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Car-following behavior is a vital traffic phenomenon in the process of vehicle driving. For modeling the car-following behavior, it
is crucial to capture the reaction delay for balancing with safety and comfort, but it is generally ignored in existing works. +is
work proposes a car-following model based on attention-based ensemble learning to automatically capture the reaction delay
from driving data and better depict the traffic flow characteristics. +e model integrates a data-driven model and a theory-driven
model, and a weight computation method is proposed to combine the advantage of these two different models. In detail, an
encoder-decoder model and attention mechanism are employed to capture the reaction delay from driving data. Extensive
experiments show that the proposed model could balance safety with comfort and help avoid unsafe driving behavior.

1. Introduction

Car-following (CF) model, as the basis of the theoretical
research on traffic flow, has caught more and more attention
in the emerging of intelligent driving. CF model is a
mathematical description of the movement of a car in the
same lane given the change in the moving state of the front
vehicle under the case of no overtaking [1]. CF models could
generally be divided into theory-driven and data-driven
methods. Abound of related works have been carried out to
improve the simulation accuracy of the CF model for the
safety and comfort of driving, which provides a dynamic
data simulation for the traffic flow theory. +e theory-driven
CF model puts forward the theoretical hypothesis about the
research object according to data characteristics and es-
tablishes a mathematical model that accords with the aca-
demic view. +e data-driven CF model usually uses a large
amount of high-precision vehicle driving data to describe the
vehicle’s state changes in motion. Both models need vehicle

driving data as support. However, it remains hard to select a
more accurate mathematical model through a single spec-
ulative idea from massive traffic data and complex data
characteristics. So, the theory-driven models show a sig-
nificant insufficiency to meet the requirement of an intel-
ligent transportation system. On the other hand, the data-
driven models offer a considerable advantage to achieve
higher prediction accuracy without understanding the in-
ternal mechanism of the research object [2]. In recent years,
an increasing number of CF methods have been developed
based on data-driven models, including early linear models
proposed by Chandler and Herman [3] and Sasaki [4] and
nonlinear models by Newell [5], Li et al. [6], and Yu et al.[7].

In modeling CF behavior, the driver’s behavior is es-
sential to reproduce the actual traffic state. A few scholars
have incorporated safety and comfort into the driver’s
driving behavior and considered reaction-delayed driving
behavior. However, it remains challenging to capture the
reaction delay automatically. At the same time, improving
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the simulation accuracy and avoiding unreasonable
simulation results are also urgent problems to be solved [8].
Reaction delay is a common characteristic of humans in
operation and control, such as automobiles, which integrates
mental processing time, movement time, and device reaction
time [9]. Estimation of reaction delay derives from the
stimulus-reaction theory, which could be expressed as the
time delay between the changes in driving conditions and
subsequent reactions. Reaction delay has gradually become
an indispensable key factor in the study of CF behavior
[10, 11]. Recently, reaction delay has also been paid more
and more attention in the data-driven CF models. Specifi-
cally, more historical driving behavior information is con-
sidered for the reaction delay in the model of practical
applications. For example, Huang et al. proposed a long
short-term memory neural networks-based CF model to
capture natural traffic flow characteristics by incorporating
the driving memory [12]. Jafaripournimchahi et al. devel-
oped a new CF model to investigate the effects of driver
anticipation and driver memory on traffic flow [13]. Fei et al.
developed a CF model with driver time memory based on
real-world traffic data, which is effective and robust, thereby
improving simulation accuracy [14]. Chen et al. believed that
data-driven CF models could be a promising research di-
rection [15, 16].

As the primary goals, safety and comfort are the essential
considerations in modeling the CF problem. So far, Intel-
ligent Driving Model (IDM) is a widely used theory-driven
model to get considerable performance. Moreover, each
parameter has an explicit physical meaning, and the change
of the following vehicles could be displayed intuitively.
However, it will generally be more comfortable and stable
when there is a smaller velocity disparity between front and
rear cars [17]. To address this issue, Ma and Qu utilized
statistical methods to estimate the reaction delay and used
the seq2seq model to build a CF model for effectively re-
ducing unreasonable driving behaviors [8]. Ying integrated
the theory-driven model in the way of linear combination,
which ensures simulation accuracy and improves the se-
curity of the data-driven model [18]. Still, it remains chal-
lenging to balance between safety and comfort andmaximize
the traffic flow.

What is more, although considerable CF models have
been proposed, there is still a vital challenge to avoid un-
reasonable driving behaviors, such as frequent braking and
acceleration. To address these issues, we propose an atten-
tion-based ensemble learning CF (AEL-CF) model to offer
control decisions by combining multiple models to address
these issues. +e experimental results show that the model
could capture reaction delay, ensure simulation accuracy,
improve safety and comfort, and even reproduce the actual
CF trajectory.

+e main contributions of this work could be summa-
rized as follows:

(i) We first propose an attention-based encoder-de-
coder car-following (AED-CF) model, automatically
capturing the driver’s reaction delay. Specifically, the
captured reaction delay is reflected by different

weights assigned, which are obtained from the input
sequence by themodel. To the best of our knowledge,
we are the first to automatically capture reaction
delays from driving data in the CF model.

(ii) An attention-based ensemble learning CF (AEL-CF)
model is proposed to incorporate the AED-CF and
IDM models. +e AEL-CF model could automati-
cally capture the reaction delay and then effectively
overcome the shortcomings of the data-driven
model (i.e., frequent changes in acceleration).

+e rest of this paper is organized as follows: we propose
the AED-CF and AEL-CF models and determine the input
and output variables of the model in Section 2, Section 3
introduces the experimental data and experiment details,
including the training process of AED-CF and AEL-CF
models; Section 4 discusses in detail the performance of the
proposed models, and Section 5 concludes this work.

2. Methodology

+is section mainly introduces the construction of feature
data, the framework of the model, and the combination of
the model. Most scholars estimate the reaction delay by
analyzing a large number of data. Generally, the data-driven
model is not employed as a substitute for the theory-driven
model. Combining the advantages of data-driven and the-
ory-driven models to get higher simulation accuracy is
worthy of further exploration and research. +is work
proposes an attention-based ensemble learning (AEL-CF)
model with a memory effect, which helps to capture the
reaction delay.

+e AEL-CFmodel combines the advantages of the IDM
model and the attention-based encoder-decoder car-fol-
lowing (AED-CF) model we proposed. +e IDM model will
be introduced in the experimental part. +e framework of
the AED-CF model is shown in Figure 1. +is section also
introduces the AEL-CF model to combine the IDM and
AED-CF models.

As shown in Figure 1, the AED-CF model comprises
input, encoder, attention, and decoder layers. +e model
considers the temporal characteristics of CF behavior for
capturing the reaction delay, whose input layer includes the
main vehicle speed, gap distance, and relative speed. +e
encoder layer extracts the latent feature. At the same time,
the attention weight coefficient is obtained through the
attention layer. +en, hidden information about temporal
characteristics could be acquired. Finally, the hidden details
on temporal characteristics are decoded by the decoder
layers. For the CF model, the speed at each step could be
regarded as a response caused by a stimulus at a specific
historical moment. Input variables of the AED-CFmodel are
regarded as the stimulus, output variables as the response,
and vehicle speed for the next step is the model’s output.
+us, the relationship of the stimulus and response could be
obtained in the following equation:

vt � f vn(t − τ: t − Δt),Δxn(t − τ: t − Δt),Δvn(t − τ: t − Δt)( 􏼁,

(1)
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where f(·) denotes the function of mapping relation be-
tween input and output variables; τ denotes the maximum
historical time steps, and Δt represents the updating time
step in the AED-CF model which is 0.1 s.

2.1. Input and Output Variables. In the CF model, the
subject vehicle (n) will adjust its state according to the
driving condition of the leading vehicle (n− 1). Input var-
iables of data-driven CF model generally use space headway
(Δxh), gap distance (Δxn), relative speed difference (Δvn),
and speed of the subject vehicle (vn). +e output variables
usually use subject vehicle speed (Δvn) or acceleration (an),
as shown in Table 1. According to some previous studies
[8, 12, 19–21], we decided to use Δxn, Δvn, and vn as the
input variables of the AED-CF model and vn as the output
variables. +rough the comparative experiment, the pro-
posed model outperforms the baseline methods when the
time step is 30, and the time step of the input is set to be 30
(3.0 s).

2.2. Encoder-Decoder Model. Recurrent neural network
(RNN) is more and more widely used in the CF model. For
example, Huang et al. successfully captured the driver’s
asymmetric driving behavior by using the long short-term
memory (LSTM) model [12]. Ma and Qu employed a
Seq2Seq model to analyze the simulation information on the
next step with historical driving information [8]. Inspired by
this, we decided to establish a CF model-based encoder-
decoder model, which will be briefly introduced in this
section.

+e encoder-decoder model has shown an excellent
performance in sequence prediction [22] and has been
widely used in various fields. +e first encoder-decoder
model was proposed to solve the problem of phrase rep-
resentation [23], in which it integrates RNN. Since then,
some scholars have made improvements encouraged by it
and have also achieved good results in language translation
[24]. As shown in Figure 2, LSTM is used as the neuron of
the encoder-decoder model in this work, and the encoder
and decoder layers use the same framework with the same

single-layer LSTM structure.+e LSTM units first take in the
information from input variables and encode it step by step
in the encoder layer. +en, the final output is the context
vector C, representing the input variables’ summary in-
formation. +e decoding process obtains the data by ana-
lyzing the context vector C and the previous memory cell
state.

2.3. AED-CFModel. Ma and Qu used statistical methods to
analyze the availability of high-fidelity trajectory data and
estimated reaction delay [8]. We hope that the model could
discover the latent information of the data and capture
reaction delay automatically. +erefore, we propose an
AED-CF model at first to capture reaction delay automat-
ically. +e framework of the encoder-decoder model is
described in the previous section, and the attention layer is
described below.

Generally, the driver’s judgment of the current state will
be reflected in action after a certain period, leading to the
main risk of accidents. +e attention mechanism was
employed to improve safety for its superior performance.
Under the condition of limited computer performance, the
attention mechanism could allocate resources well to op-
timize the computing speed. +e role of the attention
mechanism in the encoder-decoder model is to structurally
select a subset of the input variables, making the model focus
on more practical information. Assigning different weights
to the input variables is the crucial point, which allows the
model to focus on the more valid content information. +e
framework of the attention layer is shown in Figure 3.

+e input-output relationship of the attention layer
could be described as in equation (2). Qw

′ is the activating
result of Qw with the softmax function, which could be
obtained as in equation (3), and Qw ∈ RN×M could be
calculated by equation (4).

Att � Qw
′( 􏼁

TR
Xinfo, (2)

Qw,i,j
′ �

exp Qw,i,j􏼐 􏼑

􏽐
M
j�1exp Qw,i,j􏼐 􏼑

, (3)
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Figure 1: +e framework of the AED-CF model.
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Qw � WqX
TR
info, (4)

where Xinfo denotes the input variables of the attention layer;
Att denotes the output variables of the attention layer; and
TR denotes matrix transpose.

2.4. AEL-CF Model. +e data-driven CF model owns the
ability to describe the state changes in the real following
process accurately. However, it could not guarantee the
comfort level in the driving process. For example, frequent
acceleration and deceleration is the primary reason for the
decrease of the comfort level. +e theory-driven CF model
could significantly improve the comfort level. Still, there

exists the disadvantage that it could not accurately describe
the state changes of the vehicle. After the AED-CFmodel, an
AEL-CF model is proposed in this work to consider reaction
delay for balancing between comfort and safety.

In this work, the combination forecasting method is used
to constitute the model. +e combination forecasting
method is the prediction of more than two different pre-
diction methods for the same problem. According to the
different forms, it could be divided into equal weight
combination and unequal power combination. Equivalent
weight combination means that the predicted values of each
forecasting method are combined into new predicted values
according to the same weight. Unequal weight combination
implies that the importance given to the forecasting methods
is different. In this work, we selected an unequal weight
combination. Ying used the evaluation index msev of the
model to calculate the parameters of the combined model
[18], but more evaluation indexes involved in the calculation
mean a better fusion effect [25]. +erefore, the evaluation
indexes msev, THs, and As of the model are used to calculate
the parameters of the combined model. +e parameters of

Table 1: Previous studies.

Researchers Architecture Data resolution
(Hz)

Input
variables

Historical time/time
step

Output
variables

Prediction horizons/time
step

Panwai and
Dia ANN 10 Δxh, vn−1 1(0.1 s) vn 1(0.1 s)

Zhou et al. RNN 10 Δxn,Δvn, vn 1(0.1 s) an 1(0.1 s)
Huang et al. LSTM 10 Δxn,Δvn, vn 50(5.0 s) vn 1(0.1 s)
Fie et al. GRU 1 Δxn,Δvn, vn 10(10 s) vn 1(1 s)
Ma and Qu Seq2seq 10 Δxn,Δvn, vn 50(5.0 s) an 12(1.2 s)
Note. Δxh is the space headway (from the leading vehicle’s front bumper to the subject vehicle’s front bumper). Δxn is the gap distance (from the leading
vehicle’s rear bumper to the subject vehicle’s front bumper).Δvn is the relative speed difference between the subject vehicle n and the leading vehicle (n− 1). vn

and vn−1 are the speed of the subject vehicle (n) and the leading vehicle (n− 1). an is the acceleration of the subject vehicle (n).

TR Qw Softmax TR

AttXinfo

Figure 3: +e framework of the attention layer.
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Figure 2: +e framework of the encoder-decoder model.
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the combined model are determined by the following
equations:

qi �
􏽐

n
j�1THsj + 􏽐

n
j�1Asj + 􏽐

n
j�1msevj

THsi + Asi + msevi

, (5)

wi �
qi

􏽐
n
j�1qj

, (6)

where THs denotes the safety evaluation index; As denotes
the comfort evaluation index; msev denotes the mean square
error of the model output; q denotes the contribution of the
model; and w indicates the weight of the model.

3. Experiment and Results

3.1. Data Description. Deep learning is a data-driven
method, and massive data are required for gaining knowl-
edge from data. +e NGSIM datasets, collected from the US
Highway 101 in Los Angeles, California, from 7:50 a.m. to 8:
05 a.m. on June 15, 2005, were employed in this work. What
is more, to avoid the effect of lane changing, the trajectories
of vehicles that kept driving on the five lanes (lane 1, 2, 3, 4,
5) without any lane changing were collected. Finally, 810
vehicles’ trajectories (436,518 samples) were collected.

3.2. Data Preprocessing. For raw NGSIM data containing
anomalous acceleration and deceleration values, the sym-
metric exponential moving average (SEMA) is employed to
reduce measurement errors [26, 27]. With SEMA, the
smoothed vehicle position is determined by the following
equations:

X ti( 􏼁 �
1
Z

􏽘

i+D

k�i−D

X tk( 􏼁exp −
|i − k|

Δ
􏼠 􏼡, (7)

Z � 􏽘
i+D

k�i−D

exp −
|i − k|

Δ
􏼠 􏼡, (8)

Δ �
TD

dt
, (9)

D � min 3Δ, i − 1, l − i{ }, (10)

where dt denotes the interval between collecting data and
generally be set to 0.1 s; D denotes the average time window
width to ensure that the moving average is symmetrical; and
TD denotes themoving average range, which is set to be 0.5 s.

After further extraction of the processed data, a total of
1,091 vehicles of car-following data were obtained. +e data
of 600 vehicles were randomly selected, of which 500 groups
were used as training datasets (Data500 for short) and 100
groups as test datasets (Data100 for short). In addition,
Data100 will also be used to calibrate the parameters of the
IDM model.

3.3. AED-CF Model. +is section describes the experiment
in detail, including dataset segmentation, training strategy,
objective function, and optimization algorithm.

Data500 is used for parameter iteration of the model. We
randomly select 70% of the dataset as the training set while
the remaining constitutes a verification dataset. +emodel is
updated iteratively only on the training set.+e loss function
is used to evaluate the model performance on the validation
set at the end of each update round. To get rid of overfitting
or underfitting, “Early Stopping” is introduced in training.
+e model stops training when the results do not achieve
improvement two times.

We defined the loss function to evaluate the error be-
tween the actual and predicted values. In this work, the mean
square error (MSE) of speed and gap distance is used as the
loss value to optimize the model. +e loss function of the
proposed model is shown in the equation as follows:

loss �
1
N

􏽘

N

i�1
v
real
i − v

sim
i􏼐 􏼑

2
+ 􏽘

N

i�1
Δxreal

i − Δxsim
i􏼐 􏼑

2
⎛⎝ ⎞⎠, (11)

where vreali and Δxreal
i denote actual speed and gap distance,

respectively, and vsimi and Δxsim
i denote simulated speed and

gap distance, respectively.
+e optimization algorithm of the model adopts the

adaptive optimization algorithm, which is named “Adam.”
+e detailed parameters are defined as follows: lr� 0.001,
β1� 0.9, β2� 0.999, ε� 1e-08, and decay� 0.0. +e hyper-
bolic tangent function tanh is selected as the activation
function for both the encoder and decoder parts. +e final
output uses a parametric rectifying linear unit (PRELU) to
reduce the risk of overfitting. +e formula is shown as
follows:

PReLU xi( 􏼁 �
xi, if xi > 0,

αxi, if xi ≤ 0,
􏼨 (12)

where α is a learnable parameter vector.
+rough experimental optimization, the best choice of

other super parameters is given as follows: the number of
neurons in the LSTM unit is 32; the depths of encoder and
decoder are both set to be one layer, and the number of
training rounds is set to be 20.

3.4. AEL-CFModel. +e AEL-CF model combines the IDM
and AED-CF models using an unequal weight combination
prediction method. During the experiments, we found that
the comfort evaluation index of the subject vehicle of the
AED-CF model is lower than that of the IDMmodel, but its
safety and simulation accuracy are higher than other
models, and it could automatically capture the reaction
delay. To combine the advantages of each model, we
combine the IDM and AED-CF models together. +e
combined weight is calculated by equations (5) and (6), and
the specific calculation results are shown in the next
section.
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3.5. Experimental Results. In this section, we optimized the
evaluation indexes of the model and calculated the pa-
rameters of the AEL-CF model according to the experi-
mental results. +e final experimental results are shown for
the effectiveness evaluation of the model.

3.5.1. Evaluation Index Design. To quantify the simulation
performance of the model, Ying proposed the comfort and
safety metrics [18]. Based on these metrics, the improved
indexes are offered in this work to reflect the model’s
performance on the whole verification dataset. +e speed
mean square error is also employed as the evaluation index
of the model. As represents the oscillation of the leading
vehicle’s increasing speed in the process of driving, which is
an index for comfort; THs represents the minimum time
headway between the front and rear vehicles, which is an
index for safety; msev represents the velocity error between
the simulated trajectory and the field data, which is the index
for system accuracy. As shown in equations (13)–(15), the
larger THs, smaller As and msev mean a better model.

As �
􏽐

N
k�1􏽐

T
t�2 ak(t) − ak(t − 1)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌/T − 1

N
, (13)

THs �
􏽐

N
k�1min Δxk(t)/v(t)􏼈 􏼉

N
, t � 1, 2, . . . , T,

(14)

msev �
1
N

􏽘

N

i�1
v
real
i − v

sim
i􏼐 􏼑

2
. (15)

3.5.2. Performance Comparison. In this section, the models
are compared with the model evaluation metrics. Firstly, the
AED-CF model, IDM, and LSTM model are compared,
respectively. +en, the parameters of the AEL-CF model are
calculated based on the experimental results of the IDM
model and the AED-CF model by equations (5) and (6).
Finally, the AEL-CF, AED-CF, and IDM models are eval-
uated with performance comparison.

It has been shown that LSTM networks could achieve
better prediction results by increasing the number of layers
to be eight [12].+erefore, the LSTMmodel parameters used
for comparison in this work are as follows: the number of
LSTM layers is set to be eight; the number of neurons is set to
be 32, and the historical time step is 50. +e optimization
algorithm, loss function, and other configurations are
consistent with the AED-CF model.

IDM is a kind of theory-driven model used widely in
various applications, which was proposed by Treiber et al. by
integrating the effects of expected gap distance between the
leading vehicle and subject vehicle and expected speed to be
controlled [28]. +e model is shown as follows:

an(t) � 􏽥a 1 −
vn(t)

􏽥v
􏼠 􏼡

4

−
S vn(t),Δvn(t)( 􏼁

Δxn(t)
􏼠 􏼡

2
⎡⎣ ⎤⎦, (16)

S vn(t),Δvn(t)( 􏼁 � s0 + t0vn(t) −
vn(t)Δvn(t)

2
��
􏽥a􏽥b

􏽰 , (17)

where S(vn(t),Δvn(t)) denotes the function of expected gap
distance, which is calculated by velocity (vn) and relative
velocity (Δvn). +e goal of the model is to standardize
expected velocity (􏽥v), maximum acceleration (􏽥a), maximum
deceleration (􏽥b), expected time interval (t0), and minimum
space interval (s0).

Noteworthily, the output of IDM is the acceleration
value, but the evaluation function used in this work requires
the speed value. +erefore, the following equation is
employed to convert acceleration value into speed value:

vn(t + Δt) � vn(t) + an(t)Δt. (18)

+en, we used the simulated annealing algorithm (SAA)
to obtain the optimal parameters for IDM. +e optimal
parameters for Data100 are shown in Table 2.

IDM, LSTM, and the AED-CF models we proposed in
this work are compared on the Data100. +e model is
evaluated by msev, As, and THs. +e evaluation results
shown in Table 3 show that the AED-CF model outperforms
the baseline methods in system accuracy and safety evalu-
ation. However, IDM is still better in comfort evaluation.

To further compare the models, we select Vehicle 39 and
plot the observed and simulated trajectory profiles in Fig-
ure 4. +e results show that all the models could follow the
trend of observed trajectory well. In contrast, the simulated
trajectory of the AED-CF model is more consistent with the
field data.

According to the evaluation results of the IDM and
AED-CF models, the parameters of the AEL-CF model are
calculated by equations (5) and (6). +e weight of IDM is
0.4725, while that of the AED-CF model is 0.5275. We also
evaluated the AEL-CF model on the Data100.+e results are
shown in Table 4. We could see that the AEL-CF model well
integrates the advantages of the AED-CF and IDM models.
It not only ensures the accuracy of simulation speed but also
improves the model’s comfort level.

Although the simulation accuracy of AEL-CF shows a
slight decrease with a comparison of the AED-CF proposed
in this work, it still keeps a significant improvement with a
comparison of IDM. What is more, both comfort and safety
indices are improved by comparing AED-CF and IDM.
+ese experiments demonstrate that the AEL-CF model
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Table 2: Calibrated parameters of the IDM.

IDM 􏽥v 􏽥a 􏽥b t0 s0

Calibrated value 11.31 2.43 1.47 0.26 7.12

Table 3: Experimental comparison results of AED-CF.

Model IDM LSTM AED-CF
msev 0.242 0.069 0.014
As 0.082 0.086 0.110
THs 1.578 1.579 1.580
Bold means that mean that the index performance of the model is better than the other two. +e larger the THs, smaller As and msev mean a better model.
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Figure 4: Trajectory profiles of Vehicle 39. (a) Gap curves. (b) Velocity curves.

Table 4: Experimental comparison results of AEL-CF.

Model IDM AED-CF AEL-CF
msev 0.242 0.014 0.071
As 0.082 0.110 0.062
THs 1.578 1.580 1.586
Bold means that mean that the index performance of the model is better than the other two. +e larger the THs, smaller As and msev mean a better model.
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Figure 5: +e gap and speed comparison of Vehicle 39. (a) Gap curves. (b) Velocity curves.
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owns the ability to combine the advantage of IDM and AED-
CF models.

To show the system accuracy performance, we also se-
lected Vehicle 39 to observe the simulation effect of the AEL-
CF model. It is compared with IDM and AED-CF models.
+e results are shown in Figure 5.

4. Discussion

+e model captures the reaction delay automatically from
the Data100, which is selected randomly. As shown in
Figure 6, we visualize the weight of attention in the model.
From Figure 6, we can see that the reaction delay captured by
different vehicle data has a similar distribution. +e input
history step size of the model is 30 (3.0 s), and the attention
mechanism focuses more on the 16th and 29th-time steps.
+e weight allocation of the 16th time step indicates that the

AEL-CFmodel will focus more on the penultimate 14th time
step of the input sequence before simulating the next vehicle
speed.

In other words, the AEL-CF model will set the reaction
delay at 1.4 s. For the trajectory data, the state at the next step
is closely related to the last moment, so the model also
assigns more weight to the 29th time step in the weight
assignment of attention. +e model is hard to make further
distinctions between these two-time steps, which is a
shortcoming of the model. But in general, the model shows
the ability to capture the reaction delay.

As a comparison reference, Ma and Qu estimate the
reaction delay by sampling the time lag of sequence between
the relative velocity and acceleration and find the reaction
delay which equals 1.33 seconds [8].+e reaction delay value
computed automatically by the AEL-CF is close to the
manual sampling results with the same dataset. +ese results
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Figure 7: Trajectory feature curves of consequent vehicles. (a) Position curves. (b) Speed curves.
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Figure 6: Attention weight in the AEL-CF model. (a) Vehicle 95. (b) Vehicle 1016. (c) Vehicle 1231. (d) Vehicle 2811.
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show that the AEL-CF model owns the ability to capture the
reaction delay automatically.

+e ability to capture reaction delay could also be re-
flected in the simulation result. +e following pairs between
the leading vehicle with ID 2581 and the subject vehicle with
ID 2593 were selected for simulation to verify this ability
further. As shown in Figure 7, the speed peaks in the
subsequent cars, which are around 1.4 s, also show the
validity of the reaction delay estimation. Noteworthily, the
reaction delay could be different for specific drivers, and the
estimation value in this work is the average value of all
response latencies in the NGSIM dataset.

5. Conclusion

Benefiting from the data available in NGSIM, we make our
efforts to the car-following (CF) behavior modeling. To
automatically capture the driving behavior characteristic of
reaction delay, we introduced the encoder-decoder frame-
work and attention mechanism into the car-following be-
havior modeling. +is paper has made the following
contributions:

(1) Aiming at the car-following behavior modeling
problem, an attention-based encoder-decoder car-
following (AED-CF) model is proposed to auto-
matically capture the driver’s reaction delay.

(2) Based on the evaluation results of each model, an
attention-based ensemble learning CF (AEL-CF)
model is proposed, which combines the IDM and
AED-CF models with unequal weight combinations.
Experimental results show that the AEL-CF model
owns the ability to improve both safety and comfort
indexes.

In summary, the AEL-CF model illustrates a combina-
tion of the rule of IDM and AED-CF models. Experimental
results show the proposed AEL-CF could capture reaction
delay automatically and improve both comfort and safety
indexes. Considering the reaction delay varies with the
driving environment, AEL-CF’s automatic reaction delay
detection could be applied for different situations.
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