technique was applied. Median filters and histogram
equalization were applied. 'e original size of the dataset
was 512 × 512, which we resized into 224 × 224.

Table 1 gives the train test distributions and the class
imbalance, if any, in all the datasets.

4.2. Preprocessing. 'e preprocessing steps applied are
enumerated as follows:

(1). Capturing skull boundary of brain MRI images
(2). Data augmentation: new data samples have been

generated using the data augmentation process to
balance the classes using the Keras module with the
following augmentations: shear range of 20%, zoom
range of 20%, rotation range angle of 30%, and fill
mode set to nearest.

(3). Filters and histogram equalization: the median filter
is the most effective and extensively used filter for
eliminating noise from pictures. A median filter is
applied to the images after data augmentation. Fi-
nally, histogram equalization was applied to increase
the images’ contrast and improve the image quality.

(4). Resizing: all images of the original dataset have
different resolutions with sizes 512 × 512. We
resized the size of all images to 224 × 224 for further
processing. All the images are normalized between 0
and 1.

Figure 2 presents brain MRI images and their pre-
processed images.

4.3. Evaluation Parameters. 'e evaluation parameters used
in this research work are sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV), F1-
score, and accuracy, as presented in Table 2.

4.4. Method Implementation Details. All our experiments
take the ResNet50 trained on the ImageNet dataset as the
base model. 'e architecture of ResNet50 is presented in
Figure 3. For our proposed architecture TrFEMNet, the
General Feature Extraction module (GFEM) is implemented
by freezing the weights of the lower layers of the ResNet50
model; the upper-level layers are retrained with the target
data instances for implementing the Specific Feature Ex-
traction module (SFEM). 'e output of the GFEM and
SFEM gives the feature representations, which are fed into a
projection head (PH) module. 'e output from the PH
module is fed into the softmax classifier for the final output.
'e PH module comprises a two-layer MLP with ReLu
nonlinearity. 'is module extracts the features at a middle
level and higher level of hierarchy and gives a better rep-
resentation for improved classifier performance. Few dense
layers have also been added above the convolutional layers.
For comparison with TrFEMNet, we have built three other
models without the projection head. 'e variation in the
number of layers with fixed/trainable weights has been done.

We develop models based on ResNet50, with softmax as
an output layer activation function. 'e description of the
models is as follows. Model 1 consists of one dense trainable
layer of 1024 neurons (other than the last classification dense
layer). In this model, we freeze all convolutional layers of
ResNet50, thus enabling only one dense layer for training
purposes. Model 2 is similar to Model 1, except it consists of
two trainable dense layers of sizes 1024 and 512, respectively.
In Model 3, we freeze all convolutional layers except the last
one. In ResNet50, there are 48 convolutional layers, so we
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(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k) (l)

Figure 2: (a, b) A nontumor image and its boundary image. (c, d) A tumor image and its boundary image. (e, f ) A nontumor image and its
rotated image. (g, h) A tumor image and its rotated image. (i, j) A nontumor image and the resulting image after applying histogram
equalization. (k, l) A tumor image and the resulting image after applying histogram equalization.

Table 2: Evaluation parameters for performance analysis.

Parameter Definition
Sensitivity(S)or Recall(R) TruePositive(TP)/TruePositive(TP) + FalseNegatives(FN)

Specificity(Sp) TrueNegative(TN)/TrueNegative(TN) + FalsePositives(FP)

F1-score 2∗Recall(R)∗Precision(P)/Recall(R) + Precision(P)

Accuracy (A) TruePositive(TP) + TrueNegatives(TN)/TotalExamples(TE)

Table 1: Dataset train test distributions.

Dataset Train samples Test samples Train set balanced Test set balanced
COVID X-ray 3-class 1500 66 Yes No
Brain MRI 2-class 6412 60 Yes Yes
Brain MRI 4-class 1311 394 No No
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freeze the 47 convolutional layers and enable one con-
volutional and one dense layer of 1024 neurons for training
purposes. For the TrFEMNet model, we keep two con-
volutional layers and two dense layers with 1024 and 512
neurons for the SFEM, and the frozen layers comprise the
GFEM. 'e outputs from GFEM and SFEM are fed into the
PH and then to the classifier. Figure 4 shows the schematic
diagram of transfer learning for the TrFEMNet model.

Table 3 shows the parameters used in the training phase
for all models.

5. Results

5.1. Experimental Results on All Datasets. 'e models were
applied on healthcare datasets, and the results are presented
in Tables 4–6.

5.1.1. COVID-19 Dataset. 5.1.2. Brain MRI 2-Class
Dataset. 5.1.3. Brain MRI 4-Class Dataset. 5.2. Analysis of
TrFEMNet. 'e receiver operating curve (ROC) plots and
confusion matrix of the performance of TrFEMNet for the
different datasets are presented in Figures 5–7. We now
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Figure 3: 'e architecture of the ResNet50 model.
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Figure 4: 'e architecture of the TrFEMNet model.

Table 3: Training parameters.

Parameters Value
Momentum 0.95
Dropout 0.3
Learning rate 0.0001
Loss Binary cross-entropy, categorical cross-entropy
Optimizer SGD
Epochs 30
Batch size 16
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present the analysis of our proposed model with respect to
the different datasets.

From the results presented in Tables 4–6, it is seen that
TrFEMNet performs comparably to other models in all the
cases. For the COVID-19 dataset, all the parameter values
except accuracy are the highest. For the brain MRI 2-class

dataset, the model gives the second highest values but within
the 0.65% range. Moreover, for the brain MRI 4-class dataset,
the value for specificity is 60.45%, which is 7% higher than the
second best; the value for sensitivity is 85.01%, which is 0.74%
higher than the second best. Similarly, values for accuracy at
78.05% and F1-score at 53.09% are also the highest.
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Figure 5: 'e ROC curve and confusion matrix of the TrFEMNet model for the COVID-19 dataset.

Table 4: Different performance measures of the deep learning models for the COVID-19 dataset.

Classifiers Specificity (%) Sensitivity (%) Accuracy (%) F1-score (%)
Model 1 95 97.82 97.13∗ 94.97
Model 2 95 97.65 96.20 93.65
Model 3 93.33 96.88 95.95 93.46
TrFEMNet 95∗ 97.84∗ 96.97 95.06∗

Table 5: Different performance measures of the deep learning models for the brain MRI 2-class dataset.

Classifiers Specificity (%) Sensitivity (%) Accuracy (%) F1-score (%)
Model 1 89.47 89.47 89.47 89.46
Model 2 89.21 89.23 89.21 89.20
Model 3 100∗ 99.89∗ 99.89∗ 99.89∗
TrFEMNet 99.35 99.37 99.39 99.37

Table 6: Different performance measures of the deep learning models for the brain MRI 4-class dataset.

Classifiers Specificity (%) Sensitivity (%) Accuracy (%) F1-score (%)
Model 1 52.83 84.27 77.27 49.45
Model 2 51.50 83.37 75.49 50.58
Model 3 50.68 78.27 69.62 52.93
TrFEMNet 60.45∗ 85.01∗ 78.05∗ 70.65∗
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6. Discussion

'e transfer learning approach applied in this research has
used ResNet50 as the base model for parameter sharing from
the previous training on the ImageNet dataset. 'e math-
ematical formulation of the transfer learning concept is
given by means of several definitions, and Definition 5
provides the theme of the research, which has been con-
ducted. We aim at finding out how well the model learned
through transfer learning performs. For this, the concept of
General Feature Extraction Module and Specific Feature
Extraction Module has been introduced. 'e results of our
experiments on the Brain MRI 2-Class dataset show that
Model 1 and Model 2, which do not have any convolutional
layers in their SFEM, do not perform very well. Model 3,
with one convolutional layer in the SFEM, performs slightly
better and achieves the best values for the brain MRI 2-class

dataset.'e TrFEMNetmodel performs comparably to other
models for most of the parameters on all datasets. For the
COVID-19 dataset, the micro- and macroaverage ROC
curve area is 0.97 and 0.96, respectively. For the Brain MRI
2-class dataset, the ROC curve area is 0.99, and for the Brain
MRI 4-class dataset, both the micro- and macroaverage
curve areas are 0.71, while for class glioma tumor, it is 0.86.

7. Conclusion

'is article proposes to evaluate the transfer learning
technique’s effectiveness in classifying images from the
medical domain. Pretrained model ResNet50 trained on a
large image dataset, the ImageNet, is used as the base model.
'e article proposes a model TrFEMNet (Transfer Learning
with Feature Extraction Modules Network), for classifying
medical images. Feature representations from General
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Figure 7: 'e ROC curve and confusion matrix of the TrFEMNet model for the Brain MRI 4-class dataset.
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Feature Extraction Module (GFEM) and Specific Feature
Extraction Module (SFEM) are input to a projection head
and the classification module to learn the target data. 'e
aim is to extract representations at different levels of hier-
archy and use them for the final representation learning. In
addition, for a detailed understanding of our work, we have
detailed the steps for preprocessing, data augmentation, and
normalization of images. A mathematical formulation for
transfer learning is given in Section 3. 'e proposed model
TrFEMNet obtains the feature representation by the GFEM
and SFEM, with a projection head comprising a two-layer
multilayer perceptron with nonlinearity, on the pretrained
ResNet50 model. 'e model is evaluated by comparing it
with three other models built by transfer learning, with brain
MRI 2-class, brain MRI multiclass, and COVID-19 X-ray
datasets. Experiments on the COVID-19 dataset, brain MRI
binary classification, and brain MRI multiclass data show
that TrFEMNet performs at par with other models, and for
the most complex dataset, it achieves an improvement of 7%
on specificity with respect to the second-best model. 'e
outcome of this research motivates one to investigate further
into the realm of transfer learning. As part of our ongoing
work, we aim at investigating more architectures for the
projection head and with more levels of extraction from the
base model.
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