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�e purpose of spare parts management is to maximize the system’s availability and minimize the economic costs.�e problem of
cost availability trade-o� leads to the problem of spare parts demand prediction. Accurate and reasonable spare parts demand
forecasting can realize the balance between cost and availability. So, this paper focuses on spare parts management during the
equipment normal operation phase and tries to forecast the demand of spare parts in a speci�c inspection and replacement cycle.
Firstly, the equipment operation and support scenarios are analyzed to obtain the supportability data related to spare parts
requirements. �en, drawing on the idea of ensemble learning, a new feature selection method has been designed, which can
overcome the limitations of a single feature selection method. In addition, an improved stacking model is proposed to predict the
demand for spare parts. In the traditional stacking model, there are two levels of learning, base-learning, and meta-learning, in
which the outputs of base learners are taken as the input of the meta learner. However, the proposed model brings the initial
feature together with the output of the base learner layer as the input of the meta learner layer. And experiments have shown that
the performance of the improved stacking model is better than the base learners and the traditional stacking model on the same
data set.

1. Introduction

Accurate spare parts demand forecasting can ensure rea-
sonable spare parts inventory, which can reduce the
downtime loss or unnecessary inventory cost [1]. Di�erent
spare parts have di�erent demand patterns, and the factors
in�uencing spare parts demand in di�erent phases di�er a
lot. Besides, the adoption of the prediction method is limited
by data availability, so di�erent prediction methods are
required in di�erent situations [2]. Generally, prediction
methods can be divided into qualitative and quantitative.
Qualitative methods are mainly based on the subjective
judgment of decision-makers or experts, which often lack
theoretical basis and are di�cult to explain. In contrast,
quantitative methods can be divided into time series and
causal methods. �e former is only based on historical
demand data, while the latter considers other explanatory

variables that may a�ect the target value. And it can be
subdivided into simple linear regression and machine
learning methods. �e main di�erence between linear re-
gression and machine learning is that the former determines
the model structure in advance, while the latter learns the
relationship between input and output from data [3].
Compared with the statistical methods, machine learning is
more suitable for �tting complex nonlinear relationships [4].
Machine learning has been widely used in the prediction
�eld, such as hourly demand prediction of rental bikes [5],
pharmacy drug demand estimation [6], and patients’ de-
mand prediction in hospitals [7]. In [8], clustering methods
and XGBoost were used to assess vehicle driving and predict
risk levels. In [9], grey neural networks, BP neural networks,
SVM, and so on were used to train data and establish de-
mand prediction models. �ere is a complex nonlinear
relationship between spare parts demand and many
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explanatory variables, so machine learning method is con-
sidered to predict spare parts demand.

In the task of spare parts demand forecasting based on
machine learning, we need to first analyze the factors that
may affect spare parts demand, and then make feature se-
lection. Generally, the demand for spare parts comes from
the process of operation and maintenance [10]. Demand for
spares may be related to failure occurrence, maintenance
activities, equipment age, and operating conditions, the
environmental conditions, such as weather condition, past
usage patterns such as fleet size, the annual budget from
departments, flying hours, sorties flown, management, and
reliability characteristics of spare parts should also be
considered [11–13]. However, previous studies’ analysis of
influencing factors is not comprehensive and detailed. Many
studies have mentioned that operating conditions and en-
vironment, maintenance activities, flight hours, takeoff and
landing times, reliability, fleet size, management factors, and
other factors may affect the demand for spare parts, but
factors such as environmental variables andmanagement are
always omitted. Besides, the specific operation process of
equipment, the maintenance support process of equipment
spare parts, including the factors of spare parts themselves,
may also affect the demand for spare parts. +erefore,
through the analysis of the three-level maintenance support
process of equipment spare parts, this paper tries to obtain
more comprehensive potential factors affecting the demand
of spare parts.

In the field of machine learning, feature selection is a
data preprocessing technology. Selecting more compact
feature subsets from existing features for modeling can
improve the accuracy and generalization ability of the model
and reduce the running time. [14, 15]. As demonstrated in
Chandrashekar’s study, the forecast model’s performance
depends not only on the model structure but also on the
feature space [16]. Feature selection methods are generally
divided into four categories, including filters [17–20],
wrappers [21–24], and embedded [25] and hybrid methods
[26, 27]. New feature selection methods based on ensemble
learning have also emerged in recent years [28]. In the
ensemble feature selection method, many different feature
selectors are generated first, and then the outputs of these
individual selectors are aggregated and returned as the final
integrated result [29, 30]. +e ensemble feature selection
method also has been used in some fields, such as biomarker
recognition in a cancer diagnosis process, and experiments
have shown that it can significantly improve the stability and
classification performance of biomarkers [31]. Taheri and
Nezamabadipour [32] proposed a feature selection method
of high-dimensional data based on the ensemble method.
+e performance of which has shown that it has more
advantages than other methods in classification accuracy
and feature reduction rate.

+e purpose of researchers using ensemble learning is
similar to that of people weighing various opinions and

making decisions in daily life. For example, in a democratic
society, citizens vote to elect officials or make laws. Ensemble
learning completes the learning tasks by constructing and
combining multiple learners. First, a group of individual
learners is generated, and then they are combined by some
strategy. In 1979, Dasarathy and Sheela [33] first proposed
the idea of ensemble learning. Since then, ensemble learning
has become an important research field of machine learning.
In 1992, Wolpert [34] proposed the stacking generalization
model. Breiman [35] suggested a bagging algorithm in1996.
And Freund and Schapire [36] proposed the AdaBoost al-
gorithm in 1997. Dietterich [37] explained three funda-
mental reasons for the success of the ensemble learning from
a mathematical point of view: statistics, calculation, and
representativeness.

Later, more ensemble learning algorithms have been
proposed, and ensemble methods have been successfully
applied in pattern classification, regression, and forecasting
problems. For example, in [38], ensemble technique, bag-
ging, and boosting were used to conduct antiaircraft missile
spare parts demand to forecast. Matrenin et al. [39] solved
the power system medium-term load forecasting problem
based on the ensemble machine learning method, in which
the AdaBoost model has the best prediction performance.
Gutierrez-Espinoza et al. [40] used the ensemble learning
method to identify false information. +e experimental
results show that both the bagging ensemble and AdaBoost
ensemble methods can detect deceptive information better
than the traditional machine learning methods.

As a kind of ensemble learning technology, model fusion
solves problems by combining multiple models in some way.
In the era of big data, massive multimodal data exist widely.
Data fusion method and model fusion method are essential
means of multimodal data analysis and mining [41–43]. And
the learning performance of model fusion is often better than
that of the narrow sense ensemble learning model. Many
papers have explained reasons from the perspectives of
training basis, hypothetical space, and starting point of
calculation [44, 45]. +eoretically, model fusion can reduce
variance and deviation simultaneously and find the best
advantage of variance deviation equilibrium.

Now, the widely used fusion methods include averaging,
voting, stacking, and so on. +e first two methods fuse the
results of the base learners by voting or averaging, which can
only improve the fusion results to a certain extent. However,
stacking model uses meta learner to fuse the assumptions
made by the base learner, which is equivalent to looking for
the best fusion rules.+erefore, we can train themeta learner
in the direction of minimizing the loss function, which is
more reliable and efficient than the averaging and voting
methods. +erefore, stacking is more effective than voting
and averaging and has been widely used in various fields. For
example, a stacking ensemble learning model was adopted to
predict the short-term wireless network load and car-hailing
demand [46, 47]. In [48], a stacking-based ensemble model
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was deployed to forecast solar radiation strength. Liang et al.
[49] and Al-Sarem et al. [50] adopted a stacking learning
framework for genomic prediction and phishing website
detection. In the stacking model, selecting the appropriate
base models, optimizing the hyper-parameters of the model,
and improving the generalization ability are the challenges
we have to face, and many scholars have made attempts to
solve the above problems. Al-Sarem et al. [50] adopted a
genetic algorithm (GA) to tune the parameters of machine
learning learners, Cui et al. [51] developed an improved
swarm intelligence algorithm to optimize the critical pa-
rameters in the prediction model. In [52], the Pearson
Correlation analysis was used to measure the correlation
between base learners to select the basic learners with less
correlation. In [53], the proposed deep ensemble learning
framework adopted two sparse auto-encoders to reduce the
correlation of attributes and diversify the base classifiers.
Pari et al. [54] proposed a multi-tier stacked ensemble al-
gorithm, in which the cross-validated predictions are
combined to generate new features by different combination
schemes.

Spare parts demand forecasting is an important issue in
spare parts management, but in this field, ensemble learning
and model fusion are rarely used, especially the stacking
model, which has a large utilization space. +erefore, this
paper introduces the stacking model in ensemble learning
into the field of spare parts management to predict the
demand for spare parts. Besides, the stacking model con-
structed in this paper has only three base models, which will
lead to a small number of features of the meta model and
may affect the prediction accuracy. +erefore, this paper
proposes an improved stacking model which adds the initial
features to the feature matrix of the meta model to solve this
problem. And the main contributions of this paper are as
follows:

(1) Potential factors affecting spare parts demand that
may not have been considered before are obtained
and quantified based on the scenario analysis of the
operation and support process of aviation
equipment;

(2) An integrated feature selection framework based on
the three feature selection methods is proposed,
which can reduce the one-sidedness and limitation of
a single feature selection method;

(3) In addition, the stackingmodel is introduced into the
field of spare parts demand prediction, and the
improved stacking model tries to solve the problem
of insufficient number of meta learner features in the
traditional stacking model, which effectively im-
proves the generalization ability and prediction ac-
curacy of the model.

2. Equipment Support Scenario Analysis

+e so-called scenario was initially a concept in product
design. From a macro perspective, it refers to the needs of
users to use the product, such as analyzing what problems a

product solves for which target users; from the micro
perspective, it is the specific use details, such as the user’s
specific search and browsing scenes, which reflects the in-
teractive experience in the details of a product. Scenario
modeling is a method to describe and analyze the user re-
quirements. In the form of stories, it tells the whole process
of target users using products to complete target tasks in a
specific environment. +e 5W1H method [55] is usually
used to mine the six elements in the scenario, as shown in
Table 1:

+erefore, we apply the concept of scenario modeling to
the context of equipment integrated support, digitize the
support scenario of equipment spare parts, and analyze the
potential factors considered by the staff when planning the
spare parts requirements.

By analyzing the spare parts supply and support process,
we can summarize the potential factors affecting spare parts
consumption, but this is not enough. Comprehensive and
detailed analysis and digital description of equipment op-
eration and support scenarios can get more detailed features.

Taking the annual flight hours as an example, many
studies have taken the total flight hours as an influencing
factor. However, different equipment utilization may result
in various spare parts requirements when the total flight
hours are determined. In this way, the flight time can be
subdivided into flight time under different natural envi-
ronments, different operating environments, different
training subjects, different personnel operations, and dif-
ferent support and maintenance conditions. +ese differ-
ences may be the potential factors affecting the demand for
spare parts under the premise of a certain total flight time.

And these differences may be the potential factors af-
fecting the demand for spare parts under the premise of a
certain total flight time.

2.1. .e .ree-Level Support System for Military Spare Parts.
+e flight regiment usually performs various training tasks
under various working conditions.

Figure 1 shows the three-level maintenance support
process of repairable parts of a flight regiment. +e outfield
spare parts warehouse and the outfield maintenance depot
are responsible for the support and maintenance of LRU
(Line Replaceable Unit), respectively. Spare parts will be
demanded in the process of equipment operation and
maintenance activities. +erefore, we will analyze the op-
eration and support scenarios of equipment.

2.2. Quantify the Influencing Factors. +e consumption of
spare parts is related to the task quantity and the con-
sumption law, while the former includes flight hours, takeoff
and landing times, operation conditions, natural environ-
ment, and other factors, while the latter is related to the
attributes of spare parts, such as loss sensitivity, and reli-
ability. Besides, the replenishment of spare parts mainly
comes from returning to the warehouse after repair, so
factors related to maintenance should be considered. So, the
5W1H method is applied to the field of equipment support,
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and the equipment operation and support scenarios are
analyzed in Table 2:

(1) According to the scenario analysis, the potential
factors that may a�ect the demand for equipment
spare parts are obtained, which are shown in Table 2.

(2) Based on scenario analysis, we have obtained the
relevant data of �ve kinds of spare parts from a
department of the Chinese Air Force, which gener-
ated from 2011 to 2020.�e data set has 34 attributes,
corresponding to the attributes in Table 2, and the
label is the monthly demand quantity of spare parts.

(3) Due to military con�dentiality requirements, the
data used in this paper cannot be made public. To
support analysis, the data have been standardized
and normalized.

3. Model Framework

Based on the analysis of equipment spare parts use and support
scenarios, the potential factors a�ecting spare parts demand are

obtained.�e initial feature set is established after data cleaning
and processing. After that, to eliminate irrelevant or redundant
features, this paper proposes a feature selection method based
on ensemble learning, which obtains the �nal feature set by
aggregating the output of several individual feature selectors.
And then, a stacking framework is established. First, G grid-
search CV is used to tune the parameters of base learners, and
then cross-validation is used to determine the best combination
of base learners. �e stacking model combines multiple pre-
diction models to get a more accurate model to predict the
demand for spare parts. In addition, an improved stacking
model is proposed to solve the problem of less features of meta
learners, and the e�ectiveness of the method is veri�ed by
comparing the performance of di�erent models. And the
model framework is shown in Figure 2.

3.1. Feature Selection. Inspired by ensemble learning
methods, an ensemble feature selection method is proposed
and shown in Figure 3, ensemble speci�cally means syn-
thesizing the results of multiple feature selection methods to
obtain the �nal feature set. And the three base feature
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Figure 1: �ree-level maintenance support process of repairable spare parts.

Table 1: Mining six elements of scenario by 5W1H method.

Element Interpretation
Who Who is the target user of the product
What What tasks do users do with products, and what are their goals
When When will users use the product
Where �e actual environment in which users use the product
Why Potential rational and perceptual factors behind user behavior
How What measures do users take to perform tasks
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selection methods we chose are Principal Component
Analysis (PCA), Recursive Feature Elimination and Cross-
Validation (RFECV), and Random Forest (RF). PCA,
RFECV, and RF are the three commonly used feature re-
duction methods, and in these three methods, we can �nd a
parameter to measure the importance of features. In the
PCA method, explained variance ratio represents the pro-
portion of the variance value of each principal component in
the total square di�erence after dimension reduction.
�erefore, explained variance ratio is used to rank the
feature importance. In the RFECV method, all features’
importance evaluation is performed by the recursive feature
elimination. �e selected feature set is cross veri�ed to
determine the number of features with the highest average

score. In the RF method, the features are arranged in
descending order through random forest, and a certain
proportion of features are deleted to obtain a new feature set.
�e feature set with the lowest out-of-bag error rate is se-
lected as the �nal feature set.

�en, according to the feature importance parameters,
namely, explained variance ratio, grid scores, and feature

Table 2: Analysis of equipment operation and support scenarios based on the 5W1H method.

5W1H
Scenarios Who When Where Why What How

Spare Part
Attributes

Variety Failure Time -
YearNumber of Single

Machine Installations
Importance Failure Time -

MonthLoss Sensitivity
Price

Operation
Scenario

Super Pilot Average
Temperature

Maximum �ight
Altitude Tough/

Special Tasks

Subject 1
�ight hours Flight days

First-Grade Pilot Average �ight
Altitude

Subject 2
�ight hours Flight hours

Second-Grade Pilot Average
Humidity Plain �ight hours General/

Daily Tasks

Subject 3
�ight hours

Takeo� and Landing
Times

�ird-Grade Pilot Bad �ight Days Plateau �ight
hours

Subject 4
�ight hours Sorties Rate

Support
Scenario

Maintenance Personnel
Occupancy Rate

Mean Time to
Repair

Out�eld Repair
Rate Repair Rate

On-Site Rate of
Maintenance Equipment

Lead Time

Ensemble
Feature Selection

Method

PCA

RandomForest

RFECV

Hyperparametric Tuning by Grid Search CV

Base Learner Selection by Cross Validation

Base Learners Stacking Model Improved
Stacking Model

Equipment Spare Parts Demand Forecast

Figure 2: Model framework.
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Integrated Rank

Fit and
Evaluate

Integrated Rank

Figure 3: �e proposed ensemble feature selection method.
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importance, the importance of features are sorted into three
sequences, namely, indice_1, indice_2, and indice_3. Let i be
a feature, the weight of feature i can be obtained by its
position in the sequence, which is represented by index(i). In
the three sequences, the position of feature i may be dif-
ferent, which is represented by indice_1.index(i), indi-
ce_2.index(i), and indice_3.index(i). So, the comprehensive
weight of features can be obtained by synthesizing the
position of features in the three methods. So, we de�ne the
comprehensive weight of feature i as weight(i):

weight(i) �
1

indice 1.index(i)+1
×α1+

1
indice 2.index(i)+1

×α2+
1

indice 3.index(i)+1
×α3,

(1)

where α1, α2, α3 represents the weight de�ned by di�erent
base feature selection methods according to the e�ect of
feature selection, and α1 + α2 + α3 = 1.

Based on this, the features can be reordered by weight(i),
then, according to the feature importance, the features are
removed in turn and put into the model training and testing.
�e optimal feature subset is determined by evaluating the
model performance. And the model used in this paper is
RandomForest, which can be called by Scikit-Learn.

3.2. Stacking Model. �e core idea of stacking is to take the
output of the base learner as the input of the meta learner.
Base learners can also be called level 0 learners, and the meta
learners can be called level 1 learners. Meta learners are
stacked on top of base learners, which explains why this
model is called stacking model. �e structure of a simple

stackingmodel composed of three basemodels and onemeta
model is shown in Figure 4.

3.2.1. Cross-Validation. In the stacking model, the indi-
vidual learner will train and predict on the original data,
and then arrange the prediction results into a new
characteristic matrix and put them into the meta learner
for learning, which will inevitably lead to the problem of
small sample size in the feature matrix of meta learner.
When training the stacking model, the original data set is
divided into three parts: training set, veri�cation set, and
test set. �e test set is used to detect the e�ect of the whole
fusion model, so it cannot be used in the training process.
�e training set is used to train individual learners, which
has been wholly disclosed to individual learners, and the
prediction result cannot represent the generalization
ability of individual learners. �erefore, only the veri-
�cation set can be used to predict and describe the real
learning level of individual learners, leading to insu�-
cient sample size in the feature matrix of the meta
learner.

To solve this problem, cross-validation is used to expand
the feature matrix of meta learners.

Figure 5 shows the stacking model composed of three
base learners and one meta learner. Firstly, threefold cross-
validation is performed on the three base learners, and the
training data is divided into three parts. Two of them are
used as the training set, and the left is used as the validation
set. Each base learner is trained on the training set and
performs prediction on the validation set and the whole test
set. Repeat this process three times to get the prediction
data of three validation sets and the prediction data of the
test set.

Classification or regression

Feature

Feature Set of Meta Learner:S1&S2&S3

Task Layer

Meta LearnerMeta Learner
Layer

Base Learner
Layer

Base Learner-1 Base Learner-3

Output-S1 Output-S3

Base Learner-2

Output-S2

Level-0

Level-1

Figure 4: A typical stacking model with three base learners.
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�en, the prediction data of the three validation sets are
stacked vertically, and the prediction data of the three test
sets are averaged.�e prediction data of the validation sets of
the three base learners are spliced horizontally to obtain the
training set of the meta learner, and the prediction data of
the test sets of the three base learners are joined horizontally
to get the test set of the meta learner. In this way, the
problem of small sample size of meta learner is solved.

Generally speaking, before model fusion, all possible
algorithms need to be run once, and the algorithm with
better performance is selected as the basis of fusion.

Cross-Validation can be used to select the base learners
in the stacking model. Speci�cally, a better model can be
chosen by comparing the CV results of di�erent models on
the same data set. And the steps of model selection by cross-
validation are as follows:

(1) �e total training set is divided into k parts, namely,
S1, S2, . . . , Sk, taking Sj as the validation set while
the others are the training sets;

(2) For each modelMi, the algorithm executes k times,
training the modelMi by the other nine training sets,
and verifyingMi by Sj. And the generalization error
of Mi can be obtained by averaging the errors of k
times;

(3) �e model with minimum generalization error is
selected as the �nal model.

In order to determine the best combination of base
learners, eight candidate models are selected and shown in
Table 3, all of which are regression models.

�e cross-validation results are shown in Figure 6, and
through Grid-search CV, the hyper-parameters of models

are determined, and the �nal base learners are shown in
Table 4. Generally speaking, the meta learner needs to be a
low complexity algorithm, so a simple linear model is se-
lected as the meta learner.

3.2.2. Stacking Model and Improved Model. Based on the
above analysis results, this paper builds a stacking model
framework, as shown in Figure 7:

However, for the typical stacking model, it is inevitable
that the number of features in the feature matrix of the meta
learner is insu�cient, because an individual learner can only
output one set of prediction results, and the number of
features in the new feature matrix is equal to the number of
individual learners. Taking the stacking model built above as
an example, since there are only three base learners, only
three features are �nally input to the meta learner. To solve
this problem, we can consider adding the original feature
matrix to the predicted values of individual learners to form
a new high-dimensional feature matrix, which can be used as
the input of meta learners. And the improved model
structure is shown in Figure 8:
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Averaging Averaging Averaging

Training 
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Test set-1

Meta 
Learner

Figure 5: Stacking model and threefold cross-validation process.

Table 3: Candidate models of stacking framework.

Candidate Models

model_xgbr XGBRegressor
model_gbr GradientBoostingRegressor
model_rf RandomForestRegressor

model_bagging BaggingRegressor
model_lr LinearRegression
model_dtr DecisionTreeRegressor
model_abr AdaBoostRegressor
model_ridge Ridge
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4. Result Discussion

�is section will discuss the results of feature selection and
spare parts demand prediction based on the stacking model.

4.1. Feature Selection and Experimental Data. By analyzing
the operation and support scenarios of equipment, the

factors that may a�ect the demand for spare parts are ob-
tained. After the digital description, the digital features are
obtained, which can be used as the input of the stacking
model after feature selection. Figure 1 compares the feature
selection method based on the idea of integrated learning
proposed in this paper with the other three methods. We
eliminate features in turn according to the increasing di-
rection of feature importance, input the features into the
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Figure 6: Stacking Model and threefold Cross-Validation Process. (cv_mean is the cross_val_score of models on the test set, which is
R2_Score, the coe�cient of determination.).

Table 4: Base and meta models of the stacking framework.

Base Learners
model_xgbr xgb.XGBRegressor(random_state� 42)
model_gbr ensemble.GradientBoostingRegressor(n_estimators� 100)
model_rf ensemble.RandomForestRegressor(n_estimators� 20)

Meta Learner model_lr linear_model.LinearRegression()

Forecasting
Results

Feature Set

Feature Set of Meta Learner:S1&S2&S3

Forecasting Layer

model_lrMeta Learner
Layer

Base Learner
Layer

model_xgbr model_rf

Output-S1 Output-S3

model_gbr

Output-S2

Figure 7: Stacking model.
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Forecasting
Results
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Feature Set of Meta Learner:S1&S2&S3&S0

Forecasting Layer

model_lrMeta Learner
Layer

Base Learner 
Layer
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Output-S2 Feature-S0

Figure 8: �e improved stacking model.
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random forest model for training and testing, evaluate the
feature selection method according to the model perfor-
mance and prediction accuracy, and determine the most
appropriate number of features. And the experimental re-
sults are shown in Figure 9: (1) �e ensemble feature se-
lection method proposed in this paper can optimize the
model’s performance and minimize the prediction error. (2)
After eliminating 17 features in turn according to the in-
creasing direction of feature importance, the optimal feature
set with the best performance of the model can be obtained.

Taking the features before and after feature selection as the
input of the three base learners, comparing the model’s per-
formance, it is found that the selected features can e�ectively
improve the model’s performance according to Figure 10.

4.2. Performance and Result Discussion. Based on the se-
lected features, the spare parts demand is predicted by the
stacking model and the proposed improved stacking model,
and compared with the prediction performance and error of
the base learners. �e results are shown in Figure 11.

For each individual evaluator in model fusion and the
fusion model, we perform cross-validation on the training

set and �nal test on the test set.�e goal we hope to achieve is
that the results of cross-validation of the proposed model
and the results on the test set should be as good as possible,
which means that the model’s generalization ability is im-
proved. According to the experimental results, we can draw
the following conclusions:

It can be seen from �gure (a) that the stacking model
performs better than the other models in the score of cross-
validation, and the proposed improved stacking model
signi�cantly improves this score, indicating that the gen-
eralization ability of the stacking model is much stronger.
Figure (b) re�ects the di�erence between the scores of
di�erent models in the training set and the test set, and
according to �gure (b), the base models have a certain degree
of over-�tting. In contrast, the stacking model e�ectively
reduces over-�tting, and the proposed improved model
minimizes this gap. Similar to �gure (a), the stacking model
and improved stacking model in �gure (c) can e�ectively
improve the score on the test set, that is, it can e�ectively
improve the generalization ability of the model. Figure (d)
shows the prediction errors of di�erent models on the test
set, which can be e�ectively reduced by the stacking model
and improved stacking model.
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Figure 9: Performance of Di�erent Feature Selection Methods. (a) �e Proposed Ensemble Feature Selection Method. (b) RF Feature
Selection Method. (c) PCA Feature Selection Method. (d) RFECV Feature Selection Method. (R2_Score is the coe�cient of determination;
MAE is mean_absolute_error, the expected value of the absolute error loss; MSE is mean_squared_error, the expected value of the squared
(quadratic) error or loss.).
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Figure 10: Comparison of Model Performance before and after Feature Selection. (a) Performance of model_xgbr before Feature Selection.
(b) Performance of model_xgbr after Feature Selection. (c) Performance of model_gbr before Feature Selection. (d) Performance of
model_gbr after Feature Selection. (e) Performance of model_rf before Feature Selection. (f ) Performance of model_rf after Feature
Selection. (score returns the coe�cient of determination R̂2 of the prediction.).
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5. Conclusions

�is paper attempts to predict the demand for equipment
spare parts through the stacking model. By analyzing
equipment operation and support scenarios, some factors that
have rarely been considered by predecessors but may a�ect
the demand for spare parts are obtained. In addition, drawing
on the idea of ensemble learning, this paper proposes a new
ensemble feature selection method, which can weaken the
limitations of single feature selection. �e experimental re-
sults show that the proposed feature selectionmethod is better
than the other three methods, and e�ectively improves the
performance of the basemodels. In the past, only a few studies
used ensemble learning in spare parts prediction, while fewer
studies used a stacking model. In this paper, the stacking
model in ensemble learning is used for spare parts demand
prediction, and the problem of small number of features in the
feature matrix of meta learner in the traditional stacking
model is improved. �e improved model added the original
features as the meta learner’s input, which can improve the
generalization ability and prediction accuracy. �e experi-
mental results show that the proposed model can improve the
generalization ability and prediction accuracy, and performed
well in the obtained data set. In the future, if the unstructured
data generated during the operation and maintenance of
equipment can be obtained and considered, for example, text
information in maintenance history records, the data set will
be expanded, and more in�uencing factors that have never
been considered may be found.
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