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The coronavirus disease (COVID-19) outbreak, which began in December 2019, has claimed numerous lives and impacted all
aspects of human life. COVID-19 was deemed an outbreak by the World Health Organization (WHO) as time passed, putting a
tremendous strain on substantially all countries, particularly those with poor health services and delayed reaction times. This
recently identified virus is highly contagious. Controlling the rapid spread of this infection requires early detection of infected
people through comprehensive screening. For COVID-19 viral diagnosis and follow-up, chest radiography imaging is an excellent
tool. Deep learning (DL) has been used for a variety of healthcare purposes, including diabetic retinopathy detection, image
classification, and thyroid diagnosis. DL is a useful strategy for combating the COVID-19 outbreak because there are so many
streams of medical images (e.g., X-rays, CT, and MRI). In this study, we used the benchmark chest X-ray scan (CXRS) dataset for
both COVID-19-infected and noninfected patients. We evaluate the results of DL-based convolutional neural network (CNN)
models after preprocessing the scans and using data augmentation. Transfer learning (TL) is used to improve the algorithm’s
classification performance for chest radiography imaging. Finally, features of the attention and feature interweave modules are
combined to create a more accurate feature map. The architecture is trained for COVID-19 CXRS using CNN, and the newly
generated feature layer is applied to TL architecture. The experimental results found that training enhances the CNN +TL
algorithm’s ability to classify CXRS with an overall detection accuracy of 99.3%, precision (0.97), recall (0.98), f-measure (0.98),
and receiver operating characteristic (ROC) curve (area = 0.97). The results show that further training improves the classification
architecture’s performance by 99.3%.

1. Introduction

COVID-19 is a recently identified coronavirus infectious
disease [1]. At the end of 2019, instances of COVID-19 first
appeared, when a suspicious disease was identified in
Wuhan, China. As a novel coronavirus, the source of in-
fection was soon confirmed, and the outbreak has since
expanded to several countries worldwide and has become a
pandemic disease [2, 3]. Numerous forums have reported
COVID-19 details and have provided various factors taken

into consideration to their users in order to avoid the
transmission of the infection, such as wearing masks and
cleaning their hands, maintaining a gap among themselves
and others [4, 5].

Around the globe, COVID-19 is causing an increase in
reported cases and mortality rates. There is a scarcity of data
on the effect of cardiovascular complications on fatal out-
comes [6]. COVID-19 is a highly contagious infection that
travels primarily by contact with an infected human’s re-
spiratory droplets. Ingestion of these particles may allow
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them to enter the human body [7]. COVID-19 has been
recorded in 217 countries and countries across the world as
of October 2021, with approximately 235 million confirmed
cases and 4.8 million death rates. Figures 1 and 2 depict the
total number of confirmed cases and deaths from December
31, 2020, to October 06, 2021, respectively. COVID-19 has
been confirmed in 235,673,032 people worldwide, with
4,814,651 deaths, according to WHO data as of October 6,
2021. A total of 6,188,903,420 vaccine doses have been
handed out as of October 2nd, 2021 [8].

Early detection and isolation of potentially infectious
topics is a serious process in fighting COVID-19. Reverse
transcription-polymerase chain reaction (RT-PCR) by gene
sequencing of respiratory or blood samples is the gold
standard screening method for identifying the coronavirus
[9]. Nevertheless, due to a lack of testing equipment, in-
adequate facility, time-consuming, laborious, and suscep-
tibility, most patients would not be able to detect
immediately in current health emergencies [10]. As a result,
the risk of infecting a safe population will increase. As a
result, health professionals have explored a faster and more
accurate screening process, such as chest radiographs (chest
X-ray) or computed tomography (CT) imaging, which can
reveal advanced features associated with the COVID-19
virus [11]. Patients with COVID-19 have been shown to have
malformations on chest radiographs. The scanning method
is thought to be a quick screening tool for quickly identifying
suspicious patients in an epidemic region. One significant
disadvantage of CT imaging is that CT scanners are not
commonly accessible in many emerging countries.

When a patient has symptoms of COVID-19, such as
cough, fever, breathlessness, or chest tightness, the most
peculiar result is something called “ground-glass opacities,”
which means that certain parts of the lungs are a vague grey
color rather than black and have outstanding clear lung
outlines for blood vessels. Multifocal or dispersed integra-
tion is shown in both lungs in COVID-19 patients with
severe form COVID-109, resulting in “white lung.” Although
this chest X-ray is not responsive to minor symptoms, it has
already been shown to be active in other coronaviruses,
including severe acute respiratory syndrome (SARS) and the
middle east respiratory syndrome (MERS) [12].

This fact has inspired a huge number of research projects
to be suggested and conducted for the first months of 2020.
In this study, we first summarize the state-of-the-art work on
DL applications for COVID-19 medical image processing.
Then, we go over DL and its potential in healthcare that have
been discovered in the last decade. Following that, three use
cases from China, Korea, and Canada demonstrate DL
applications for COVID-19 medical image processing. Fi-
nally, we cover a few concerns and challenges linked to DL
solutions for COVID-19 medical image processing, which
are predicted to spark more research into the outbreak and
early response, resulting in smart, healthy communities.

In this paper, we propose a pipeline for detecting and
tracking down medical CXRS tests in images and generating
an automated classification report of the COVID-19 patient.
The features from the CXRS are extracted in this approach,
and the appropriate features are then designated with the
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help of a CNN algorithm [13]. The selected features are then
adapted in classifying the CXRS of COVID-19 patients by
adapting CNN with and without the TL model. Finally, the
attention and feature interweave modules’ features are
combined to build a better feature map. The TL is used to
improve the algorithm’s classification performance for chest
radiography imaging. The model is built and evaluated on
COVID-19 infected CXRS [14] and a Kaggle-sourced open
dataset of noninfected CXRS [15].

Here is a rundown of our contributions in this domain:

(1) A new DL sensor method that identifies and tracks
down medical chest X-ray tests in images and

generates an automated classification report of
COVID-19 patients

(2) We present a detailed analysis of the efficiency of the
proposed pipeline in terms of accuracy, precision,
and recall

(3) We present the graphical visualization of the con-
fusion matrix and receiver operating characteristic
(ROC) curve for the best performance pipeline using
performance evaluation criteria

(4) We compare the performance accuracy of the pro-
posed pipelines by optimizing different CNN for-
mations without TL, CNN with TL (CNN + TL)

(5) We adopt various optimizers to train the model with
minimal loss by minimizing the overfitting and
underfitting to get an optimized and efficient model

(6) The proposed pipeline achieves promising im-
provements over classical learning methods

The flow of the paper is structured into sections as
follows. In Section 2, the related work on the COVID-19
pandemic is discussed. Section 3 provides an overview of the
dataset, DL techniques, TL domain, and the proposed
method in detail. Section 4 reports the experimental design
and process and evaluation criteria as well as outcomes and
description. Section 5 concludes the paper.

2. Related Work

The coronavirus pandemic is a highly infectious disease that
can cause serious respiratory illness or even death in certain
cases. There has also been some research into using machine
learning algorithms to combat coronavirus, but few studies
have provided a completely profound comprehension. De
Sousa et al. [16] proposed a model called CNN-COVID for
classifying the CXRS of COVID-19 patients. They composed
the dataset into two sets. In dataset I, they used 217 images of
COVID-19 infected and 1126 noninfected while in dataset I
2025 images were used as COVID-19 infected and 2025
noninfected. For model development, a CNN is used to
classify the CXRS. Sheykhivand et al. [17] developed a
method based on generative adversarial networks with deep
LSTM networks to classify pneumonia without the use of
teature extraction/selection. They used the CXRS dataset and
classify them into 2-4 classes like infectious, respiratory, and
COVID-19 classes. Singh et al. [18] presented a model for the
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F1GURE 2: Monthly distribution of total deaths due to COVID-19 according to WHO report (October 6, 2021) [8].

detection of COVID-19 in CXRS using hybrid social group
optimization (SGO) and support vector machine (SVM).
SGO was used for feature extraction while SVM was applied
for classification.

For COVID-19 case detection, Fang et al. [19] suggested
a study to assess the sensitivity of a chest CT image with a
viral nucleic acid detection approach using real-time poly-
merase chain reaction (RT-PCR). Bernheim et al. [20]
looked at the results of 121 symptomatic positive COVID-19
patients’ chest CTs and found a link between the results of
chest CTs and the time between the appearance of the
symptoms of the interim CT scan (i.e., early, 0 to 2 days (36
cases), intermediate, 3 to 5 days (36 cases), and late, 6 to 12
days (25 cases)). According to the findings, 28% of early
cases (10/36) had bilateral lung illness, and 76% of middle
cases (25/33) and 88% of late cases (22/25) have lung in-
fection on both sides. Narin et al. [21] developed a CNN-
based method for detecting coronavirus pneumonia in CXR
patients. ResNet50, InceptionV3, and Inception-ResNetV2
are three pretrained networks used in this study. To test the
performance of the suggested model, 50 COVID-19 CXR
and 50 normal CXRS were employed. They discovered that
ResNet50, among other things, has the highest classification
accuracy of 98% in binary classification algorithms. Zhang
etal. [22] investigated that CXRS can help diagnose COVID-

19 viral infection. They used ResNet50, which has been
pretrained on 102 COVID-19 cases and 102 additional
pneumonia patients. Abbas et al. [23] proposed that their
previously created CNN, Decompose, TL, and Compose
network (DeTraC-Net) classify COVID-19 CXRS from
normal and SARS cases using pretrained ResNet-50 as TL.
To use multiobjective differential evolution based CNN,
Singh et al. [24] classified chest CT images from infected
persons with and without COVID-19.

Narin et al. [21] used a dataset of 100 CXR scans, half of
which were COVID-19 infected cases, to compare three
different deep CNN-based techniques (e.g., InceptionV3,
ResNet50, and Inception-ResNetV2). The best results were
found with the pretrained ResNet50 algorithm, which had a
98% accuracy rate. Al-Waisy et al. [25] presented a DL-based
hybrid multimodal approach to improve COVID-19
pneumonia detection in CXRS. To encode the input image
into low-dimensional vectors, Kassania et al. [26] employed
CNN networks as feature descriptors, which were subse-
quently processed by several algorithms to produce amassed
results. The results were confirmed using the same dataset as
in [14]. Islam et al. [27] used long-short-term memory
(LSTM) for COVID-19 identification, after extracting the
feature with CNN and Garg et al. [28] presented a com-
parative study of various methods for detecting COVID-19



infection. Chen et al. [29] presented Residual Attention
U-Net as an automated multiclass segmentation method to
provide the groundwork for a quantitative identification of
pneumonia related to COVID-19 using CT scans.

To conclude, researchers have discovered that CXRS
reveals critical information on COVID-19. An intelligent
method can assist radiologists in detecting COVID-19 from
CXRS, which could be useful in distant areas of many
emerging regions. In this paper, we propose a pipeline for
classifying COVID-19 infection using CXRS. Before being
used as input, all CXRSs were trimmed to 224 x 224 pixels
and balanced using data augmentation techniques. We did
not use any further preprocessing stages because much other
research has been conducted without them, and using a
similar approach allowed us to compare our methods to
those of other studies. The relevant features from the CXRS
are retrieved and optimized using the proposed pipelines
CNN without TL and CNN + TL method. Finally, the at-
tention and feature interweave modules’ features are com-
bined to build a better feature map. Using a variety of
classifiers, the selected features were then trained to classify
the CXRS adapting CNN, and the newly generated feature
layer is applied to the current architecture®.

3. Materials and Methods

This section presents the proposed pipelines to achieve the
proposed objectives. Figure 3 depicts the modules for dataset
description, data preprocessing and augmentation, feature
extraction, adapting relevant features, and a classifier (sig-
moid activation) for generating classification reports from
CXRS (COVID-19 positive and COVID-19 negative), op-
timization, and evaluation.

3.1. Dataset Description. We used publicly available datasets
created as part of a project by Cohen et al. [14]. CXRSs of
MERS, SARS, ARDS, and other respiratory disorders are
included in this dataset. The CXRSs in this database were
collected indirectly from hospitals and clinicians from a
variety of public sources. This dataset was used to collect
CXRSs from patients who were positive or suspected of
having COVID-19. Moreover, Kaggle [15] was used to
obtain the CXRSs of healthy patients. We extracted CXRSs
of healthy patients and selected 300 CXRSs to ensure that the
COVID-19 CXRSs are balanced. The dataset was developed
for further use: it contains 200 CXRSs of COVID-19 and 300
images of normal CXRSs. Thus, COVID-19 CXRSs are in-
cluded in the data collection. The Posteroanterior (PA) view
turns out to be the most used view; hence, we employed the
COVID-19 PA view CXRS for the proposed work. Before
being used as input, all CXRSs were trimmed to 224 x 224
pixels and balanced. Table 1 lists the specifics of the dataset,
while Table 2 shows samples of CXRS compared to COVID-
19 and non-COVID-19 patients’ reports.

3.2. Augmenting and Compiling the X-Rays Scans. To prevent
overfitting and increase the trained model’s generalization
capacity, data augmentation was used. The original image
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was first rescaled to (224 x 224) pixels, and then five random
image areas of (128 x 128) pixels are taken from each image.
Every single image in the dataset was then flipped hori-
zontally and rotated 5 degrees (clockwise and counter-
clockwise). From both classes, a total of 500 X-ray scans
(224 x 224) pixels are retrieved (e.g., COVID-19-positive,
and COVID-19-negative CXRS). To avoid creating biased
prediction results, data augmentation is applied after par-
titioning the COVID-19 positive-vs-COVID-19 negative
dataset into three sets (e.g., training, validation, and testing
sets).

To get around this problem, we employed the Image-
DataGenerator, which created new images for the training
stage. Digital processing was used to create the new images,
which were geometric transformations of the originals.
Geometric manipulations including translation, rotation,
patch extraction, and reflection do not modify the picture
object attributes, allowing for “data augmentation.” The
advantage of this method is that it improves CNN’s capacity
to generalize when trained with an enhanced dataset [30]. As
a result, overfitting can be reduced, which occurs when a
network’s ability to generalize is lost when new data is
provided. For data augmentation, the following strategies
were used: width shift range (0.2), range rotation (40), height
shift range (0.2), zoom range (0.2), shear range (0.2), rescale
(1/255), horizontal flip (True), and vertical shift (True).
Following these improvements, the dataset was able to
balance COVID-positive and COVID-negative classification
on the testing and training sets. When CXRS is supplied as
an input for the classifier, this database augmentation occurs
at run time. This is something that aids in the best-fit
training of our model. Augmentation is a type of image
preprocessing in which a model is trained on a large variety
of images. Scaling, translation, rotation, and flipping, among
other methods, can be used to increase the diversity of an
image. When CXRSs have been augmented, they can be
reshaped into the input shape of (224 x 224) with a batch size
of 32 and train the training set. Table 3 shows the results of
the augmented CXRS.

3.3. Model Development. In this section, we design the ar-
chitecture of the CNN and TL as shown in Table 4. The
model is trained on the COVID-19 chest scan dataset (our
input photographs). Then, the Convolutional and Pooling
layers will be imported, but the “upper section” of the model
will be left out (the Fully Connected layer). It can be seen in
Figure 4 that each layer in the feature extraction layer accepts
the output of the layer before it as input, and its output is
handed on to the layers after it.

The output is generated after the image has been passed
through a set of convolutional, nonlinear, pooling, and fully
connected layers and classification layers combined. To
develop the model, for example, many convolutional net-
works are merged with nonlinear and pooling layers. When
an image passes through one convolution layer, the result of
the previous layer is used as the input for the following layer.
The feature extractors contain (Conv2D (128, (3x3)),
(Conv2D (64 (3 x3)), (Conv2D (128, (3, 3)) max-pooling
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FiGUre 3: The proposed architecture pipeline for a CNN model.

TaBLE 1: Statistic for the COVID-19 X-ray scans dataset split into train and test samples.

Class Train sample Validation sample Test sample Total Percent (%)
Normal 230 20 50 300 60
COVID-19 130 20 50 200 40
Total 350 50 100 500 100

TABLE 2: Samples of CXRS against COVID-19 and non-COVID-19 patients report.

Class Chest X-ray scans

Non-COVID-19 (COVID-19
negative)

COVID-19 (COVID-19 positive)

layer (pool_size=(2, 2)), and a ReLU activation function (223 x 224 x 3), we got (222, 222, 32), (220, 220, 128), (108,
between them. The result of the convolution and max- 108, 64), and (52, 52, 128) sizes of extracted features for the
pooling algorithms is organized into feature maps, whichare  convolution operations and (110, 110, 128), (54, 54, 64), and
two-dimensional (2D) maps. With an input of image of size (26, 26, 128) sizes of extracted features for the pooling
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TABLE 4: Designing of CNN with and without TL.

CNNs settings

Kernel size Pool size No# of hidden layers Conv2D-1 Conv2D-2 Conv2D-3 Conv2D-4 Dropout Epoch no#

CNN-1 (3,3) 2, 2) 4
CNN-2 (3, 3) 2, 2) 4
CNN-3 (3,3) 2, 2) 3
CNN-4 (3,3) 2, 2) 4
CNN-5 (3,3) 2, 2) 3
CNN-6 (3,3) 2, 2) 4
CNN-7 (3, 3) 2, 2) 4
CNN-8 (3, 3) (2, 2) 5
CNN-9 (3,3) 2, 2) 5
CNN+VGGI6 (3, 3) (2, 2) 4

128 64 128 — — 4
64 32 — — 0.5 4
64 32 16 — 0.5 5
64 32 16 — 0.5 4
64 32 16 — 0.5 8
64 32 16 — — 6
64 32 16 — 0.5 8
128 64 32 16 0.2 8
164 128 64 32 0.5 10
228 164 128 64 0.5 10

Y

Input: covid-10 chest x-ray scan

' Convolution + ReLU layer

' Max pooling

FC-7

L — Fully connected layer

Sigmoid function

F1GURE 4: To conduct the final classification report using VGG16, a CNN with convolution and pooling layers and fully connected layers are
used. The framework has 12 convolutional layers, five max-pooling layers, three fully connected layers, and an output layer. In the proposed
model, CXRSs are classified into two classes, namely, COVID-19 positive and COVID-19 negative patients with a sigmoid activation

function.

operations, respectively. This happens with each convolu-
tional layer that follows.

The convolution layer is the initial layer. The image is
received by it (a matrix of pixel values). Suppose the input
matrix is read from the image’s top-left corner. After that,
the software selects a smaller matrix, known as a filter
(neuron). Then, the filter works in convolution, which
means it transmits along with the input image. The filter’s
job is to multiply its values by the pixel values from which
they came. This is the sum of all the multiplications. A single
number appears at the end. The filter moves 1 unit to the
right and restarts the procedure because it has only read the
image in the upper left corner. After passing the filter overall
points, a matrix is formed, but it is less than the original
input matrix.

After each convolution operation, the nonlinear layer is
applied. It has a nonlinear feature due to its activation

function. A network without this feature would be insuffi-
ciently active and unable to model the dependent variables
(as a class label).

The nonlinear layer is followed by the pooling layer. It
performs a downsampling process on the image’s width and
height. Consequently, the size of the image is lowered. This
indicates that if some features (such as boundaries) were
previously recognized in the last convolution operation, a
detailed image is no longer required for further processing
and is compressed into less detailed images.

It is important to add a fully connected layer after
completing a succession of convolutional, nonlinear, and
pooling layers. The output information from convolutional
networks is fed into this layer. When a completely connected
layer is attached to the network’s end, it produces an N-
dimensional vector, where N is the number of classes from
which the model picks the specified class.



3.4. Classification Model. Following the methodology pre-
sented in Figures 3 and 4, pretrained networks were analyzed
after constructing a balanced dataset, which is critical for
producing good conclusions.

Convolutional neural networks [31] were used to build
this architecture. It has three groups of layers, with con-
volution layers (Conv2D), nonlinear layers (ReLU), and
pooling layers alternated (MaxPooling2D). Then, two layers
are securely bonded together (Dense). Consider the primary
convolution layer, i.e., Conv2D layer. In the convolution, the
value 32 indicates the amount of output filter. The width and
height of the 2D convolution window are determined by the
kernel size, which is represented by the integers (3, 3). The
input shape, which is the input array of pixels, is a core part
of the first convolution layer. Following convolution layers,
which are constructed in the same fashion, do not incor-
porate the input shape.

The usage of pretrained models allows a new model to
settle faster and work better on a smaller dataset by
leveraging characteristics acquired on a bigger dataset [32].
The Keras [33] platform provides pretrained classifiers, the
weights are derived from channel images, and the X-ray data
is contained in a single channel.

Transfer learning [34] is adapted to fine-tune four
popular pretrained DL models using the training images of
the COVID CXRS dataset to address the constrained data
sizes. A model trained on one task is adapted to another
similar activity using TL, which usually involves some ad-
aptation to the new task. For instance, on a smaller dataset,
one may use an image classification algorithm trained on
ImageNet (which has millions of annotated images) to start
certain task learning for COVID-19 identification. In the
proposed work, a TL-based model VGG16 (Visual Geom-
etry Group) [13] is used. It is most useful for situations when
there are not enough training sets to build a network from
the ground up, including medical image categorization for
odd or novel disorders. This is especially true for deep neural
network models, which must train a huge number of pa-
rameters. TL allows the model parameters to start with the
already baseline values that simply require minor tweaks to
make them optimized/appropriate for the new task.

4. Experimental Results and
Performance Evaluation

In this work, we used the CXRS dataset of corona patients to
find the best available pretrained neural network for
COVID-19 classification. All of the experiments in this study
are run on a workstation using the Anaconda framework
(Python version 3.6.4) (Anaconda,” https://anaconda.org/)
on a 64-bit OS with 8 GB RAM and an Intel Core i5 CPU.
The dataset was split into three parts: 70% training, 10%
validation, and 20% testing using k-fold cross-validation
[35]. The CXRS dataset includes 200 images from COVID-
19 patients and 300 images from healthy people. Table 5
shows the accuracy, training time, and loss for each for-
mation of CNN without TL and CNN + TL model. It is noted
that training time and loss are reduced firmly, and the testing
accuracy is significantly increased. Table 6 reports the
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TABLE 5: Accuracy, training time, and loss for each formation of
CNN without TL and CNN + TL model.

Model Test accuracy (%) Training time (m) Test loss
CNN-1 77.1 4min 3s 0.61
CNN-2 88.4 3min 36s 0.55
CNN-3 85.9 4min 59s 0.27
CNN-4 86.6 9min 22s 0.36
CNN-5 89.9 5min 37s 0.26
CNN-6 87.3 6min 32s 0.66
CNN-7 90.3 5min 46s 0.30
CNN-8 94.9 6min 46s 0.21
CNN-9 96.6 9min 46s 0.15
CNN + VGG16 99.3 2min 0ls 0.03

TABLE 6: Average total for precision, recall, and f-measure for the
formation of CNN without TL and CNN + TL model.

Model Precision Recall F-measure
CNN-1 0.80 0.80 0.79
CNN-2 0.88 0.83 0.83
CNN-3 0.87 0.82 0.81
CNN-4 0.88 0.85 0.85
CNN-5 0.91 0.90 0.90
CNN-6 0.88 0.88 0.87
CNN-7 0.94 0.93 0.93
CNN-8 0.95 0.95 0.95
CNN-9 0.97 0.97 0.96
CNN + VGG16 0.97 0.98 0.98

average total for precision, recall, and f-measure for the
formation of the CNN and CNN +TL model.

Evaluation criteria: the confusion matrix [36], also
termed the possibility table or error matrix, is a special
matrix that is used to display the visual effect blueprint of a
classifier’s performance. The predicted values are shown by
the rows, while the actual values are represented by the
columns. False positive, true positive, false negative, and true
negative are the categories employed in the analysis. Figure 5
shows the structure of the confusion matrix. For example, a
patient report is as follows: “an X-rays report shows that a
person is infected with corona.” True positive (TP) denotes
that the truth is positive and that the classifier predicts a
positive outcome. For example, the report is positive, and the
model classifies accurately this report. The term TN stands
for true negative, which signifies that the truth is negative,
and the classifier predicts a negative. For example, “an
X-rays report shows that a person is infected with corona,”
and the classifier correctly reports this. The term “false
positive” (FP) refers to a situation in which the truth is
negative, yet the classifier predicts a positive outcome. For
example, “an X-rays report shows that a person is not in-
fected with corona,” but the classifier incorrectly reports it as
such. FN means false negative: the classifier predicts a
negative, even though the truth is positive. For example, a
person is infected with corona, yet the classifier incorrectly
indicates that it is not. The confusion matrix for all the
formations of CNN and CNN + TL is presented in Figure 5.

Finally, the features of the attention and feature inter-
weave modules are combined to create a more accurate
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FI1GURE 5: Confusion matrix for the proposed models. (a) CNN-1, (b) CNN-2, (c) CNN-3, (d) CNN-4, (e) CNN-5, (f) CNN-6, (g) CNN-7,

(h) CNN-8, (i) CNN-9, and (j) CNN + VGG16.

feature map. For feature extraction, deep learning archi-
tecture, i.e., VGG-16, is used along with transfer learning.
The experimental results found that training enhances the
CNN + TL algorithm’s ability to classify chest radiography
imaging, with an overall detection accuracy of 99.3%.

In addition, to perform evaluation, the ROC curve
[37, 38], which plots the TP rate as a function of the FP rate,

is used. The ROC graph is constructed with TP rate on the y-
axis and FP rate on the x-axis. Figure 6 depicts the ROC
curves of the proposed models. Since the ROC curve is a
performance statistic for classification issues at various
threshold levels, it indicates how well the classifier can
differentiate between classes. The greater the ROCC, the
better the model classifies 0 class as COVID-19 positive and



10

True Positive Rate

True Positive Rate

True Positive Rate

1.0 -
064 et
044 S x

0.2 1 d A

0.0 4 , , , ,
0.0 0.2 0.4 0.6 0.8
False Positive Rate

—— ROC curve (area = 0.77)

1.0

- -~ baseline
()

1.0 4
0.8
0.6
0.4 4
0.2 4
0.0 . . . ,

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
—— ROC curve (area = 0.87)
-~ - baseline
(©

1.0 _
0.8 . - . BT S . ,f—/
064 - f i e
044 f T
024/ T
0.0 £~ ; ; : :

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

—— ROC curve (area = 0.89)
-~ - baseline

(e)

True Positive Rate

True Positive Rate

True Positive Rate

Scientific Programming

1.0 Z
0.8 ) ’(f’
0.6 - ,/j/,
044 - f T
024/ a7
0.0 £~ ; : . ;
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
—— ROC curve (area = 0.88)
- -~ baseline
(b)
1.0 4
0.8 4
0.6 4
0.4 1
0.2 |
0.0 . . . ,
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
—— ROC curve (area = 0.88)
-~ - baseline
(d)
1.0 z
0.8 1 et
0.6 ,/;/,’
0.4 - et
024/
0.0 £~ ; . : :
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

—— ROC curve (area = 0.87)
-~ - baseline

()

FiGUre 6: Continued.



Scientific Programming

1.0 4

0.8 4

0.6

0.4 4

True Positive Rate

0.2 4

0.0

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

—— ROC curve (area =0.91)
baseline

(2)

1.0 4

0.8 4

0.6

0.4 -

True Positive Rate

0.2 4

0.0 - - - -
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

—— ROC curve (area = 0.95)
baseline

®

11

1.0 ~

0.8 4

0.6

0.4 -

True Positive Rate

0.2 1

0.0

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

—— ROC curve (area = 0.94)
baseline

(B)

1.0 A

0.8 1

0.6 4

0.4 4

True Positive Rate

0.2 4

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

—— ROC curve (area = 0.97)
baseline

0)

F1Gure 6: ROC curve of the proposed models. (a) CNN-1, (b) CNN-2, (c) CNN-3, (d) CNN-4, (e) CNN-5, (f) CNN-6, (g) CNN-7, (h) CNN-

8, (i) CNN-9, and (j) CNN + VGG16.

1 class as COVID-19 negative. According to the ROC, the
proposed formations of CNN perform similarly, with the
CNN + TL (Figure 6(j)) having a little higher ROC (0.97)
than the others, which means that the classifier can detect
more numbers of true-positives and true-negatives than
false-negatives and false-positives.

The major goal of this research is not to find out the
differences between pretrained and trained neural networks;
rather, it is to give a solution for COVID-19 testing that is
focused on already available and established technology. If
the accuracy of the pretrained model is not satisfactory to
radiologists, it may be worthwhile to investigate various
untrained convolutional neural networks. Additionally,
incorporating the patient’s demographics, D-Dimer, respi-
ratory rate level, myosin level, leukocyte to lymphocyte ratio,
sugar levels, temperature, heartbeat, and degree of inspi-
ration could increase the overall accuracy rate.

The architecture is trained for COVID-19 CXRS using
TL, and the newly generated feature layer is applied to the
current architecture. The results show that further training

improves the classification architecture’s performance by
99.3%. The CNN+TL classifier in the proposed pipeline
yields a classification accuracy of 99.3%, outperforming
existing state-of-the-art DL methods for binary classification.

5. Conclusion and Future Work

To conclude, tools that are quick, adaptable, efficient, and
easy to use are required to identify and manage COVID-19
testing contagion. The current gold standard clinical tests are
time-consuming and expensive, causing testing postpone-
ments. Patients with lower breathing symptoms or suspected
COVID-19 pneumonia can be screened with chest radiog-
raphy, which is a frequently accessible procedure. Adding
computer-aided radiography can help improve processing
and early disease diagnosis; this is especially true throughout
a pandemic, especially during the spike, and in places where
radiologists are in low supply. In this study, we investigated
and analyzed different hyperparameters to optimize a variety
of DL method CNN with and without TL for detecting
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radiographic characteristics of COVID-19 pneumonia that
are accessible today. To analyze the efliciency of the pro-
posed model, 500 CXRS sets are acquired from the
benchmark repositories [14, 15], with 360 being used for
training and 40 for validation. Our findings demonstrated
that CNN- is the best pretrained DL network for the clas-
sification of COVID-19 pneumonia imaging patterns on
chest radiographs, after testing 10 different pretrained neural
networks models. The architecture is trained for COVID-19
CXRS using TL, and the newly generated feature layer is
applied to the current architecture. The results show that
further training improves the classification architecture’s
performance by 99.3%. Future studies can be conducted to
expand the specificity of these methods in the context of
various respiratory contagions. In addition, the work might
be extended to include disease classification and severity.
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