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To improve the accuracy of multi-instrument recognition, based on the basic principles and structure of CNN, a multipitch
instrument recognition method based on the convolutional neural network (CNN) is proposed. First of all, the pitch feature
detection technology and constant Q transform (CQT) are adopted to extract the signal characteristics of multiple instruments,
which are used as the input of the CNN network. Moreover, in order to improve the accuracy of multi-instrument signal
recognition, the benchmark recognition model and two-level recognition model are constructed. Finally, the above models are
verified by experiments. )e results show that the two-level classification model established in this article can accurately identify
and classify various musical instruments, and the recognition accuracy is improved most obviously in xylophone. Compared with
the benchmark model, the constructed two-level recognition has the highest accuracy and precision, which shows that this model
has superior performance and can improve the accuracy of multi-instrument recognition.

With the rise of artificial intelligence technologies such
as deep learning and the growth of massive music data,
content-based music retrieval has become an urgent
issue at present. In content-based music retrieval, how to
identify music has become the focus of current music
information retrieval research. Compared with the tra-
ditional speech signal, speech signal should have a richer
spectrum, treble, and timbre. )erefore, based on the
above characteristics, the recognition of music signal can
be divided into recognition method, recognition accu-
racy, recognition time, and recognition scene. Marı́a and
ValeroMas Jose applied the convolutional recursive
neural network to music recognition, which greatly re-
duces the precision of musical note and number rec-
ognition [1]. Agarwal and Om applied the machine
learning algorithm to music recognition and obtained
the highest recognition accuracy by the improved
method through the music emotion recognition of the
ISMIR2012 dataset, NJU_V1 dataset, and self-built
dataset [2]. Sarkar applied the deep learning algorithm to
the recognition of music and audio by extracting MFCC
features and finally using VGGNet for recognition. )e

results show that the method has obvious advantages in
three datasets [3]. Yan uses the genetic algorithm to
improve the T-S cognitive neural network and applies the
model to music recognition for higher accuracy and
robustness [4]. Liang used machine learning algorithms
to build prediction models among audio features, indi-
viduals, and emotions, so as to propose suggestions on
emotional influence in music [5]. Wang and others ac-
curately identified different emotions including happi-
ness, anger, sadness, and fear by establishing CLDNN’s
musical instrument emotion recognition model [6];
ATILA Orhan proposed a speech emotion recognition
model based on 3D CNN-LSTM and evaluated speech
from the perspectives of accuracy, sensitivity, specificity,
and F1, which provided a reference for speech evaluation
[7]. Solanki et al. also use the convolutional neural
network to recognize musical instruments, but mainly
focus on extracting the characteristic parameters of
musical instruments [8–10]. As can be seen, the above
research provides reference for the music retrieval and
identification. However, the above research is mainly
aimed at the musical identification of a single
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instrument. At present, there are relatively few refer-
ences for the music identification of multiple instru-
ments. In multi-instrument recognition of polyphony,
not only the traditional single tone signal must be
extracted, but also the tones of different instruments
must be identified. )erefore, based on the reality of
research, a convolutional neural network is used to
identify the multi-instrument music signal. )erefore,
this article attempts to identify the signals of different
musical instruments by extracting and identifying the
characteristics of musical instruments on the basis of
traditional single instrument recognition.

1. Introduction to Convolutional
Neural Network

CNN, a representative algorithm of deep learning, is a kind
of feed-forward neural network, which includes convolution
calculation and has depth structure [11]. CNN can learn the
original data efficiently and quickly, so as to extract the
features of the data, which means that it has the ability of
representation learning. )e specific structure is shown in
Figure 1, which is mainly divided into five network layers
and belongs to multilayer perceptron (MLP) [12]. )e most
important steps are convolution calculation and pooling
operation.

1.1. Convolutional Layer. )e convolution formula is as
follows:

s(t) � x(t)∗w(t) � 􏽘
τ�+∞
τ�−∞x(τ)w(t − τ), (1)

where s(t), x(t), and w(t) represent feature mapping, input
features, and convolution cores, respectively. If it is two-
dimensional matrices, it can be represented as

s(i, j) � 􏽘 M
m�0 􏽘

N

n�0 wm,nxi+m + wb􏼐 􏼑. (2)

In the above formula, the size of convolution kernel is
M × N, which is shown in Figure 2 [13–15]. )e advan-
tages of convolution operation are mainly reflected in
three aspects. Firstly, the realization of parameter sharing
helps to reduce the size of the parameter set. Secondly,
sparse connection reduces the number of parameters and
improves the efficiency, which has certain advantages over
full connection. )irdly, because the same convolution
kernel is used, when the value of input eigenmatrix
changes, the corresponding result will change at the same
position.

1.2. Pooling Layer. )e pooling layer refers to the output of
statistics for a specific region within the input eigenmatrix.
Generally, two pooling methods can be adopted, namely,
average pooling and maximum pooling. )ey take the mean
and maximum values of the local region as the output,
respectively. Except for these twomethods, there is a random
pooling, which selects neurons with greater probability
values.

2. The Construction ofMulti-Instrument Signal
Recognition Model Based on Convolutional
Neural Network

2.1. Multi-Instrument Signal Feature Extraction. In order to
realize the recognition of multi-instrument signals, it is
necessary to extract musical instrument signal features first.
Conventional instrument signal extraction is usually only for
a single instrument, which is relatively simple. It only needs
to eliminate the instrument noise and then classify them. But
for multi-instrument signals, it not only needs to deal with
the noise, but also faces the knowledge of notes of different
instruments. In other words, the conventional time-fre-
quency feature extraction, such as MFCC, may not achieve
the recognition effect. )erefore, on the basis of signal
processing, the essential elements of music, such as pitch,
harmony, and other signals, are combined to identify the
signals of multiple instruments. )e instrument signal
characteristics are processed by pitch characteristic detec-
tion and constant Q transformation.

2.1.1. Pitch Feature Extraction. )e multipitch detection
based on a statistical model and spectral decomposition is
the main method to extract pitch features. However, con-
sidering that an end-to-end neural network may have the
problem of overfitting in the display feature extraction,
filters are introduced to extract the time-frequency features
of musical instrument signals in the primary feature ex-
traction process of convolutional neural network. In other
words, the first layer of the convolutional neural network is
replaced by the filter, which can greatly reduce the over-
fitting problem. )e specific extraction process is shown in
Figure 3 [16–18].

)e specific process is as follows:
Firstly, the audio frame X is normalized, that is,

X⟶ X/‖X‖2. )e audible variables of each frame are
standardized.)en, it is divided into Tp segments, and each
segment is represented as xt. )e number of sampling
points is s, which means xt � (xt1

, xt2
, ..., xti

). To map X, it
needs to use the filter banks in the log-frequency domain,
including cosine and sine filters, and the total number is
np � 511. )us, the logarithmic frequency-time matrix
(np × Tp) can be formed, and the log-frequency domain is
logfL to logfH. )en, the parameter of sine filter i is shown
as follows [19]:

wi, sin � sin 2πfit1, ..., sin 2πfits( 􏼁. (3)

)e parameters of cosine filter i are shown as follows:

wi, cos � cos 2πfit1, ..., cos 2πfits( 􏼁. (4)

In the above formula, fi � 10logfL+i(logfH− logfL/n);
according to the normalized amplitude xt � (xt1

, xt2
, ..., xti

),
the position t1, t2, .., ts at each time can be determined.

)en, let xt do the inner product calculation with wi, sin
and wi, cos. Next, the square and the sum of the two can be
calculated. So the output of filter i can be obtained as follows
[20–22]:
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filteri � w
T
i, sinxt􏼐 􏼑

2
+ w

T
i, cosxt􏼐 􏼑

2
. (5)

If the number of filters is np, the corresponding outputs
are filter1, ..., filternp

. Dividing the audio frames into

segments, if the number of segments is Tp, the logarithmic
frequency-time matrix is np × Tp.

Secondly, processing the above matrix, the tensor of
logarithmic frequency-time-channel can be obtained after
convolution. )e first layer of the convolutional network is
the matrix obtained in the first step. However, setting up the
mapping of the second layer is to do the convolution
computation for the logarithmic frequency axis. )e step
size is set to 3, and the convolution kernel 128 × 1 is selected.
)e matrix after convolution is mapped to channels, and the
tensor of 128 × Tp × Ci is obtained, where C1 represents the
number of channels.

)irdly, continue the two-dimensional convolution for
the tensor obtained in the previous step, so that the loga-
rithmic frequency-channel matrix can be obtained. Mapping
to the third layer with the same method, the height of
convolution kernel (Tp × C2) is 1; thus, the matrix of
128× C2 can be obtained, where C2 represents the number of
channels.

)e full connection processing of the matrix obtained in
the previous step is performed, and the corresponding pitch
recognition vector can be obtained. It is necessary to connect
the lines of the matrix in the previous step with the linear
classifier. )e number of pitch frequency is m1. If the
number of valid elements is the same, the vector is 1. If the
number is different, the vector is 0.

After the frame segmentation is completed, each audio
frame is processed based on the above process. )e corre-
sponding pitch feature matrix can be obtained. If the pitch
frequency in the pitch set is Mp, and the number of frame is
Np, so the corresponding matrix size is expressed as
Mp × Np.

2.1.2. Constant Q Transform. In order to better display the
pitch frequency on the spectrum space of DFTor STFT, the
constant Q transform (CQT) is adopted in this study to
transform the time-frequency of music signal analysis. )e
specific steps are as follows [23–25]:

(1) Find the spectral kernel matrix corresponding to the
octave with the highest frequency.

(2) )e corresponding CQTfrequency band of the input
signal x(n) is calculated by the DFT transform
vector, and the input signal x(n) is marked as x0(n).

(3) Sample the signal.

Audio frame segmentation

The time-frequency matrix

Log frequency-channel
eigenmatrix

Logarithmic
frequency

channel
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time

Pitch recognition loss

Linear classifier
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Figure 3: Pitch feature extraction process.

Input layer
Convolutional

layer Pool layer Output layer

Pool ConvolutionalPool Convolutional

Convolutional
layer Pool layer

Full connection layer

Full connection Output

Figure 1: CNN neural network structure.

1 1 32

0 002

1 312
0 2

1 3

10 64

7 117

input convolution
kernel

output

Figure 2: Example of convolution operation.
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(4) Calculate the CQT frequency band by the corre-
sponding DFT transform vector of the next octave.

(5) Repeat steps (3) and (4) until the calculation is
complete, as shown in Figure 4.

In Figure 4, G(f) represents the low-pass filter, and ↓2
represents downsampling with a downsampling factor of 2.
Here, the downsampling of xd(n) is fs/2d (d≥ 1), and the
CQT transform XCQ

d of each octave is

X
CQ
d � A

∗
Xd, (6)

where A∗ represents the conjugate transpose of the
complex numerical spectrum kernel matrix, which is usually
used to calculate the CQT of octaves.

2.2. Construction of Multi-Instrument Signal Recognition
Model

2.2.1. Construction of Benchmark Model. First of all, the
benchmark model needs to be established, and then the
modification and improvement can be achieved on this
basis. In this article, combining the convolutional network
model designed by liu and Yang, the model can realize
automatic music labeling.)e data used in this training have
a frame-level accuracy label, which is used as a supervisory
signal.

)is model is divided into multiple layers, including the
batch standardization layer, convolution layer, pooling layer,
etc., and the specific structure is shown in Figure 5 [26].

Due to the problem of internal covariable offset in the
training process of the convolutional network, the batch
standardization layer can be used to deal with it. It is
necessary to ensure the consistency in the distribution of
training and test data, and it is helpful to improve gener-
alization ability. However, when there are many parameters
and the number of network layers increases, the data dis-
tribution will change after the parameter update. At this
time, the difficulty of training will increase. To solve the
above problems, the batch standardization can be adopted to
adjust the data distribution. It makes the intermediate
characteristic data become normal distribution, which is
realized by processing the input or output data of the in-
termediate hidden layer. )is is a standardized processing
procedures, and its formula is shown as follows [27]:

a
n
i � ci ×

ai − μ
σ

+ βi. (7)

Here, βi and ci represent translation and zoom factor,
respectively; a1 represents initial activation value; μ and σ are
as follows, respectively:

μ �
1
m

􏽘

m

k�1
ak, k ∈ S, ‖S‖ � m,

σ �

����������������

1
m

􏽘

m

k�1
ak − μ( 􏼁

2
+ ε

􏽶
􏽴

, k ∈ S, ‖S‖ � m.

(8)
In the formulas, S represents the neuron set with a size of

M, but it has different meanings for different networks. If it is
a convolutional network, m actually represents the total
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Figure 4: )e method of CQT calculation for each octave.
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Figure 5: Network structure of the benchmark model.
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number of all activation values formed based on the con-
volutional kernel channel. For a fully connected network, it
represents the number of activation values formed by all
instances in a particular batch. ε represents the constants
related to training stability.

Batch standardization is a key process. )e problem of
gradient explosion can be solved by adjusting data distri-
bution, because the noise caused by scaling and other op-
erations can help to get the parameters with higher
generalization performance. In addition, to improve the
efficiency of convergence, a relatively large learning step can
be set.

Except for the above layers, the function of the con-
volution layer is to extract the required intermediate fea-
tures. )e maximum pooling layer is an important part,
which can realize the function of compression features. And
it can reduce the difficulty of calculation. Specifically, the
maximum value dividing the pooling area is taken as the
output value. ReLu function is adopted in the middle, and
the specific form is as follows [28].

f(x) �
x, x> 0,

0, x≤ 0,
􏼨 (9)

where some activation values of output are equal to zero,
which makes the network sparse. Compared to the Sigmoid
function, a higher convergence speed can be achieved. )e
output layer is mainly applied, and its form is shown as
follows [29]:

f(x) �
1

1 + exp(−x)
. (10)

Based on the function, the normalization has been
achieved. )e output value of the instrument recognition
model is placed in the range of 0–1, namely, the existence
probability of various musical instruments. )en, the
binarization method can be adopted to determine instru-
ments’ existing situation. )is process depends on the
proper threshold. If the threshold is set to 0.5, there is no
guarantee for good performance. )erefore, a kind of
threshold selection algorithm is designed. It means that the
method of maximizing the F1 score of the training set is used
to set the threshold value. )ere are 99 candidates’ threshold
values, which are 0.1, 0.2, . . ., 0.99, respectively.

)e loss function adopted in the training is binary cross-
entropy, and the specific form is shown as follows [30]:

l � − 􏽘
11

k�1
􏽢yklogyk + 1 − 􏽢yk( 􏼁log 1 − yk( 􏼁. (11)

Here, k represents the specific musical instrument cat-
egory, and yk and y

⌢

k represent the identification of each
time frame and real label. Considering the imbalance of
categories, a certain weight is set for each category, which is
expressed as ωk. )e specific form is shown as follows [30]:

ωk �
p

pk

×
1 − pk

1 − p
􏼠 􏼡

η

. (12)

In the formula, η represents the hyperparameter, which
is generally valued at 0.3; p represents the mean value of all
of pk; and pk represents the proportion occupied by category
k. lban is expressed as follows:

lban � − 􏽘
11

k�1
ωk 􏽢yklogyk + 1 − 􏽢yk( 􏼁log 1 − yk( 􏼁􏼂 􏼃. (13)

According to the above analysis, the weights need to be
set in conjunction with the proportion size occupied by a
specific categories of instruments. For example, when the
proportion occupied by a specific categories of instruments
is low, a higher weight should be set to improve the accuracy
of instrument recognition results. So when the frequency of
occurrence is not high, the effective recognition even can be
ensured. )e momentum algorithm is adopted in the cal-
culation, in which weight attenuation factor, learning rate,
and batch are 2 × 10− 4, 0.01, and 80, respectively.

2.2.2. Multi-Instrument Signal Recognition Based on Two-
Level Classification. When multiple instruments are played
at the same time, the traditional classification model based
on the attention network has a poor recognition effect on
harmonic instruments. )e main reason is the category
imbalance, which means that the difference in the pro-
portion of different categories interferes with the learning of
model parameters. )erefore, combined with the basic
principle of undersampling or oversampling, the two-level
classification model is proposed. )is model is mainly di-
vided into the first-level and the second-level convolutional
neural network classification models.

)e first-level classification model takes the constant Q
transformmatrix as the input feature. Firstly, the instrument
families in audio signals are rough classified. )e constant Q
transform matrix reflects the time-frequency energy dis-
tribution of audio signals, and it can be used as an effective
feature of rough classification.

)e second-level classification model is composed of
three residual network models with the same architecture.
Each residual network model is specially trained to identify
various instruments under a certain musical instrument
family. )ere is a special network model for each of the three
musical instrument families. )e specific process of the two-
level classification model is as follows [30, 31].

Figure 6 shows the network architecture of first-level
classification model. From the top to the bottom, there are
batch standardization layer, convolution layer, batch stan-
dardization layer, convolution layer, convolution layer,
batch standardization layer, ReLu layer, maximum pooling
layer, convolution layer, and Sigmoid layer.

Figure 7 shows the residual network model architecture
of three same structures in the second-level classification
model. From the top to the bottom, there are batch stan-
dardization layer, convolution layer, residual block, maxi-
mum pooling layer, residual block, convolution layer,
maximum pooling layer, batch standardization layer, ReLu
layer, convolution layer, and Sigmoid layer.
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)e residual block is divided into two parts.)e first part
includes batch standardization layer, convolution layer,
batch standardization layer, ReLu layer, convolution layer,
and batch standardization layer. And the second part is a
convolution layer. )e input of the residual block enters
these two parts to obtain the output, and the output of two
parts is summed as the final output of the residual block.

)e residual structure of the residual network can ef-
fectively solve the problem of gradient disappearance in deep
network. In this article, it is applied to detect and recognize
the time-frequency characteristic spectrum, and the inter-
mediate feature extraction of musical instrument recogni-
tion is realized successively.

)e loss function is expressed as

ς′ban � − 􏽘
K

k�1
ωk 􏽢yklogyk + 1 − 􏽢yk( 􏼁log 1 − yk( 􏼁􏼂 􏼃. (14)

In the first-level classification model, the K of equation
(14) is valued at 3, representing the three musical instrument
family categories of string, wind, and percussion. In the
second-level classification model, the K in the string music
classification network is valued at 5, representing piano,
violin, viola, guitar, and bass. In the wind music classifi-
cation network, the K is valued at 3, representing saxophone,
bassoon, and trumpet. )e value of K in the percussion
classification network is valued at 3, representing timpani,
small drum, and xylophone.

3. Simulation Verification

3.1. Experimental Environment. In order to achieve better
experimental results, Intel i7-7800X CPU is selected as the
hardware system in this experiment. )e main frequency is
3.5GHz, and the farce frequency is 4.0GHz. It uses 6 cores
and 12 threads. )e memory is 16GB, and the graphics card
is an NVIDIA GTX 2080 dual-channel GPU.

Software system: Ubuntu 16.04, 64 bit operating system,
Anaconda3-4.4.0, deep learning framework PyTorch0.4.1,
and acceleration module CUDA 10.0.
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3.2. Dataset Sources. At present, the commonly used dataset
includes Bach10 dataset, MedleyDB dataset, and MIXING
SECRETS dataset. Among them, Bach10 dataset includes ten
large choral works by J.S.Bach, each of which contains four
monophonic parts. )e audio recordings of each mono-
phonic part are performed by violin, clarinet, saxophone,
and bassoon; the MedleyDB dataset consists of 122 songs, in
which 108 songs are vocal and instrumental melodies; the
MIXING SECRETS dataset contains 258 multitrack audio
songs, and there are a variety of music genres involved.
However, the scale of the above three public datasets is still
not large, and there is no note label in the MIXING SE-
CRETS dataset, only instrument label. Moreover, there are
14 songs in the Medley DB dataset and no note label. In
order to solve the above problems, the label annotation
information of the MIDI score in an open-source music
platform is aligned to the original audio by means of self-
built dataset, and then, it is manually calibrated by people
with professional music background. Finally, there are 307
useable extended datasets obtained, including various mu-
sical instruments and music types, and every frame has the
annotation label.

3.3. Processing of Pitch Feature Matrix. Musical instruments
of the same family have certain similarities in pitch range. In
order to better identify, the energy ratio of harmonics needs
to be considered. )erefore, based on the extracted pitch
feature matrix, lines 7–94 of the extracted matrix are
expressed as Y1. According to available information, the
matrix is sparse. )en, the fundamental frequency position
value within Y1 is moved to 12 grids 2(12/12) � 2 distance
from it.)us, the matrix Y2 is formed. Using the same way to
move to 19 grid 2(19/12) � 3, 24 grid 2(24/12) � 4, 28 grid
2(28/12) � 5, and 31 grid 2(31/12) � 6 in turn, the matrix is
respectively represented as Y3, Y4, Y5, and Y6.

)e basic form of harmonic sequence matrix is as
follows:

Sn � Y1 + Y2 + . . . + Yn. (15)

)e matrix actually represents a sequence combination
of fundamental frequencies and corresponding harmonics.
)erefore, when determining the meaning of Y6, S1–S6
matrices can be obtained, which are the input feature of the
CNN.

3.4. Experimental Results and Analysis

3.4.1. Multi-Instrument Recognition Results under Bench-
mark Model. )ere are ten kinds of musical instruments,
which are divided into three categories: percussion instru-
ments, string instruments, and wind instruments. )e
percussion instruments are xylophone, timpani, trumpet,
and the string instruments are guitar, piano, bass, viola, and
violin. In addition, the wind instruments are bassoon and
saxophone. In the experiment, an appropriate experimental
environment should be configured first, which is basically
consistent with the previous pitch feature extraction ex-
periment. )e dataset is divided into two parts, namely,

training set and test set. )e ratio of the two parts is 9 :1.
Moreover, the possibility of the inexistence and unlabeled
instruments in the training set should be considered.

)e extracted constant Q transform matrix
XCQ(88 × 165) is processed, which is spliced with S1–S6.)e
corresponding input matrices can be obtained, which can be
represented as I1–I6, namely, the harmonic mapping matrix.
)en, they are input into the model, and the corresponding
class-time series matrix can be obtained.)e feature changes
in the benchmark model are shown in Table 1.

)e experimental results are obtained according to Ta-
ble 2. )e instrument-type recognition results are evaluated
through F1. In the total number of instrument recognition,
there are three cases of unrecognized, misrecognized, and
correct recognition. It can be seen that the overall accuracy
can identify the proportion of accuracy times.

)e real pitch label matrix is adopted to design the
harmonic mapping matrix I

g
n (n is 1–6). At this time, the

values in Y1 are all accurate. According to the information in
Tables 2 and 3, it can be clearly seen that compared with the
estimated pitch labels, the harmonic mapping matrix ob-
tained by using real labels can achieve higher overall ac-
curacy and F1 value. In addition, compared with xylophone
and timpani, the recognition results of estimated and real
pitch of a small drum are basically the same, which is mainly
related to the unfixed pitch. In this study, the pitch features
are mainly used to recognize the musical instruments. So the
recognition scores of different types of musical instruments
are different. Compared with percussion instruments, the
recognition scores of orchestral instruments are higher,
which verifies the effectiveness of pitch feature extraction.

3.4.2. Multi-Instrument Classification Results under Two-
Level Recognition. Firstly, the configuration of the experi-
mental environment is consistent with the previous section.
)emomentum algorithm (0.9) is adopted, where the weight
attenuation factor, learning rate, and batch are 2∗10−4, 0.05,
and 60, respectively. In this experiment, a tensor is input,
including I1–I6. Furthermore, the output result is class-time
series matrix. )e specific characteristic changes are shown
in Table 4.

I3 and I5 as the benchmark model of input are repre-
sented as BI3 and BI5, respectively. )e classification model
is represented as MA. According to the information in
Table 5, it can be seen that compared with the previously
adopted benchmark model, a higher overall accuracy is
achieved by adopting the attention network model, and the
recognition scores of all instruments except xylophone are
improved.

Based on the analysis of the above phenomenon, it is
found that the attention network actually is to set the ap-
propriate weights for the intermediate feature graph.
Compared with the other types of musical instruments, the
melodic instrument features are more conducive to recog-
nition, which means the weights are higher. )e common
melodic instruments are piano and guitar, and the xylo-
phone is rarely used as a melodic instrument. )erefore, if it
exists at the same time with other instruments, the
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characteristics that need to be recognized can be easily
masked. In this perspective, after adding the attention
network, it is beneficial for melody instrument recognition,
which is helpful to improve the overall accuracy. However, it
is not possible to improve all instrument recognition scores,
which needs to be further studied.

In this article, the constant Q transform matrix of the
first-level classification model is used as input and output
instrument family-time series matrix. In the second-level
classification model, the third-order harmonic mapping

matrix I3, the fifth-order harmonic mapping matrix I5, and
the sixth-order harmonic mapping matrix I6 are used as the
input features of the string music classification network,
wind music classification network, and percussion music
classification network, respectively. )en, the output of the
three networks is summarized to obtain the final instrument
class-time series matrix. )e recognition scores and overall
accuracy of various musical instruments in the two-level
classification model (MT) are obtained, and the comparison
is shown in Table 6.

Table 2: F1 and overall accuracy of ten instruments under the benchmark model (using estimated pitch).

Harmonic mapping matrix
order Piano Violin Viola Guitar Saxophone Bassoon

tube Timpani Xylophone Bass Trumpet Overall
accuracy

I1 0.88 0.88 0.84 0.88 0.82 0.82 0.76 0.73 0.77 0.80 0.77
I2 0.89 0.89 0.84 0.89 0.84 0.83 0.78 0.75 0.73 0.81 0.77
I3 0.90 0.90 838.00 0 892 0.83 0 836 0.78 0.76 0.80 0.74 0.77
I4 0.90 0.40 832.00 0.89 0.84 0.84 0.79 0.75 0.75 0.79 0.77
I5 0.89 0.89 0.84 0.89 0.85 0.85 0.80 0.77 0.80 0.76 0.77
I6 0.89 0.89 0.83 0.89 0.85 0.85 0.04 0.77 0.77 0.79 0.78

Table 3: F1 scores and overall accuracy of ten instruments under the benchmark model (using real pitch).

Harmonic mapping matrix
order Piano Violin Viola Guitar Saxophone Bassoon

tube Timpani Xylophone Bass Trumpet Overall
accuracy

I
g
1 0.90 0.90 0.85 0.89 0.84 0.83 0.77 0.74 0.77 0.83 0.80

I
g
2 0.91 0.91 0.86 0.89 0.85 0.83 0.80 0.76 0.75 0.85 0.80

I
g
3 0.91 0.91 0.85 0.91 0.85 0.84 0.79 0.77 0.76 0.84 0.80

I
g
4 0.91 0.91 0.85 0.90 0.85 0.86 0.81 0.78 0.77 0.85 0.81

I
g
5 0.91 0.91 0.84 0.90 0.86 0.87 0.82 0.79 0.80 0.81 0.80

I
g
6 0.91 0.91 0.85 0.90 0.86 0.87 0.77 0.78 0.79 0.82 0.80

Table 4: Changes of feature size in the classification model based on the attention network.

Input size Operation Output size
176×165× 6 2×1 Convolution kernel, 352 channels 352×164× 6
352×164× 6 3×1 Maximum pooling 352× 54× 6
352× 52× 6 3×1 Convolution kernel, 704 channels 704× 52× 6
704× 52× 6 3×1 Channels 704×17× 6
704×17× 6 2×1 Channels, 11 channels 11× 8× 6
704×17× 6 Attention subnet Six attention weights
11× 8× 6 )e sum using the weighting of attention weight 11× 8

Table 5: F1 and overall accuracy and comparison of ten musical instruments based on the attention network classification model.

Piano Violin Viola Guitar Saxophone Bassoon tube Timpani Xylophone Bass Trumpet Overall accuracy
BI3 0.90 0.90 0.84 0.89 0.83 0.84 0.78 0.76 0.81 0.73 0.77
BI5 0.89 0.89 0.84 0.89 0.85 0.85 0.80 0.77 0.76 0.88 0.77
MA 0.91 0.90 0.85 0.91 0.86 0.86 0.81 0.74 0.80 0.86 0.83

Table 1: Change process of the feature size in the benchmark model.

Input size Operation Output size
176×165×1 2×1 Convolution kernel, 352 channels 352×164×1
352×164×1 3×1 Maximum pooling 352× 54×1
352× 54×1 3×1 Convolution kernel, 704 channels 704× 52×1
704× 52×1 3×1 Channels 704×17×1
704×17×1 2×1 Channels, 704 channels 704× 8×1
704× 8×1 1× 1 Channels, 11 channels 11× 8
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After comprehensively analyzing the charts, what can
be found is that the recognition scores of most musical
instruments are improved, especially xylophone. And it can
be seen that the two-level classification model proposed in
this article can balance the classification of musical in-
struments well, and the overall accuracy is further
improved.

Figure 8 is the recognition effect diagram of the string
music classification network. )e upper part (a) represents
the real label, the lower part (b) represents the recognition
result, and the black part represents the existence of musical
instruments.

As can be seen intuitively from the figure above, piano
and violin can be accurately identified, while there is con-
fusion in the viola, and the recognition accuracy needs to be
improved.

Figure 9 is the identification effect diagram of the wind
music classification network. As can be seen from the

picture, the trumpet can be identified accurately, while there
are confusions in the the other two instruments, and the
recognition accuracy needs to be improved.

Figure 10 is the identification effect diagram of the
percussion music classification network. It can be clearly
seen from the figure that all three musical instruments have
been accurately identified, which means that there are ob-
vious differences between these three musical instruments,
so that they can be well identified and classified.

)e comprehensive analysis shows that the two-level
classification model constructed in this article has the best
comprehensive performance, and it has the more accurate
recognition effect.

To further verify the effectiveness of the proposed
method, the experiment compares the accuracy of the
proposed model with that of the existing duets, trios, and
quartet, and the obtained comparison results are shown in
Table 7.

Table 6: Comparison of F1 and overall accuracy of ten musical instruments in the two-level classification model.

Piano Violin Viola Guitar Saxophone Bassoon tube Timpani Xylophone Bass Trumpet Overall accuracy
BI3 0.90 0.90 0.84 0.89 0.83 0.84 0.78 0.76 0.79 0.75 0.77
BI5 0.89 0.89 0.84 0.89 0.85 0.85 0.80 0.77 0.71 0.83 0.77
MA 0.91 0.90 0.85 0.91 0.86 0.86 0.81 0.74 0.75 0.91 0.83
MT 0.91 0.90 0.85 0.91 0.86 0.87 0.82 0.81 0.83 0.89 0.86

time
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Figure 8: Recognition effect of string music classification network in the second-level classification model.
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Figure 9: Identification effect of the wind music classification network in the second-level classification model.
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Figure 10: Recognition effect of the percussion classification network in the second-level classification model.
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As can be seen from the above table, compared with the
other three methods, the recognition accuracy of the two-level
classification model proposed in this article is as high as 85.7%.
)e recognition accuracy of duet is 84.1%. )ere are 77.8% for
trio, and there are 73.1% for quartet. )e method proposed in
this article is much higher than the other three methods, which
shows that the method proposed in this article has a higher
recognition accuracy and better performance.

4. Conclusion

In conclusion, the two-level classification model based on the
convolutional neural network proposed in this article has a
good classification effect and recognition accuracy. It has
certain validity.)rough comparative experiments, it is found
that the recognition accuracy of the proposed method is 1.6%,
8.1%, and 13.4% higher than that of the method of duet, trio,
and quartet. So the recognition accuracy and classification
effect of the proposed method are better. )e validity of the
proposed classificationmodel is further verified by comparing
the benchmark classification model with the classification
model based on the attention network. However, due to the
lack of experience and adequate experimental conditions, the
research needs to be further improved and perfected. Spe-
cifically, the original audio and scores of various musical
instruments can be added to obtain more datasets, so as to
further improve the experiment scientificity.
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