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,e traditional identification methods have limited ability to identify damage location of bridge structures. ,erefore, a bridge
structural damage location identification method based on deep learning is proposed. In addition, the sigmoid function is the
activation function, and the cross entropy is the cost function. Meanwhile, take the Gaussian noise as the addition method and
take the softmax as the classifier. So the constructed SDAE deep learning model can realize damage location identification of the
simply supported the continuous beam bridges. Compared with the traditional identification methods of bridge structures,
namely BP network and SVM, the proposed method shows higher identification accuracy and antinoise performance. Here, the
average identification accuracy of the method for continuous beam bridge is 99.8%. As can be seen that the proposed method is
more suitable for practical bridge structure damage location identification.

1. Intoduction

,e development of social economy is inseparable from
transportation. Bridge, as an important part of trans-
portation, plays an important role in connecting the north
and south.,e safety of its structure is related to the safety of
transportation, and it affects people’s life. Once the bridge
structure is seriously damaged, it will inevitably cause traffic
accidents. In order to ensure the safe operation of bridges, it
is of great significance to identify the damage of bridge
structures. With the development of data transmission and
processing technology, the nondestructive detection of
bridge structures has been widely used. At present, the
nondestructive detection and identification methods of
bridge structures are mainly based on vibration identifica-
tionmethods, including the method based onmodal domain
data, the method based on time domain data, the method
based on time-frequency domain data, and the method
based on intelligent algorithm. For example, Xijun Ye and
Boscato et al. proposed an adaptive signal denoising method
based on genetic algorithm and singular value decomposi-
tion. By selecting SNR as fitness function, the genetic al-
gorithm is introduced to automatically optimize p and r
parameters. ,en the inverse singular value decomposition

is performed to obtain the denoised signal[1, 2].,is method
is helpful to improve the identification accuracy of bridge
structural damage location. Considering that the long-term
effect of vehicle load is an important cause of fatigue, local
damage, aging, reliability reduction, and so on, Jihwan Kim
and Lili Li et al. proposed a bridge vehicle load model and
carrying capacity evaluation method based on dynamic
weighing system [3, 4]. Xiao-qin Li and Shiqiang Qin et al.
discussed the strategy and scheme of multiscale finite ele-
ment simulation of long-span bridge structures with the goal
of structural damage diagnosis and safety assessment[5, 6].
Based on the analysis of the error sources of the finite el-
ement model, an error hierarchical correction method for
the long-span bridges structure model is proposed. In ad-
dition, based on the finite element modeling and model
modification process of cable-stayed bridge of the Runyang
Yangtze River Bridge, a multiscale finite element simulation
method for damage diagnosis and safety assessment of long-
span cable-stayed bridge is proposed. Xianzheng Yu and
Marco Furinghetti et al. established and modified the finite
element model of the bridge structure to accurately simulate
the behavior and working state of the bridge structure [7, 8].
On this basis, combining the finite element forward analysis
with the signal inverse identification to evaluate the daily
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work of the bridge and the impact of various disasters on the
structure. To a certain extent, the above research methods
have realized the location of damage parts to different bridge
structures, but the positioning accuracy and antinoise
performance need to be improved. ,erefore, in order to
improve the identification accuracy and antinoise perfor-
mance of the algorithm for bridge structure damage loca-
tion, and based on deep learning model, this paper proposes
a bridge structure damage location identification method
based on stacked denoising autoencoder.

1.1. Introduction toSDAEModel. SDAE is a commonmodel
in deep learning, it is formed by stacking several denoising
autoencoders. However, on the basis of autoencoder, the
denoising autoencoder is a network. First, it can add noise
to the training data and randomly mask part of training
data. Subsequently, it forces the model to learn denoising
and restore the input data. ,erefore, to understand the
principle of SDAE, the first is to understand the structure
and training mode of autoencoder and denoising
autoencoder.

1.2. Introduction to Autoencoder. Autoencoder consists of
encoder and decoder, including input layer, hidden layer,
and output layer, as shown in Figure 1.Wherein, the encoder
is responsible for mapping the input vector to the hidden
layer through the activation function, so as to obtain the
feature expression of a higher level, as shown in formula (1)
[9]. ,e decoder is responsible for mapping the hidden layer
feature representation to the original input, and its function
expression is shown in formula (2) [10].

z � f(x) � s W
(1)

x + b
(1)

􏼐 􏼑, (1)

x′ � g(z) � s W
(2)

x + b
(2)

􏼐 􏼑. (2)

Formula (1) shows that x represents the input vector, z
represents the encoder output vector, W(1) represents the
input weight of the hidden layer, b(1) represents the input
bias of the hidden layer, and s represents the activation
function.

Formula (2) shows that x′ represents the output matrix,
W(2) represents the input weight of the output layer, and b(2)

represents the input bias of the output layer.
,e training method of the autoencoder is unsupervised

learning, and the network parameter θ � W(1), W(2)􏼈

b(1), b(2)} is adjusted to make the final output X∗ as close as
possible to the original input X. Its error function is defined
as square error, as shown in

L � ‖x − g(f(x))‖
2
. (3)

,e weight and bias can be updated according to the
error back propagation and gradient descent algorithm, and
the optimal parameter θ can be obtained.

1.3. Denoising Autoencoder. Denoising autoencoder takes
the data with added noise as input and outputs the predicted
original data without noise through training. Its denoising
principle is shown in Figure 2. In the figure, x represents the
original data, x1 represents the data with noise, and y rep-
resents the feature obtained by encoding x1 in the hidden
layer of the denoising autoencoder, Z represents the original
data restored by decoding y, andLD (x,z) represents the error
function.

,e training of denoising autoencoder makes the error
function LD minimum. Since random noise is added to the
denoising autoencoder, formula (3) can be rewritten as

LD � ‖X − g(f(XI))‖
2
. (4)

,e weight and bias can also be updated by using error
back propagation and gradient descent algorithm, and the
optimal parameter θ can be obtained.

For SDAE, the trainingmethod is that initially determine
the parameters of a single denoising autoencoder through
unsupervised learning, then use the BP algorithm to conduct
supervised learning for all denoising autoencoders, and fine-
tune the global parameters.

1.4. BP Algorithm Parameter Tuning. BP algorithm includes
two stages, namely information forward calculation and
error back propagation, and its common activation function
is shown in the following formula[11].

f(u) �
1

1 + e
− λu

. (5)

In the information forward calculation stage, the input
and output of neuron j in network k layer can be expressed as
formula (6). ,e weight of update method in the error back
propagation stage is shown in formula (7).
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Figure 1: Schematic diagram of autoencoder structure.
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(k)
j � f

(k)
j 􏽘

Nt− 1

i�1
ω(k− 1)

ij y
(k− 1)
i − θ(k)

j
⎛⎝ ⎞⎠, k � 1, 2, . . . , M; j � 1, 2, . . . Nk, (6)

ω(k− 1)
ij (t + 1) � ωk− 1

ij (t) + η 􏽘
I

h�1
δ(k)

hj y
(k− 1)
hk . (7)

Formula (6) shows thatM represents the total number
of layers; Nk represents the total number of neurons in k
layer; ω(k− 1)

ij represents the connection weight between
neuron i of k-1 layer and this neuron; θ(k)

j represents the
neuron offset value; and y

(k)
j represents the output of

neuron i of k-1 layer.
Formula (7) shows that 0< η< 1 represents the

learning step and δ represents the error transmission
term. For the output layer, it can be calculated by for-
mula (8), and the other layers can be calculated by
formula (9).

δ(M)
hj � 􏽢y

(M)
hj − y

(M)
hj􏼐 􏼑fj y

(M)
hj􏼐 􏼑, (8)

δ(k)
hj � fj y

(k)
hj􏼐 􏼑 􏽘

Nk+1

i�1
δ(k+1)

hj ω(k)
ij (t). (9)

where 􏽢y
(M)
hj and y

(M)
hj are the actual output and expected

output values of BP algorithm, respectively.
Finally, the output error of BP algorithm can be

expressed as [12]

ε � 􏽘
I

h�1
􏽘

NM

j�1
􏽢y

(M)
hj − y

(M)
hj􏼐 􏼑

2
. (10)

It can be seen from the above analysis that SDAE can
obtain the most representative features of the original
samples from the input samples with noise through multiple
stacked denoising autoencoders, which is conducive to
enhancing the robustness of the model. Considering the
possibility of distortion in the data collection of the bridge
structure, which is similar to adding noise data to the real
data, SDAE can be used to analyze the data of the bridge
structure. ,erefore, this paper proposes an identification
method of bridge structural damage location based on
SDAE.

2. Bridge Structural Damage Location
Identification Based on SDAE

2.1. SDAE Model Construction

2.1.1. Activation Function Selection. ,e activation function
can satisfy the nonlinear arbitrary function mapping be-
tween input and output information, and it can make the
model have the ability of learning complex data. ,erefore,
the selection of activation function is particularly important.
At present, the common activation functions in deep
learning models mainly include Tanh, ReLu, and Sigmoid
functions.,e Tanh function expression is shown in formula
(11) [13], and the derivative function expression is shown in
formula (12) [14]. ,ere is advantage of improving model
training efficiency, but it is prone to zigzag phenomenon.
,erefore, the optimal value is difficult to be obtained in the
training [15]. ,e ReLu function expression is shown in
formula (13) [16], and the derivative function expression is
shown in formula (14) [17]. Here, the problem of gradient
disappearance can be effectively solved. However, the point
will never be activated when the input value is negative,
which results that the training data lack diversity [18].
Sigmoid function can fit the function well, but there is the
problem of gradient disappearance, which can be solved by
pretraining and BP algorithm fine-tuning [19]. So this paper
selects Sigmoid function as the activation function.

f(x) � 2sigmoid(2x),

− 1 �
2

1 + e
− 2x

,

− 1 �
e

x
− e

− x

e
x

+ e
− x .

(11)

f′(x) � 1 − (f(x))
2
, (12)

LD (x, z)
y
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Figure 2: Denoising autoencoder training principle.
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f(x) � max(0, x), (13)

f′(x) �
0 x< 0,

1 x≥ 0,
􏼨 (14)

Sigmoid function is a nonlinear transformation function,
whose mathematical description is shown in formula (15).
Its output range is between (0, 1). Since the function is
continuously derivable, its derivative function can be
expressed as formula (16).

f(x) �
1

1 + e
− x, (15)

f′(x) � f(x)(1 − f(x)). (16)

2.1.2. Cost Function Selection. ,e cost function is a func-
tion that measures the error between the predicted value and
the real value of the model. ,e cost function is used to
calculate the partial derivative for the weight and applied to
the gradient descent algorithm to update the weight of each
layer. And the deep learning model with learning ability can
be obtained. ,erefore, the cost function of SDAE needs to
be determined. At present, cost functions used in deep
learning models are mainly cross entropy cost functions, as
shown in formula (17) [20]. In addition, the mean square
cost function is shown in formula (18) [21]. Compared with
the mean cost function, the cross entropy cost function is
more suitable for classification tasks [22]. Because the bridge
structural damage location identification is actually a clas-
sification task, the cross entropy cost function is selected as
the SDAE cost function in this paper.

C � −
1
n

􏽘

n

i�1
xiIn x

∗
i( 􏼁 + 1 − xi( 􏼁In 1 − x

∗
i( 􏼁􏼂 􏼃, (17)

C �
1
2n

􏽘

n

i�1
x
∗
i − xi

����
����
2
. (18)

Among them, x∗i and xi represent the predicted value
and the true value, respectively. N represents the total
number of training samples.

2.1.3. Selection of Noise Adding Method. ,e data of bridge
structure usually include the damage data, so the data of
bridge structure can be simulated by adding noise. ,e
methods of adding noise mainly include salt and pepper
noise and Gaussian noise. Among them, salt-and-pepper
noise is usually used in image processing [23]. Since the
identification of bridge structural damage location does not
involve image processing, the Gaussian noise is selected as
the method to add noise. Gaussian noise means that the
probability density function of noise obeys normal distri-
bution, as shown in formula (19).

P(x) �

��������
1

2πσ2
exp

􏽳

−
1
2σ2

(x − μ)
2

􏼠 􏼡. (19)

where μ and σ2 represent the mean and variance of the
Gaussian distribution, respectively.

Add Gaussian noise to the input vector and obtain

x
∗
i � xi · η · normmd(0, 1). (20)

Here, xi and x∗i represent the input data before and after
processing noise i, respectively, η represents noise level; and
normrnd(0, 1) represents Gaussian noise with mean value 0
and variance 1.

2.1.4. Classifier Selection. Classifiers are used to classify the
test samples. And classifiers are an essential part of deep
learning models. At present, the common classifiers for deep
learning models mainly include SVM, BP network, and
Softmax. Among them, the SVM is mainly used to deal with
linear separable classification problems. ,e classification
form of BP network is regression value. And the Softmax
conducts classification through probability expression,
which is closer to the identification of bridge structural
damage location in this paper [24]. ,erefore, softmax
classifier is selected as SDAE classifier. For softmax classifier,
if the input is x, the output is k-dimensional vector, and k
represents the total number of categories, and its mathe-
matical expression is [25]:

hω(x) �

p y
(i)

� 1|x
(i)

;ω􏼐 􏼑

p y
(i)

� 2|x
(i)

;ω􏼐 􏼑

⋮

p y
(i)

� k|x
(i)

;ω􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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�
1
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e
ωT
1 x(i)

e
ωT
2 x(i)

⋮

e
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x(i)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (21)

where ω represents the weight parameter.
On the basis of the above analysis, the SDAE model

constructed in this paper is shown in Table 1.

2.2. Identification Process. According to the constructed
SDAE model, the identification method of bridge structural
damage position is designed as Figure 3. First of all, the
bridge structure sample data are divided into unlabeled
sample and labeled sample data set. ,en, the denoising
autoencoder is used to conduct unsupervised learning and
pretraining for unlabeled data, and the samples meeting the
error requirements are input into SDAE for training.
Meanwhile, the labeled samples are trained by SDAE for
supervised learning and pretraining. When the training
results meet the error, the SDAE model is constructed. At
last, the constructed SDAE model is adopted to identify the
damage locations of test samples and output the results. It
can be seen that the bridge structural damage location
identification based on SDAE is realized.
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3. Simulation Experiment

3.1. Experimental Environment. ,is experiment is simu-
lated on ANSYS finite element analysis software and
MATLAB platform. ,e net span of the simply supported
beam bridge model is 10 m, the concrete grade is C50, the
beam cross-sectional area is 0.2m2, the inertia moment of
unit section is 0.0042m4, the beam height is 0.5m, the
density is ρ � 2500 kg/m3, and the elastic modulus is
3.5×104MPa[26–29]. Its unit division and plate-beam in-
terface are shown in Figure 4. As can be seen from the figure,
the simply supported beam bridge model is divided into 20
units and 21 nodes. Node 1 and node 21 are end nodes of the
bridge, which are fixed hinge supports and sliding supports,
respectively. Among them, the main beam is simulated by
Bean3 unit, the horizontal and vertical displacements are
used for node 1 constraint, and the vertical displacements
are used for node 21 constraint.

,e continuous beam bridge model is a two-span
continuous beam bridge. ,e net span is (24 + 24) m, the
concrete grade is C50, the beam sectional area is 0.18m2, the
inertia moment of unit section is 0.0054m4, the beam height
is 0.6m, the density is ρ � 2500 kg/m3, and the elastic
modulus is 3.5×104MPa. ,e unit division and plate-beam
interface are shown in Figure 5. As can be seen from the
figure, the continuous beam bridge model was divided into
24 units and 25 nodes.,e length of each unit is 2m. Node 1,
node 13, and node 25 are end nodes of the bridge, which are
interactive supports, fixed hinge supports, and sliding
supports, respectively. Among them, the main beam is
simulated by Bean3 unit. ,e node 1 and node 25 are
constrained by displacement cross the bridge, vertical angle
along the bridge, and vertical displacement. ,e node 13 is
constrained by displacement cross the bridge, displacement
along the bridge, vertical displacement, and vertical angle
along the bridge.

Table 1: SDAE model settings.

Deep learning model Activation function Cost function Noise adding mode Classifier
SDAE Sigomid Cross entropy cost function Gaussian noise Saftmaxclassifier

Unlabeled training sample library

Unsupervised learning

Pre-training of denoising autoencoder

Whether the error 
requirement is met

Stack denoising 
autoencoder training

Labeled training 
sample library

Whether the error 
requirement is met

Construct 
model

Damage 
location 

identification

Test sample 
library

Classification 
results

Supervised 
learning

no

no

yes

yes

Figure 3: Bridge structural damage location identification process based on SDAE.
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3.2. Damage Samples of Bridge Structures

3.2.1. Damage Index and Training Sample Database
Determination. Combining the various literature, the ac-
celeration response value of the measuring point is selected
as the damage index of the bridge structure position
identification. Totally, 270 groups of measuring point ac-
celerations are used as a training sample database for damage
location identification of simply supported beam bridges. In
total, 12600 groups of measuring point accelerations are
selected as a training sample database for damage location
identification of continuous beam bridges.

3.2.2. Simply Supported Beam Bridge

Damage Condition. A moving load with a directional speed of
18 km/h is placed on the bridge, and the reduction of elastic
modulus of material is defined as the damage degree. If the
elastic modulus is reduced by 10%, the damage degree is 10%
and substituted by the concentrated force F� 100kN. Finally,
there are seven damage conditions in this experiment, including
no damage state and certain damage degree of a damage unit.
,e corresponding damage labels are shown in Table 2.

Sample Preprocessing. Under the action of moving load, the
vertical acceleration values of nodes 5, 9, 13, and 17 in the 3 s
of the simple beam bridge are randomly selected as the
damage index [30]. Among them, the corresponding ac-
celeration-time curve to each node in nondamage state is
shown in Figure 6.

Z-score is used to conduct standardized preprocessing for
the training samples and test samples, and sample I for SDAE
training and test can be obtained, as shown in Figure 7.

3.2.3. Continuous Beam Bridge

Damage Condition. A moving load with a directional speed
of 18 km/h is placed on the bridge, and the reduction of

elastic modulus of material is defined as the damage degree.
If the elastic modulus is reduced by 10%, the damage degree
is 10%, and substituted by the concentrated force F� 100 kN.
In order to be different from simply supported beam bridge,
multiple unit damage is added in the experiment. Finally, the
damage label database of the set test samples is shown in
Table 3.

Sample Preprocessing. Under the action of moving load, all
the vertical acceleration response values of nodes 4, 7, 10, 11,
19, and 22 within 5.8 s of continuous girder bridge are
randomly selected as the training sample database. Among
them, the damage degree is 40%, and the damage unite is No.
3. ,e corresponding acceleration-time curve of each node
at this unit state is shown in Figure 8.

Z-score is adopted to perform standardized pre-
processing for training samples and test samples, and sample
II for SDAE training and test can be obtained, as shown in
Figure 9.

3.3. Results and Analysis

3.3.1. Damage Location Identification of Simply Supported
Beam Bridges

Analysis of Recognition Results. ,e test sample of pre-
processed sample I is used as the input data of SDAE, and the
recognition results of deep learning model are shown in
Table 4. In the table, the first category represents non-
damaged unit, the second category represents the No. 3
damaged unit, the third category represents the No. 7
damaged unit, and the fourth category represents the No. 11
damaged unit. As can be seen from the table, the identifi-
cation accuracy of the proposed method for all damage
categories has been reached 93.3%. Among them, the rec-
ognition accuracy of undamaged unit and No. 7 damaged
unit is 100%, the recognition accuracy of No. 3 damaged unit
is 90%, and the recognition accuracy of No. 11 damaged unit

20×50

1000

10 11 12 13 14 15 16 17 18 19 201 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 211 2 3 4 5 6 7 8 9

Figure 4: Schematic diagram of simply-supported beam bridge.
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4800

12×200

21 22 23 24

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 251 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 201 2 3 4 5 6 7 8 9

Figure 5: Schematic diagram of continuous beam bridge.
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is 88.9%. ,erefore, the proposed method for the each
damage unit location identification of simply supported
beam bridge has certain effectiveness.

In order to verify the effectiveness of the proposedmethod
for damage location identification of simply supported beam
bridges with noise data, 5%, 10%, and 15%Gaussian noise are
added to the input data of training data and test data in
sample I, respectively. Meanwhile, the proposed method is
adopted to identify, and the results are obtained as shown in
Table 5. As can be seen from the table, under different noise
conditions, the proposed method has a high recognition
accuracy, which reaches 93.3%. ,erefore, the SDAE pro-
posed in this paper can effectively identify the location of each
damage unit of a simply supported beam bridge.

Performance Comparison. In order to verify the identifica-
tion performance of the proposed method, the proposed
method and the traditional damage location identification
methods of simply supported beam bridges, such as BP
network and SVM, are used to identify sample I under the
condition of no noise. ,e results are shown in Table 6. As
can be seen from the table, compared with BP network and
SVM comparative identification methods, the proposed
identification method based on SDAE has the highest
identification accuracy and a certain advantages.

Under different Gaussian noise conditions, the recogni-
tion results of BP network, SVM, and the proposed method
are shown in Figure 10. As can be seen from the figure,
compared with the traditional identification methods BP
network and SVM, the proposed method has obvious ad-
vantages in recognition accuracy. With the increase of noise
level, the recognition accuracy of both BP network and SVM
shows a decreasing trend, and the recognition accuracy of the
proposedmethod remains stable.,erefore, the identification
performance of the proposed method is better than that of
traditional identification methods for simply supported beam
bridges, and it has certain practical application value.

3.3.2. Damage Location Identification of Continuous Beam
Bridges. Analysis of Recognition Results.,e test samples of
preprocessed sample II are used as the input data of SDAE,
and the recognition results of deep learning model are
obtained as shown in Table 7. As can be seen from the table,
the average identification accuracy of the method proposed
for multiple damage units of continuous beam bridges is
higher, which reaches 99.8%. Among them, when the
damage unit is No. 3, the recognition accuracy of the first
damage category is 98.2%. When the damage unit is No. 10,
the recognition accuracy of the second damage category is
98.2%. ,e recognition accuracy of other damage cate-
gories containing multiple damage units is 100%. ,ere-
fore, compared with a single damage unit, the method
proposed in this paper has a higher identification accuracy
for the damage position of continuous girder bridges with
multiple damage units simultaneously. ,e reason is that
the more the damage units are, the greater the impact on
the carrying capacity of the bridge structure is, and the
more obvious the topological relationship between the
damage category and the acceleration response value of the
monitoring point is. It can be seen that it is conducive to
SDAE classification, so as to improve the identification
accuracy of the algorithm.

In order to verify the effectiveness of the proposed
method in identifying the damage position of continuous
beam bridges with noise data, the 5%, 10%, and 15%
Gaussian noise are added to the input data of training data
and test data in sample II. And the proposed method is used
to identify the damage position, and the results are obtained
as shown in Table 8. It can be seen from the table that under
different noise conditions, the method proposed in this
paper has high recognition accuracy, with an average rec-
ognition accuracy of 99.8%. ,erefore, the proposed SDAE
can effectively identify the location of each damage unit of
continuous beam bridges, and it has certain practical ap-
plication value.

Table 2: Damage labels of simply supported bridge samples.

Damage
condition
number

Loading condition
Damage
unit

Damage
degree Label

Boundary conditions Concentration force
size (kN)

Movement
speed Start End

JZLQ1 Boundary conditions of
simply supported beam 100 18 km/h Node

1
Node
21 No No 1st

category

JZLQ2 Boundary conditions of
simply supported beam 100 18 km/h Node

1
Node
21 No. 3 45% 2nd

category

JZLQ3 Boundary conditions of
simply supported beam 100 18 km/h Node

1
Node
21 No. 3 55% 2nd

category

JZLQ4 Boundary conditions of
simply supported beam 100 18 km/h Node

1
Node
21 No. 7 5% 3rd

category

JZLQ5 Boundary conditions of
simply supported beam 100 18 km/h Node

1
Node
21 No. 7 95% 3rd

category

JZLQ6 Boundary conditions of
simply supported beam 100 18 km/h Node

1
Node
21 No. 11 25% 4th

category

JZLQ7 Boundary conditions of
simply supported beam 100 18 km/h Node

1
Node
21 No. 11 55% 4th

category
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Performance Comparison. In order to verify the identi-
fication performance of the proposed method, the pro-
posed method and the traditional damage location
identification methods of continuous beam bridges, such

as BP network and SVM, are used to identify sample I
under the condition of no noise. ,e results are shown in
Table 9. As can be seen from the table, compared with BP
network and SVM comparative identification methods,
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Figure 6: Acceleration-time curves of nodes.
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Figure 7: Training set and test set after preprocessing sample I. (a) Preprocessed training samples. (b) Preprocessed test samples.

Table 3: Damage labels of continuous beam bridge samples.

Damage
condition
number

Loading condition
Damage
unit

Damage
degree Label

Boundary conditions Concentration force
size (kN)

Movement
speed Start End

LXLQ1 Continuous beam bridge
boundary conditions 100 18 km/h Node

1
Node
25 3 40% 1st

category

LXLQ2 Continuous beam bridge
boundary conditions 100 18 km/h Node

1
Node
25 10 15% 2nd

category

LXLQ3 Continuous beam bridge
boundary conditions 100 18 km/h Node

1
Node
25 21 55% 3rd

category

LXLQ4 Continuous beam bridge
boundary conditions 100 18 km/h Node

1
Node
25 6.9 30%, 30% 4th

category

LXLQ5 Continuous beam bridge
boundary conditions 100 18 km/h Node

1
Node
25 11, 19 15%, 15% 5th

category

LXLQ6 Continuous beam bridge
boundary conditions 100 18 km/h Node

1
Node
25 5, 22 30%, 60% 6th

category

LXLQ7 Continuous beam bridge
boundary conditions 100 18 km/h Node

1
Node
25 4, 8, 11 10%, 10%,

10%
7th

category

LXLQ8 Continuous beam bridge
boundary conditions 100 18 km/h Node

1
Node
25 9, 15, 20 45%, 45%,

45%
8th

category

LXLQ9 Continuous beam bridge
boundary conditions 100 18 km/h Node

1
Node
25 5, 15, 20 60%, 60%,

60%
9th

category
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Figure 8: Continued.
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Figure 8: Acceleration-time curves of nodes. (a) Node 4. (b) Node 5. (c) Node 6. (d) Node 7. (e) Node 8. (f ) Node 9.

Ve
rt

ic
al

 ac
ce

le
ra

tio
n 

re
sp

on
se

 v
al

ue
 (m

/s
2 )

-5
-4
-3
-2
-1
0
1
2
3
4
5

node 4
node 7
node 10

node 11
node 19
node 22

2100 4200 6300 8400 10500 126000
 training samples (group)

(a)

Ve
rt

ic
al

 ac
ce

le
ra

tio
n 

re
sp

on
se

 v
al

ue
 (m

/s
2 )

630 1260 1890 25200
test samples (group)

-5
-4
-3
-2
-1
0
1
2
3
4
5

node 4
node 7
node 10

node 11
node 19
node 22

(b)

Figure 9: Training set and test set after preprocessing sample II. (a) Preprocessed training samples. (b) Preprocessed test samples.
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the proposed identification method based on SDAE has
the highest identification accuracy, which has certain
advantages.

Under different Gaussian noise conditions, the recog-
nition results of BP network, SVM, and the proposed
method are shown in Figure 11. As can be seen from the

Table 4: Damage location identification results of simply supported beam bridges.

Damage category Total number of actual categories ,e number of accurate classifications Accuracy (%)
1st category 1 1

93.332nd category 10 9
3rd category 10 10
4th category 9 8

Table 5: Damage location identification results of simply supported beam bridges under different noise conditions.

Project ,e number of actual
categories

Correct classification at
0% noise

Correct classification at
5% noise

Correct classification at
10% noise

Correct classification at
15% noise

1st
category 1 1 1 1 1

2nd
category 10 9 9 9 9

3rd
category 10 10 10 10 10

4th
category 9 8 8 S 8

Accuracy —— 93.33% 93.33% 93.33% 93.33%

Table 6: Recognition results comparison of different recognition methods without noise.

Project ,e number of actual
categories

,e SDAE algorithm is
correct

,e BP neural network algorithm is
correct

,e SVM algorithm is
correct

1st category 1 1 0 0
2nd
category 10 9 1 6

3rd
category 10 10 7 3

4th category 9 8 3 3
Accuracy —— 93.33% 36.67% 40.00%
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Figure 10: Recognition results comparison of different recognition methods under different noise conditions.
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figure, compared with the traditional identification methods
BP network and SVM, the proposed method has obvious
advantages in recognition accuracy. With the increase of
noise level, the recognition accuracy of both BP network and

SVMmethod shows small fluctuation, while the recognition
accuracy of the proposed method always maintains a high
recognition accuracy, which is up to 99.8%. ,erefore, the
identification performance of the proposed method is better

Table 7: Damage location identification results of continuous beam bridges.

Damage category Total number of actual categories ,e number of accurate classifications Accuracy (%)
1st category 280 275

99.76

2nd category 280 279
3rd category 280 280
4th category 280 280
5th category 280 280
6th category 280 280
7th category 280 280
8th category 280 280
9th category 280 280

Table 8: Damage location identification results of continuous beam bridges under different noise conditions.

Project ,e number of actual
categories

Correct classification at
0% noise

Correct classification at
5% noise

Correct classification at
10% noise

Correct classification at
15% noise

1st
category 280 275 275 275 275

2nd
category 280 279 279 279 279

3rd
category 280 280 280 2S0 280

4th
category 280 280 280 280 280

5th
category 280 280 280 280 280

6th
category 280 280 280 280 280

7th
category 280 280 280 280 280

8th
category 280 280 280 280 280

9th
category 280 280 280 280 2S0

Accuracy — 99.76% 99.76% 99.76% 99.76%

Table 9: Recognition results comparison of different recognition methods without noise.

Project ,e number of actual
categories

,e SDAE algorithm is
correct

,e BP neural network algorithm is
correct

,e SVM algorithm is
correct

1st category 2S0 275 0 0
2nd
category 280 279 50 34

3rd
category 280 280 0 0

4th category 280 280 19 2
5th category 280 280 17 1
6th category 2S0 280 24 0
7th category 2S0 280 48 6
8th category 280 280 63 0
9th category 280 280 43 223
Accuracy — 99.76% 10.48% 10.56%
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than that of traditional identification methods for contin-
uous beam bridges, and it has a certain practical application
value.

4. Conclusion

To sum up, the damage location identification method of
bridge structure based on deep learning proposed in this
paper can effectively identify the damage location of simply
supported and continuous beam bridges by using SDAE.
Compared with the traditional bridge structure recognition
method BP network and the SVM method, the proposed
method shows a higher recognition accuracy and antinoise
performance. And the average identification accuracy for
continuous beam bridge of multiple damage unit reaches
99.8%. It can be seen that the proposed method has obvious
advantage on the damage location identification of actual
bridge structures. Although there are some achievements, all
the conclusions are based on software simulation, namely
theory. Obviously, it lack of practical test support, so the
proposed method has certain limitations. What is more, the
constructed damage index is relatively single. In the practical
application, the damage index of bridge structure is complex
and diverse, so the selection of damage index needs to be
further strengthened. Meanwhile, the practicality and per-
suasiveness of the proposed method also need to be
improved.
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