
Research Article
A Two-Population Cooperative Multiobjective Differential
Evolution Algorithm for Batching Scheduling Problem

Cunli Song 1,2

1College of Software, Dalian Jiaotong University, Liaoning, Dalian 116052, China
2Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan, Zigong 643000, China

Correspondence should be addressed to Cunli Song; scunli@163.com

Received 22 November 2021; Revised 19 January 2022; Accepted 7 February 2022; Published 7 March 2022

Academic Editor: Cristian Mateos

Copyright © 2022 Cunli Song.)is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Batch processing machine (BPM) scheduling problem is a NP hard problem for it includes machine allocation, job grouping, and
batch scheduling. In this paper, to address the BPM scheduling problem with unrelated parallel machine, a multiobjective
algorithm based on multipopulation coevolution is proposed to minimize the total energy consumption and the completion time
simultaneously. Firstly, the mixed integer programming model of the problem is established, and four heuristic decoding rules are
proposed. Secondly, to improve the diversity and convergence of the algorithm, the population is divided into two populations:
each of the populations evolves independently by using different decoding rules, and the two populations will communicate
through a common external archive set every certain number of generations.)irdly, an initialization strategy and a variable
neighborhood search algorithm (VNS) are proposed to improve the overall performance of the algorithm. Finally, in order to
evaluate the proposed algorithm, a large number of comparative experiments with the state-of-the-art multiobjective algorithms
are carried out, and the experimental results proved the effectiveness of the proposed algorithm.

1. Introduction

Manufacturing industry reflects a country’s productivity
level, and production scheduling is a key link to determine
enterprises to achieve their production objectives.)erefore,
the research on production scheduling has always been a hot
issue for enterprises and scholars. With the intensification of
competition, process renewal, resource shortage, and en-
vironmental pollution, new research hotspots have emerged
in production scheduling. (1) Research on energy efficiency
scheduling problem, such as Zhao et al. [1], addressed the
energy-efficient scheduling problem of the no-wait flow-
shop; Song [2] addressed the energy-efficient scheduling
problem of the hybrid flow-shop (HFS) with unrelated
parallel machine, etc. (2) Combined with the production
practice, the research on the complex multiconstraint
production scheduling problem, such as Zhao et al. [3],
addressed the scheduling problem of distributed no-idle
flow-shop in heterogeneous factory system; Zhao et al. [4]
addressed the scheduling problem of the distributed

blocking flow shop; Liu et al. [5] addressed the charging
scheduling of electric vehicles with more requirements, etc.
(3) Research on multiobjective production scheduling
problem, such as Zhou et al. [6], addressed a BPM sched-
uling problem with the aim to minimize the makespan and
the total electricity cost; Zhu-Min [7] addressed the
scheduling problem of HFS with the aim to minimize delay
penalties, proceeding time, setup cost, and holding cost; Lu
et al. [8] addressed the scheduling problem of HFS to
minimize the noise pollution, makespan and energy con-
sumption simultaneously, etc.)erefore, it is of great sig-
nificance to study the multiobjective energy-efficient
scheduling problem under complex production conditions.

In manufacturing shops, batch processing machine
scheduling problem (BPMSP) is a NP hard problem; it has a
wide range of applications, such as foundry industry [9],
logistics freight [10], and electronics manufacturing facilities
[11].)e character of BPMSP is that it takes a batch as a unit
to process multiple jobs at the same time, and the processing
time of a batch is determined by the job with the longest

Hindawi
Scientific Programming
Volume 2022, Article ID 5622466, 16 pages
https://doi.org/10.1155/2022/5622466

mailto:scunli@163.com
https://orcid.org/0000-0002-0987-5706
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5622466

processing time, while the earliest start processing time is
determined by the job that arrives the latest.)e unrelated
parallel BPM scheduling problem (UPBPMSP) is an ex-
tension of the traditional BPMSP and exists widely in reality.
Owing to the fact that there is more than one BPM with
different capacity, processing efficiency, and processing
speed, UPBPMSP is more complex than BPMSP. In
UPBPMSP, for each job, we should decide the processing
machine, with which jobs to form a batch and the process
sequence of the batches. All these affect the production
efficiency and the total processing energy consumption of
enterprises at the same time.)erefore, the research on this
problem is of great significance. In the past decades, the
BPMSP has been studied extensively. To minimize the
makespan, Zarook [12], zhou et al. [13], and Xin et al. [14]
addressed a single machine BPMSP, Muter et al. [15]
addressed an identical parallel BMPSP, and Li et al. [16]
addressed the UPBMPSP. To minimize the total weighted
tardiness, Chou et al. [17] addressed a parallel BMPSP, etc.

Obviously, the studies for energy efficiency UPBPMSP
are less. In view of this, we studied the UPBPMSP with the
aim to minimize the energy consumption and the maximum
completion time (makespan) simultaneously, as they are the
main goals an enterprise pursues. At the same time, more
constraints are considered here, such as the different ma-
chine capacity and power, the different job arrival time, size,
processing time, and the special process requirements for
special job family cluster. Compared with the existing re-
search, the main contributions of this paper can be sum-
marized as follows:

(1) Aiming at minimizing the total energy consumption
(TEC) and the makespan, a multiobjective differ-
ential evolution algorithm based on multipopulation
coevolution (MODE/MPC) is proposed

(2) To ensure the distribution and diversity of solutions,
the algorithm adopts two-population coevolution:
each population adopts different coding and
decoding methods to search for excellent solutions
from different perspectives. Every several genera-
tions, the frontier solutions of the two populations
fuse to form the frontier solutions of the whole
society and are replaced by the frontier solution set of
the whole society to guide the population’s evolution.

(3) To improve the initial population quality, three
initialization strategies are proposed to initialize the
population during the initialization stage.

(4) To speed up the convergence and improve the local
search ability of the algorithm, a greedy variable
neighborhood search algorithm (VNS) is proposed
and performed on the frontier solutions archive set
of each population.

)e rest of this paper is organized as follows: Section 2
introduces the related work of the batching scheduling
problems and differential evolution (DE) optimization al-
gorithms. Section 3 presents the studied problem. Section 4
describes the proposed MODE/MPC algorithm in detail.
Experimental results and comparison are provided in

Section 5.)e conclusions of this study and future research
directions are presented in Section 6.

2. Literature Review

2.1. BPM Scheduling Problem. In 1980, Lerner et al. [18]
firstly studied the single machine BPMSP for semiconductor
production. Since then, many scholars have studied BPMSP.
To minimize the makespan of a single machine BPMSP,
Zarook et al. [12] and Huang et al. [19] proposed a heuristic
algorithm, respectively, with the consideration of machine
maintenance; Kashan et al. [20] proposed an effective hybrid
genetic algorithm (HGA) with consideration of nonidentical
job sizes; Guo [21] proposed a variable neighborhood based
memetic algorithm (VNMA). To minimize the maximum
lateness of the single machine BPMSP, Zhou et al. [13]
presented a modified particle swarm optimization (MPSO)
algorithm with the consideration of nonidentical job sizes
and release dates. To minimize flow time of the single
machine BPMSP, Parsa et al. [22] proposed a hybrid
max–min ant system with consideration nonidentical job
size; Ghazvini and Dupont [23] proposed various new
heuristics. For the identical parallel BPMSP, Jia et al. [24]
proposed an ant colony optimization algorithm with the
criterion of minimizing the total weighted completion time;
Jia et al. [25] Integrated production and transportation and
proposed a deterministic heuristic and two hybrid meta-
heuristic algorithms based on ant colony optimization with
the criterion of minimizing the total weighted delivery time
of jobs. To minimize makespan of the UPBPMSP with
different machine capacity, Jia et al. [26] proposed a fuzzy
ant colony optimization (FACO) algorithm with the con-
sideration of the jobs’ nonidentical sizes and fuzzy pro-
cessing times.

For multiobjective BPMSP, to address a single machine
BPMSP, Kashan et al. [20] proposed two different multi-
objective genetic algorithms considering the constraints of
nonidentical job sizes to achieve the goals of minimum
makespan and maximum tardiness; Zhou [27] proposed a
hybrid multiobjective metaheuristic algorithm to minimize
the makespan and total electricity cost under the time-of-use
(TOU) pricing policy. For the identical parallel machine
BPMSP with the constraints of dynamic job arrivals and a
time-of-use pricing scheme, Zhou et al. [5] proposed a DE
algorithm to minimize makespan and total electricity cost.
To minimize the tardiness cost and maximize the utilization
rate of dyeing vats, Zhang et al. [28] proposed a multi-
objective artificial bee colony (ABC) algorithm in fabric
dyeing processes. For the UPBPMSP, Shahvari and
Logendran [29] developed an efficient metaheuristic algo-
rithm based on tabu search with multilevel diversification to
minimize production cost and maximize customer satis-
faction; Qian et al. [30] proposed a multiobjective evolu-
tionary algorithm based on adaptive clustering with the
criterion of minimizing the makespan and total electricity
cost.

It can be seen from the above review that, for BPMSP,
more research focuses on the single machine BPMSP with
the criterion of makespan. For parallel BPMSP, most

2 Scientific Programming

research just considered the identical parallel or parallel
machine with different capacity. As for energy efficient
BPMSP, the research is little, and most of the them focus on
minimizing total electricity cost under the time-of-use
(TOU) pricing policy. However, the UPBPMSP with more
constraints is studied less, and it exits widely in reality es-
pecially for steel industry.)erefore, the research on the
UPBPMSP with more constraints is of great significance.

2.2. DEAlgorithm about Production Scheduling. In 1997, DE
algorithm was proposed by Storn and Price [31]. Like GA
and PSO algorithms, DE has strong optimization ability for
combinational optimization problems; therefore, many
scholars use it to solve production scheduling problems. In
[5], Zhou et al. proposed a discrete DE algorithm to address
the multiobjective parallel BPMSP. In [4], Zhao et al. pro-
posed a discrete algorithm to address the blocking flow shop
scheduling problem. In [32], Shengyao et al. proposed a self-
adaptive DE algorithm for a single machine BPMSP, in
which, based on the historical performances, mutation
operators are adaptively chosen, and control parameter
values are adaptively determined. In [33], Liang et al.
proposed a self-adaptive DE algorithm to solve multi-
objective flow shop scheduling problems with limited
buffers, in which the parameters are adjusted adaptively, and
various local searches are used to improve the convergence.
In [34], Zhang et al. proposed a hybrid multiobjective DE
(HMOEA/DE) to solve the flow shop scheduling problems
(FSPs); this algorithm designed a global search strategy and
two different mutation strategies for elite individuals to
improve the convergence and distribution of solutions, etc.

In summary, there are many applications of DE algo-
rithm in production scheduling problem, and the design of
DE is mainly from the following aspects: (1) in view of the
discretization of production scheduling problem, many
scholars have designed and studied the discrete DE algo-
rithm. (2) From the perspective of parameter control,
adaptive DE algorithm is studied. (3) In order to improve the
performance of the algorithm, the local search strategy is
mixed with the DE algorithm or design new mutation op-
erator and crossover operator.)e above improvement
measures do not make full use of the problem characteristics
to design DE algorithm, and there are almost no multi-
population coevolution algorithms with different coding
mechanisms.)erefore, it is of great significance to study the
multiobjective differential evolution algorithm with two-
population coevolution.

3. Problem Formulation

3.1. Problem Description.)ere is a set of n jobs,
J � J1, J2, . . . , Jn , to be processed on m UPBPM,
M � M1, M1, . . . , Mm . For each job Jj ∈ J, the size is sj,
the arrive time is rj, the processing times on m different
machines are pj,k (k� 1, . . .,m), and there are a few jobs that
can only be processed on a specific machine with a specific
power. Each machine Mk ∈M has a different capacity ck and
different power lk (note, where machines are sorted

nondecreasing by capacity, and the last machine can
process the special job family cluster with a special power).
)e machines can process the jobs in batches as long as the
total size of all the jobs in the batch do not exceed its
capacity ck. Our scheduling tasks include the following: (1)
assign jobs to different batch processing machines. (2)
Group the jobs on the machine under the constraints of
machine capacity. (3) Determine the processing sequence
and start time of each batch on each machine.)e objective
is to minimize TEC and makespan (Cmax) simultaneously.
In order to better describe the problem, we make the
following assumptions:

(1) One machine can only process one batch at the same
time. Once a batch starts processing, it is not allowed
to be interrupted.

(2) Once a batch is processed, you cannot add a job to
the batch or remove a job from the batch until the
batch is finished.

(3))e total sizes of all jobs in a batch are not allowed to
exceed the capacity of the corresponding machine.

(4))e start processing time of a batch should be
greater than or equal to the last arrival job in the
batch, and the processing time of a batch is de-
termined by the job with the longest processing
time in the batch.

3.2. Notations. In order to analyze the problem easily, some
notations are defined as follows:

Indexes:

j index of jobs and j � 1, 2, . . . , n.
k index of machines and k � 1, 2, . . . , m.
i index of batches on one machine, and 0≤ i≤ n.

Parameters:

n total number of jobs.
m total number of the machines
sj)e size of job Jj

rj)e arrive time of job Jj

pj,k)e processing time of job Jj on machine Mk

ck)e capacity of machine Mk

lk)e power of machine Mk

Decision variables:

Bk,i)e ith batch of machine Mk

Nk)e total number of batches of machine Mk

xj,k,i Equal to 1 if job Jj is grouped to batch Bk,i,
otherwise, xj,k,i � 0
BNk,i)e total number of jobs in the ith batch of
machine Mk

STk,i)e start processing time of batch Bk,i

CTk,i)e complete time of batch Bk,i

PTk,i)e processing time of batch Bk,i

WEk,i)e waste energy of batch Bk,i

TEC Total energy consumption
Cmax)e maximum complete time
π A scheduling

Scientific Programming 3

3.3. Mixed-Integer Linear Programming Model (MILP).

Cmax � min Cmax π∗(|π∗ ∈ π , (1)

Energy � min energy π∗(|π∗ ∈ π . (2)

Subject to:

m

k�1

Nk

i�1
xj,k,i � 1, (3)

n

j�1
xj,k,i · sj ≤ ck, i � 1, 2, . . . , Nk, (4)

PTk,i � max xj,k,i · pj,k|i � 1, 2, . . . , Nk , (5)

STk,i ≥xj,k,i · rj, i � 1, 2, . . . , Nk, (6)

STk,i+1 ≥CTk,i, i � 1, 2, . . . , Nk − 1, (7)

CTk,i � STk,i + PTk,i, i

� 1, 2, . . . , Nk,
(8)

m

k�1

Nk

i�1
BNk,i � n, (9)

Cmax � max CTk,i|k � 1, 2, . . . , m, i � 1, 2, . . . , Nk ,

(10)

TEC �
m

k�1

Nk

i�1
PTk,i · lk, (11)

WEk,i � lk ·
Jj∈Bk,i

Pk,i − pj · sj + Pk,i · ck −
Jj∈Bk,i

sj
⎛⎜⎝ ⎞⎟⎠⎛⎜⎝ ⎞⎟⎠.

(12)

Equation (1) is the objective function of makespan.
Equation (2) is the objective function of TEC. Equation (3)
ensures that each job is assigned to exactly one batch.
Equation (4) guarantees that the total size of jobs in a batch
does not exceed the machine capacity. Equation (5) deter-
mines that the processing time of a batch is determined by
the job with the largest processing time in the batch.
Equations (6) and (7) limit that the start processing time of a
batch is greater than or equal to the arrival time of jobs in a
batch and the completion time of the previous batch on that
machine, respectively. Equation (8) shows that the com-
pletion time of a batch is equal to the start processing time of
the batch plus its processing time; that is, the processing of a
batch is not allowed to be interrupted. Equation (9) ensures
that the number of jobs of all batches is equal to n. Equation
(10) specifies that the makespan (Cmax) is the largest
complete time of all batches. Equation (11) specifies that
TEC is calculated by summing up all batches’ energy con-
sumption, and the energy consumption of a batch is

calculated by multiplying the processing time and the power
the machine of that batch. Equation (12) is the waste energy
of batch Bk,i.

4. Description of MODE/MPC Algorithm

)e traditional DE adopts a float-point encoding scheme
and utilizes the differentiation information among the
population to find the global optimal solution in a con-
tinuous space. DE starts with a population of randomly
generated individuals. At each generation, mutation and
crossover operators are employed to produce offspring, and
then a selection operator is used to determine whether the
offspring or the parent can survive at the next generation. In
this section, the details of the MODE/MPC algorithm are
described in the following sections.

4.1. Representation of Solution. It is an important issue to
decide how to represent a solution when designing an ef-
fective algorithm for UPBPMSP. As described earlier in this
article, the solution of the problem should include two parts,
i.e., the jobs’ grouping order and the processing machine
assigned to the jobs.)erefore, the solution of UPBPMSP is
expressed by an integer vector with 2 × n elements.)e first
n integers in vector correspond to the index of the jobs, and
they represent the order of the batches the jobs are grouped
into.)e last n integers in vector correspond to the first n

integers one by one and represent the processing machine of
each job. Compared with the most job permutation code
[21, 23], this method provides a more comprehensive search
space and can support a variety of coding strategies pro-
posed here. At the same time, the expression of the solution
improves the probability of finding Pareto frontier solution.
To illustrate the solution representation, consider an in-
stance with 10 jobs and 2 BPMs, and Figure 1 shows an
example.

4.2. Decoding. For production scheduling problem, coding
often cannot fully express the scheduling results; it needs
decoding algorithm to further determine the scheduling
results. Better decoding methods can easily get better
scheduling results and accelerate algorithm convergence.
Based on this, we proposed four objective-oriented decoding
rules.

Rule-1: Principle of minimizing energy waste: firstly,
allocate the jobs to the machines according to the solution as
shown in Figure 1; then, group the jobs of each machine in
turn according to the principle of minimizing energy waste.
)at is to say, if there are multiple batches on the current
machine that meet the insertion requirements of a job, then
insert the job into the batch with the minimal energy waste.
Equation (12) can be used to calculate the energy waste for a
specific batch. If the job cannot be inserted into the existing
batch of the machine, create a new batch on the machine and
insert the job into the new batch.

Rule-2: Principle of earliest processing: firstly, allocate
the jobs to the machines according to the solution, and
group the jobs of each machine in turn according to the

4 Scientific Programming

earliest processing principle.)at is to say, the jobs of a
machine will be inserted into the existing batch of that
machine in turn according to the principle of earliest
processing. If there are no such batches on the machine fit
for inserting, create a new batch on the machine and insert
the job into the new batch.

Rule-3: Principle of minimizing processing time incre-
ment (note, this decoding method just uses the first n ele-
ment of the solution to decode), which is a variant of rule H3
[35], that is, according to the group order of the jobs in the
solution, the batch of eachmachine is operated as follows: (1)
assign the job to the batch with the smallest production time
increment and calculate its production time increment. (2) A
new batch is generated, and its production time increment is
calculated. Repeat m times, record the machine with the
smallest increment of production time and its batch, and
insert the job to the batch of that machine.

Rule-4: Principle of minimizing energy consumption
priority (note, this decoding method also just uses the first n

elements of the solution to decode), that is, according to the
group order of the jobs in the solution, the batch of each
machine is operated as follows: (1) assign the job to the batch
with the smallest energy consumption increment. (2) Create
a new batch on the machine, insert the job to this batch and
calculate the energy consumption increment. Repeat m

times, record the machine with the smallest energy con-
sumption increment and its batch, and insert the job to the
batch of that machine.

Obviously, among the above decoding rules, Rule-1 and
Rule-4 consider energy saving, while Rule-2 and Rule-3
consider the completion time. Rule-3 and Rule-4 ignore the
last n components of the solution. However, in order to
ensure the normal communication of the two population in
this paper, during the decoding process, it is necessary to
record the machine allocated for the job when using the
decoding Rule-3 and Rule-4.

4.3. Scheduling Batches on Machine. Decoding determines
the batches of each machine and the process sequence of
each bath.)e processing time of each batch is determined
by the job with the longest processing time in that batch, and
the power per unit time of the machine is fixed, so the TEC is
completely determined after decoding. However, on the
same machine, there exist batches that arrive later but are
processed earlier, which will delay the completion time of
that machine.)erefore, from the perspective of minimizing
makespan, the batches on the same machine are nonde-
creasing, sorted according to the arrival time and
rescheduled according to this order.)e pseudocode is
shown in Algorithm 1.

4.4. Initializing Population. A better initial population will
speed up the algorithm convergence. If there is an initial
solution that minimizes one of the objectives in the pop-
ulation, the solution will tend to the optimal solution at a
faster speed during evolution. Based on this idea, we propose
three methods to initialize the solution according to the
characteristics of the problem in this paper.

(1) Arrive first, group first (AFGF): firstly, sort the jobs
in nondescending order according to their arrival
time, and we get the jobs permutation. Secondly,
decode the job permutation by using decoding Rule-
3 and Rule-4, respectively, and record the machine
assigned to each job.)en, we get two solutions.)is
method considers the principle of first come, first
group batch and process, so it can start processing as
soon as possible.

(2) Large size priority batch (LSPB): firstly, sort the jobs
in nonascending order according to their size, and
we get the job permutation. Secondly, decode the job
permutation using decoding Rule-3 and Rule-4,
respectively, and record the machine assigned to
each job.)en, we get two solutions.)is method
gives priority to the large-size jobs into batches, and
the subsequent small-size jobs can be inserted into
the remaining space of the existing batch, so as to
maximize the space utility of each batch and reduce
waste.

(3) Random generate (RG): first, randomly sort the n

jobs to get the job permutation. Second, for each job,
randomly select a machine that can process the job;
then, we get a solution.

In addition, for each population, there is a Pareto
frontier solution archives (PA) to record the nondominated
solutions of that population; with the evolutionary iteration
of the population, PA is updated constantly.

4.5. Mutation Operation.)e standard scheme of DE
denoted as DE|rand|1|bin is considered in the MODE/MPC
algorithm. At generation g, randomly select three different
individuals Xp1

(g), Xp2
(g) and Xp3

(g) from PA of the
current population; if the solutions in PA are less than 3,
then randomly select a solution from that population.)en,
variant individual Vi(g) can be generated with the following
equation:

Vi(g) � Xp1
(g) + F · Xp2

(g) − Xp3
(g) , (13)

where the scaling factor F is a float point data with a value
between [0, 2]. Obviously, the variant individual Vi(g)

solution

job sequence: 4 46 61 9 93

3

5

5

8

8

M1

M2

2 7 710 10

1 111

result

11 1 2 2

2

2 2machine:

Figure 1: A solution for 10 jobs processed on 2 BPMs.

Scientific Programming 5

generated by equation (14) does not guarantee that every
component obtained is an integer.)erefore, we will use
Algorithm 2 to transform the variant to a legitimate solution.
Note, the BPM in this paper is numbered according to its
capacity from small to large.

4.6. Crossover Operator. In DE algorithm, individuals
generate children through crossover operation with
variants to explore the solution space. In this paper, we
design a two-point crossover operator. Take 10 jobs to be

processed on 3 BPMs as an example. It is known that jobs
numbered 1–5 can be processed on all 3 machines, jobs
numbered 6–8 can be processed on the last two machine,
and jobs numbered 9–10 can only be processed on the
third machine due to the capacity limitation of batch
processing machines. Assume that the variant is (6, 3, 7, 2,
5, 9, 4, 8, 10, 1|3, 2, 2, 1, 1, 3, 1, 2, 3, 1), and the current
father individual is (3, 5, 9, 1, 7, 8, 4, 10, 2, 6|1, 2, 3, 2, 2, 3,
1, 3, 1, 2).)en, Figure 2 shows an instance of this two
individuals’ crossover process, and Algorithm 3 is the
pseudocode of crossover operator.

Input: machines and their batches
Output: machines and each batch’s start time and complete time of that machine
for k= 1 to m //for each machine
{ for l= 1 to Nk//for each batch on machine Mk

{computer STk,l ; }//where STk,l represents the arrival time of each batch
sort all batches Bk,l of machine Mk nondecreasing according to STk,l;
for l � 1 to Nk

{computer STk,l and CTk,l of the batch Bk,l with equations (7) and (8)}
}

ALGORITHM 1: Scheduling batches

Input: mutation individuals Vi(g)

Output:legal mutation individuals Vi(g)

//Step 1:the first n components of variant V were transformed into job permutation
Define an integer array a (n);

/∗ Sort the first n elements of variant V nondecreasing, record the sorting position of each component, and then, replace the first n

components of V with their sorting position. ∗ /
for i� 1 to n

{for j = i to n

if V (i)>V (j) then
a (i)� a (i) + 1;

else
a (j)� a (j) + 1;

endif
V (i)� a (i) + 1;
}

//Step 2: transform the last n components of variant V into legal machines.
/∗ Step 2.1: Sort the last n components of variant V nondecreasing, record the sorting position of each component, and then, replace
the last n components of variant V with their sorting position. ∗ /

for i � n + 1 to 2 · n
{ for j � i to 2 · n

if V (i) >V (j) then
a (i)� a (i) + 1;

else
a (j)� a (j) + 1;

endif
V (i)� a(i) + 1; //replace

}
/∗ Step 2.2: Replace the last n components of variant V with legal processing machine corresponding to the job ∗ /

for i = n + 1 to 2∗n
V (i)�m (V (i− n)) +V(i)% M (V (n− i));

ALGORITHM 2: Pseudocode for transforming the mutation individuals

6 Scientific Programming

4.7. Variable Neighborhood Search (VNS). In order to en-
hance the local exploration ability and speed up the con-
vergence of the algorithm, a greedy variable neighborhood
search algorithm (VNS) is proposed. Each time when a new
frontier solution archive set of the population is generated,
we will perform a variable neighborhood search for each
solution in the set and update the set by using the greedy
update mechanism of literature [6].)ree neighborhood
structures in [2], swap, insert, and reverse, are used here
owning to their effectiveness. Algorithm 4 shows the
pseudocode of VNS.

4.8. Framework of MODE/MPC. Considering that decod-
ing methods Rule-1 and Rule-2 can evolve in a larger
solution space, they have strong local search ability but
slower evolution speed. Decoding Rule-3 and Rule-4
evolve in a relatively small space and have strong ex-
ploitation ability but poorer local search ability. In order
to make full use of them, we designed the multiobjective
DE algorithm with multipopulation coevolution
(MODE/MPC).)en, the algorithm includes two pop-
ulations with the same size. One population decodes with
Rule-1 and Rule-2 and 50% probability for each, and the
other population decodes with Rule-3 and Rule-4 and
50% probability, respectively. For each population, the
frontier solutions will be recorded in external archive set
SA. Every several generations, the SA of the two pop-
ulations will be merged to get the whole society’s Pareto
frontier solution archive set PA. In turn, we will use PA to
reset SA of each population to promote the communi-
cation. For the convenience of describing the algorithm,
the variables used in the algorithm are listed in Table 1,
Algorithm 5 shows the pseudocode, and Figure 3 shows
the flow chart.

In Figure 3, considering that the computing time is
mainly affected by the decoding algorithm (O(n · m)) and
the fast nondominated sorting algorithm (O(2N2)), there-
fore, the computing time for one evolutionary is
O(2 · N · (n · m + N)), and the total computing time of the
algorithm is O(2 · iter · N · (n · m + N)). Compared with
the scale of jobs n, the number of iterations iter and the
population size N, the number of machines m is generally
small.)erefore, the overall computing time of the algo-
rithm is O(iter · N · (n + N)).

5. Experiment Analysis

In this section, we carry out the computational experiments
to evaluate the performance of the proposed algorithm. First,
we verify the effectiveness of the strategies proposed in
MODE/MPC.)en, we compare the algorithm with other
best known multiobjective algorithms to verify its effec-
tiveness. All the algorithms are implemented in C++ lan-
guage on an intel core i7-8550U, 1.88GHz PC with 16GB
memory.

5.1. Test Instance. Here, 10 groups of test instances are set.
)e scale of jobs is 100, 150, 200, 250, and 300, respec-
tively. 3 and 5 UPBPMs are considered. Each test instance
is named as j ∗m ∗ a ∗, where ∗ is an integer number,
letter j represents job, and letter m represents machine.
For example, j100m3a1 represents the first test instance
that 3 BPMs process 100 jobs.)e processing time of jobs
is evenly distributed in [8, 48].)e detailed data of the test
instance are shown in Table 2.)e size of jobs is a key
parameter affecting batch processing, too many large-size
jobs simplify the allocation of BPM; therefore, Table 2
shows the proportion of jobs with different sizes, and the
job size is generated by uniform distribution in each
interval. In Table 2, the arrival time of jobs is divided into
three intervals, namely, [0, R1], [R1, R2] and [R2, R3].)e
proportion of jobs arriving in each time interval is 50%,
25%, and 25%, respectively, and is generated in a uniform
manner, where R1, R2, and R3 are calculated by equations
(14)∼(27).)e jobs of special family cluster account for
10% of the total jobs and can only be processed on the
machine with the maximum capacity under a special
power. In this paper, to facilitate machine scheduling, all
machines are indexed from small to large according to
capacity.

R � 0.05 ·
n

j�1

m
k�1 pj,k

m
 , (14)

R1 � rnd · R, (15)

R2 � R + rnd · R, (16)

R3 � 2 · R∗ rnd · 2 · R. (17)

5.2. Performance Metrics. It is difficult to evaluate the per-
formance of a multiobjective optimization algorithm by a
single metric. In order to evaluate the algorithm objectively,
the following metrics are selected:

(1) Number of nondominated solutions (NNS). More
nondominated solutions mean more choices the
decision-maker has. Here, NNS refers to the number
of frontier solutions of the algorithm in the set of
ideal frontier solutions.

(2) C metric [3]. Let A and B denote the Pareto frontier
solution sets obtained by the two algorithms.)e

(6,3,7,2,5,9,4,8,10,1 3,2,2,1,1,3,1,2,3,1)

(6,3,7,2,5,9,4,8,10,1 3,2,2,1,1,3,1,2,3,1)

(3,5,9,7,4,2,6,8,10,1 3,2,2,1,2,3,1,3,1,2)

(3,5,9,1,7,8,4,10,2,6 1,2,3,2,2,3,1,3,1,2)

(3,7,5,9,4,8,1,10,2,6 1,2,3,2,1,3,1,2,3,1)

Current: (3,5,9,1,7,8,4,10,2,6 1,2,3,2,2,3,1,3,1,2)

Variant:

Child1:

Current:

Variant:

Child2:

Figure 2: Crossover operator.

Scientific Programming 7

value of C(A, B) represents the proportion of so-
lutions in set B dominated by at least one solution in
set A, which can be calculated by the following
equation:

C(A, B) �
| f ∈ B|∃e ∈ A: e≺f |

|f|
, (18)

where C(A, B) ∈ [0, 1], and the closer the value of
C(A, B) is to 1, the more solutions in B are domi-
nated by the solutions in A, which indicates that the
quality of solutions in set A is better than that in set

B. It should be noted that the value of this quota is
asymmetric; that is, C(A, B) and C(B, A) need to be
calculated separately.

(3) Hypervolume (HV).)is metric is used to evaluate
the approximation degree between one non-
dominated solution set obtained by the algorithm
and the true Pareto frontier solution.)e larger the
value of HV, the closer the nondominated solution
set to the true Pareto frontier solution, indicating
better convergence and diversity of the algorithm. In
this paper, the normalized target value is used to
calculate HV.

Start

k=0;

k<iter
No

No

No

No

Yes

Yes

Yes

Output PA;

end

Merge SA1 and SA2;
Find all the nondominated solutions

and store to PA;
SA1 = PA; SA2 = PA;

perform the mutation operattion,
cross operation,

evaluate the child,
update on current solution of pop1

perform the mutation operattion;
cross operation;

evaluate the child;
update on current solution of pop2

Update SA2;
Perform VNS on SA2;

Update SA1;
Perform VNS on SA1;

Yes

i = 1

i = i + 1

k = k + 1

k%Niter==0

j = j + 1

j = 1

j ≤ Ni ≤ N

Read data of the test case;
initialize the parameters, the two populations and find the nondominated

solutions of each population and store to SA1 and SA2 respectively;

Figure 3:)e framework of algorithm MODE/MPC.

8 Scientific Programming

5.3.ParameterSetting.)ere are some parameters that affect
the performance of MODE/MPC; it is necessary to deter-
mine appropriate values for these parameters.)e Taguchi

method is one of the popular statistical analysis methods that
can obtain better parameter settings through fewer exper-
iments.)erefore, Taguchi is used to determine the

Input: variant solution and current solution
Output: two children solution

Step 1: Randomly generate two random integers between 1 and 2n, assign the smaller value to h1 and the bigger value to h2;
Step 2: Do crossover operator as show in Figure 3.
Step 3: //Adjust the machine assignment code for two children

for i� 1 to n

{ if (child1 [n + i] is not a legal machine for job child1 [i]) then
update child1 [n+ i] using equation (13);

if (child2 [n + i] is not a legal machine for job child2 [i]) then
update child2 [n + i] using equation (13);

}

ALGORITHM 3: Pseudocode of crossover operator

Input: a solution π
Output: updated FA
Step 1: Initialize the maximum iteration number iternum of per neighborhood;
Step 2: For each neighborhood, performs the follow operations

{ k � 0;
while (k< iternum)
{ Perform the neighborhood operations;
if (fπnew≺fπ) then// πnew dominate π
{π � πnew;
delete the solutions in FA that dominated by πnew;
k� iternum; }
elseif (fπnew⊀fπ an d fπ⊀fπnew) then

if (fπnew⊀fsolution in SA) then
{FA� FA ∪ πnew ;
delete solutions in FA that dominated by πnew;

k� iternum; }
else

k� k+ 1;
endif

else
k� k+ 1;

endif
}

}

ALGORITHM 4: Pseudocode of VNS

Table 1: Variables and its descriptions in algorithm.

Variable Description
N Size of the two populations
pop1, pop2 Arrays of population 1 and population 2 respectively
F Influence factors of DE
iter)e maximum number of iterations of the algorithm MODE/MPC
W Weight array of the algorithm MODE/MPC
NB Neighborhood array of the algorithm MODE/MPC
Niter)e two populations will communicate once every Niter generations
SA1, SA2 , PA Frontier solution set of pop1, pop2 and the whole society
k, i Cyclic control variable

Scientific Programming 9

parameter values in this paper.)e main parameters con-
sidered in MODE/MPC include N (size of each population),
NC (the two populations will communicate once every NC

evolutions), NV (the maximum iterations times of VNS),
and iter (the iteration times of the algorithm, where
iter � T · NC, T is the communication time between two
population), which are summarized with three levels in
Table 3. According to the Taguchi method, 9 parameter

combinations are designed and listed in Table 4. In the
experiment, 10 test instances are randomly selected from 10
instance groups and one for each group.)e mean value of
HV will be statistics to evaluate the performance of the
algorithm MODE/MPC with different parameter combi-
nations.)e experimental results are shown in Figure 4 in
the form of line chart. It can see that algorithmMODE/MPC
with parameter combination No. 6 is better than the others.

// Step 1: Initialize phase
Initialize N, F, iter, W, NB, Citer and SA1 � ∅, SA2 � ∅, PA � ∅;
Read processing data;
Initialize pop1 and pop 2 with the initialization algorithm in subsection 4.3 and decode them;
Find the nondominated solutions of pop1 and pop2 and stored them to SA1 and SA2 respectively.

//Step 2: Evolution phase
k � 0;
while k <iter
{ //Step 2.1: Perform evolutionary operation

{ for i = 1 to N//evolutionary operation on pop1
{ Do mutation operator in Section 4.5;
Do crossover operator proposed in Section 4.6 to generate children C1 and C2;
Decode C1 and C2;
Update the current solution and its neighborhood with C1 andC2 ;

}
Merge pop1 and SA1 into Q;
Find all the frontier solutions in Q and store them in SA1;
For each solution in SA1 do VNS and update SA1;
}

//Step 2.2: Perform evolutionary operation on pop2
{ Do operation as Step 2.1 on pop2 but decode with Rule-3 or Rule-4; }
k� k+ 1;

//Step 2.3: Communication between populations
if (k%Niter � 0) then
{Q � SA1∪ SA2;
Find all the nondominated solutions in Q and store to PA;
SA1� PA;
SA2� PA;

}
endif

}
//Step 3: output
Output solution in PA;

ALGORITHM 5: Pseudocode for MODE/MPC

Table 2: Parameter of the test instance.

Factors Note Value
Job number n n ∈ 50, 100, 150, 200, 250, 300{ }

Machine number m m � 3|5
Capacity of machines ck c1 � 30, c2 � 40, c3 � 50, c4 � 60, c5 � 70
Power of machines lk lk � 5 · (rnd · (k + 1) + k − 1)

Processing time of jobs pj,k U[8, 48]

Arrive time intervals of jobs rj [0, R1], [R1, R2], [R2, R3]

Proportion of jobs according to the arrival time {50%, 25%, 25%}
Size of jobs sj U1[1, 30], U2[30, 40], U3 [40, 50], U4 [50, 60], U5 [60, 70]

Proportion of jobs according to size from small to large ppj
70%, 20%, 10%{ }, where, k � 3
70%, 10%, 10%, 5%, 5%{ }, where, k � 5

Proportion of special job clusters ps 10%

10 Scientific Programming

So, in the later experiments, the parameter N will be equal to
40, NV will be equal to 4, NC will be equal to 100, and iter

will be equal to NC × T.

5.4. Effectiveness of Two-Population Cooperative Evolution.
To verify the effectiveness of the two populations coevolu-
tion strategy, algorithm MODE/MPC and two single pop-
ulation algorithms MODEI and MODEII are compared,
where MODEI adopts Rule-1 and Rule-2 to decode the
solution, and each rule is selected with 50% probability.
Similar to algorithm MODEI, MODEII adopts Rule-3 and
Rule-3 to decode the solution.)ree algorithms use the same
mutation operator and crossover operator and do not use
VNS in MODE/MPC.)e population size of MODEI and
MODEII is 80, the size of each population of MODE/MPC is
40, and the other parameters are consistent with each other.
)ree algorithms will run 10 times on each test instance.
Each time, a population will be randomly generated, and
three algorithms will run once based on the population and
calculate three evaluation metrics once. Table 5 shows the

mean value of NNS and HV in each instance group, and
better values are in bold. Figure 4 shows the of line chart of
mean C value on 10 instance groups.

In Table 5, MODE/MPC got better value on evaluations
metrics of NNS and HV on 9 instance groups except for
j100c5a∗ ; this shows the effectiveness of the two pop-
ulations cooperative evolution strategy. At the same time,
the mean values of NNS and HV obtained by MODEII are
better than those obtained by MODEI in 10 instance groups,
which shows that the decoding rules Rule-3 and Rule-4 have
better exploitation than Rule-1 and Rule-2. In Figure 5, the
mean value of C (MODE/MPC, MODEI) is equal to 1 in 9
instance groups and greater than 0.8 in group j150c5a∗ .
)is shows that the performance of MODE/MPC is better
than that of MODEI.)e mean value of C(MODE/MPC,
MODEII) is greater than C (MODEII, MODE/MPC) on 9
instance groups except instance group j250c3a∗ ; this also
shows that the performance of MODE/MPC is better than
that of MODEII.)erefore, three evaluation metrics show
the effectiveness of the two populations cooperative evo-
lution strategy.)e mean values of C(MODEII, MODEI) on
10 instance groups are all greater than 0.7, while C
(MODEII, MODEI) on 10 instance groups is equal to 0;
these show that the decoding rules Rule-3 and Rule-4 have
better exploitation than Rule-1 and Rule-2.

5.5. Effectiveness of VNS and Initialization Strategy. To verify
the effectiveness of the VNS and initialization strategy
proposed in this paper, we will do comparative experiments
with three algorithms, namely, algorithmMODE/MPC with
random initialization marked A-RI, algorithmMODE/MPC
with random initialization adding VNS marked A-RI-VNS,
and algorithm MODE/MPC with initialization strategy
adding VNS marked A-IS-VNS. Except for the difference
here, the other factors of the three algorithms adopt the same
strategy.)ree algorithms will run 10 times on each test
instance. To make it fair, each time, an initial population will
be randomly generated and algorithms A-RI and A-RI-VNS
will run based on the same population, while algorithm
A-IS-VNS will randomly replace some solution in the initial
population with the solutions generated by the initialization
strategy AFGA and LSPB and run on the changed pop-
ulation. Table 6 shows the mean value of NNS and HV on
each instance group, and better values are in bold.
Figures 6–8 show the line chart of the mean value C on each
instance group.

In Table 6, compared the results of algorithm A-RI with
A-RI-VNS, it is not difficult to find that A-RI-VNS has
achieved better results in 10 instance groups in terms of NNS
and HV, which shows the effectiveness of VNS. Secondly,
comparing the results of algorithm A-RI-VNS with A-IS-
VNS, it is can be found that A-IS-VNS has achieved better
results in 9 instance groups in terms of NNS and HV, except
the group j100c5a∗ .)is shows that the initialization
strategy is not effective for small-scale problems, but it has
good effectiveness for medium-sized and large-scale prob-
lems, both from the metrics of NNS and HV.)e line charts
of C in Figures 6–8 further proved this conclusion. In

Table 3: Parameters setting.

Levels N NV NC T

1 30 2 100 5
2 40 3 120 6
3 50 4 150 7

Table 4: Parameter combinations.

NO. N NV NC T

1 30 2 100 5
2 30 3 120 6
3 30 4 150 7
4 40 2 120 7
5 40 3 150 5
6 40 4 100 6
7 50 2 150 6
8 50 3 100 7
9 50 4 120 5

0.75

0.7

0.65

0.6

0.55

0.5

0.45
1 2 3 4 5 6 7 8 9

H
V

Figure 4: Line chart of mean value of HV on 10 test instances.

Scientific Programming 11

Figure 8, it can be seen that the larger the scale of the
problem, the greater the impact of initialization strategy on
the performance of the algorithm.

5.6. Comparison with Other Algorithms. To evaluate the
performance of the algorithm MODE/MPC, three multi-
objective optimization algorithms, SPEA2 [36], NSGAII
[37], and a better algorithm PDACO [38], proposed recently
for the similar BPMSP, have been used for comparative

experiments.)e solutions representation of NSGAII and
SPEA2 is the same as in this paper, and the decoding rule
randomly selects Rule-3 and Rule-4 with 50% probability.
)e cross operation of NSGAII and SPEA2 is the same as
Section 4.6; their mutation operator is reverse variation, and
the population size is 80. Algorithm PDACO is completely
implemented according to [38]; the two populations are all
40, and the other parameters are the same as [38]. Table 7
shows the mean values of C on the 10 instance groups, and
Table 8 shows the mean values of HV and NNS.)e box plot

Table 5: Comparative experiment on 10 instance groups.

Instance group
MODEI MODEII MODE/MPC

NNS HV NNS HV NNS HV
j100c3a∗ 0 0.5425 2.3 0.8442 4.6 0.99
j100c5a∗ 0 0.4316 3.1 0.9703 2.4 0.8952
j150c3a∗ 0 0.3411 7 0.7243 9.6 0.7307
j150c5a∗ 1.2 0.4216 4.7 0.7325 7.2 0.7971
j200c3a∗ 0 0.3317 5.6 0.6358 10.8 0.6889
j200c5a∗ 0 0.32711 5.3 0.6281 8.9 0.7142
j250c3a∗ 0 0.3019 7.1 0.5605 11.4 0.6455
j250c5a∗ 0 0.2889 6.9 0.8073 11.7 0.8189
j300c3a∗ 0 0.2683 9.1 0.5589 11.4 0.5831
J300c5a∗ 0 0.0869 3.6 0.4209 5.7 0.4360
)e bold values are the better values got on the instance group.

1.1
1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
j100c3a*

C
m

et
ric

j100c5a* j150c3a* j150c5a* j200c5a*j200c3a* j250c3a* j250c5a* j300c5a*j300c3a*
instance groups

C (MODEII,MODEI)
C (MODEII/MPC,MODEII)

C (MODEII,MODE/MPC)
C (MODE/MPC,MODEI)

C (MODEI,MODEII)
C (MODEI,MODE/MPC)

Figure 5: Line chart of MODEI, MODEII and MODE/MPC on 10 groups instance for C.

Table 6: Comparative experiment on 10 instance groups.

A-RI A-RI-VNS A-IS-VNS
NNS HV NNS NNS HV NNS

j100c3a∗ 0 0.4821 1.4 0.8637 2.3 0.9091
j100c5a∗ 0 0.5660 4.2 0.8356 1.6 0.8127
j150c3a∗ 0 0.4572 6.7 0.6607 13.7 0.7387
j150m5a∗ 0.7 0.4337 4.4 0.6416 5.7 0.7675
j200c3a∗ 0.1 0.4476 8.4 0.6289 14.6 0.6830
j200m5a∗ 0.1 0.5336 4.3 0.6474 9.8 0.7943
j250c3a∗ 0.3 0.4529 10.5 0.6018 18.3 0.6582
j250m5a∗ 0 0.4673 4.4 0.6559 8.6 0.7701
j300c3a∗ 1.6 0.3987 4.4 0.4738 12.8 0.5765
j300m5a∗ 0.2 0.1238 1.9 0.1493 8.5 0.2512
)e bold values are the better values got on the instance group.

12 Scientific Programming

j100c3a* j100c5a* j150c3a* j150c5a* j200c5a*j200c3a* j250c3a* j250c5a* j300c5a*j300c3a*
instances

1.1
1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

C
m

et
ric

C (A-RI,A-RI-VNS)
C (A-RI-VNS,A-RI)

Figure 6: Line chart of algorithm A-RI and A-RI-VNS on 10 instance groups for C metric.

j100c3a* j100c5a* j150c3a* j150c5a* j200c5a*j200c3a* j250c3a* j250c5a* j300c5a*j300c3a*
instances

1.1
1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

C
m

et
ric

C (A-RI,A-RI-VNS)
C (A-IS-VNS,A-RI)

Figure 7: Line chart of algorithm A-RI and A-SI-VNS on 10 instance groups for C metric.

j100c3a* j100c5a* j150c3a* j150c5a* j200c5a*j200c3a* j250c3a* j250c5a* j300c5a*j300c3a*
instances

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

C
m

et
ric

C (A-RI-VNS,A-IS-VNS)
C (A-RI-VNS,A-IS-VNS)

Figure 8: Line chart of algorithm A-RI-VNS and A-SI-VNS on 10 instance groups for C metric.

Table 7: Comparison of algorithms in terms of metric C.

Instance
group

C (MODE/MPC,
NSGAII)

C (NSGAII,
MODE/MPC)

C (MODE/MPC,
SPEA2)

C (SPEA2,
MODE/MPC)

C (MODE/MPC,
PDACO)

C (PDACO,
MODE/MPC)

j100c3a∗ 0.4744 0.2135 0.4482 0.2316 0.3364 0.3567
j100c5a∗ 0.3473 0.3126 0.3721 0.3162 0.3864 0.3207
j150c3a∗ 1 0 0.9667 0 0.4333 0.1667
j150c5a∗ 0.3109 0.0167 0.4314 0.1133 0.2731 0.2483
j200c3a∗ 1 0 1 0 0.4013 0.1027
j200c5a∗ 1 0 1 0 0.5892 0.2217
j250c3a∗ 1 0 1 0 0.6724 0.2328
j250c5a∗ 1 0 1 0 0.6743 0.2526
j300c3a∗ 1 0 1 0 0.5412 0.1722
j300c5a∗ 1 0 1 0 0.6438 0.2851
)e bold values are the better values got on the instance group.

Scientific Programming 13

Table 8: Comparison of four algorithms in terms of metric HV and NNS.

MODE/MPC NSGAII SPEA2 PDACO
HV NNS HV NNS HV NNS HV NNS

j100c3a∗ 0.88099235 2.51 0.80841435 1.36 0.79980652 0.94 0.8512306 4.82
j100c5a∗ 0.92857121 4.43 0.88150478 2.04 0.90274042 1.98 0.90633125 2.4
j150c3a∗ 0.67946238 17.58 0.36591312 4.67 0.3297343 5.23 0.60406404 7.6
j150c5a∗ 0.69221336 11.4 0.32439498 4.32 0.28474322 3.82 0.5826978 6.56
j200c3a∗ 0.71812236 26.18 0.31180754 0.86 0.30210736 1.45 0.5715248 13.32
j200c5a∗ 0.7043381 13.46 0.35194444 0 0.28043654 0 0.56445422 6.4
j250c3a∗ 0.68820244 24.78 0.43827707 0 0.31880564 0 0.60917126 11.38
j250c5a∗ 0.73206882 19.42 0.48377166 0 0.43654152 0 0.58227674 9.34
j300c3a∗ 0.6021029 26.52 0.32820564 0 0.28901574 0 0.63145038 10.04
j300c5a∗ 0.2873152 15.15 0.33692618 0 0.28901574 0 0.63837386 7.12
)e bold values are the better values got on the instance group.

3.5
44000 3.6 54000

49000

44000

39000

34000

29000

3.4

3.2

3

2.8

2.6

2.4

2.2

42000

40000

38000

36000

34000

32000

3.3

3.1

2.9

2.7

2.5

2.3

38000 90000 6.8 9.3

8.8

8.3

7.8

7.3

6.8

6.3

5.8

6.3

5.8

5.3

4.8

4.3

85000

80000

75000

70000

65000

60000

36000
34000
32000
30000
28000
26000
24000
22000
20000
18000

2.1
900

TE
C

TE
C

TE
C

TE
C

×1
00

00

TE
C

TE
C

×1
00

00

TE
C

×1
00

00

TE
C

×1
00

00

1000 1100 1200 1300 1400 1500

5000 2400220020001800160014004500400035003000250020001500

1450 200018001600140012001350125011501050

MAKESPAN

MAKESPAN MAKESPAN

2300 240022002100200019001800

MAKESPAN

2250205018501650

MAKESPAN

MAKESPAN MAKESPAN

2600 29002300200017001400

MAKESPAN

J150C3A3 J150C5A10 J200C3A4 J200C5A7

J250C3A2 J250C5A6 J300C3A5 J300C5A8

MODE/MPC
NSGAII

PDACO
SPEA2

MODE/MPC
NSGAII

PDACO
SPEA2

MODE/MPC
NSGAII

PDACO
SPEA2

MODE/MPC
NSGAII

PDACO
SPEA2

MODE/MPC
NSGAII

PDACO
SPEA2

MODE/MPC
NSGAII

PDACO
SPEA2

MODE/MPC
NSGAII

PDACO
SPEA2

MODE/MPC
NSGAII

PDACO
SPEA2

Figure 10:)e scatter diagram of Pareto frontier solutions obtained by four different algorithms in eight instances.

1.1 1.1

0.9
1

0.8
0.7
0.6
0.5
0.4
0.3
0.2

1.05
1

0.95
0.9

0.85
0.8

0.75
0.7

1

0.9

0.8

0.7

0.6

0.5

0.4
1

j100c3a1 j100c5a6

j300c5a6j300c3a1j250c5a6j250c3a1
j200c5a6

j150c3a1 j200c3a1j150c5a6

2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

H
V

1.1
0.7

0.65
0.6

0.55
0.5

0.45
0.4

0.35
0.3

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

H
V

H
V

H
V

H
V

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

H
V

H
V

0.7 0.3

0.25

0.2

0.15

0.1

0.05

0

0.65
0.6

0.55
0.5

0.45
0.4

0.35
0.3

0.25
0.2

H
V

H
V

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.8

0.7

0.6

0.5

0.4

0.3

0.2

H
V

Figure 9: Box plot of the four comparative algorithms on the first instance of each instance group, where 1 represents algorithm SPEA2, 2
represents NSGAII, 3 represents algorithm PDACO, and 4 represents algorithm MODE/MPC.

14 Scientific Programming

in Figure 9 shows the statistical results of the four algorithms
on the first instance of each instance group. To compare the
solution quality obtained by the four algorithms on medium
and large-scale instances, the distributions of the solutions
on 8 different instances with 150,200,250,300 jobs are shown
in Figure 10, where x-axis and y-axis denote the values of
makespan and TEC, respectively.

Table 7 presents the mean value of four comparative
algorithms in terms of C. According to the mean value of C
on each group, algorithm MODE/MPC outperforms
SPEA2 and NSGAII in all instance groups. Comparing
MODE/MPC with PDACO, the mean value of C (MODE/
MPC, PDACO) is greater in 9 instance groups than C
(PDACO, MODE/MPC), except the small-scale instance
group j100c3a∗ .)erefore, MODE/MPC outperforms
PDACO from the point of C metric. In Table 8, the mean
values of HV gotten by MODE/MPC in all instance groups
are greater than those of the other three algorithms,
denoting that the hypervolume surrounded by the Pareto
frontier solutions obtained by algorithm MODE/MPC is
better than that of the other three algorithms.)erefore,
the Pareto frontier solutions obtained by algorithm
MODE/MPC have better distribution and convergence. In
Figure 9, for each instance, the box ofMODE/MPC is better
than the other three algorithms; this proved that MODE/
MPC outperformed the other three algorithms in terms of
HV. At the same time, the smaller the length of the box, the
better the robustness of the algorithm.)erefore, the ro-
bustness of MODE/MPC is also better than other three
algorithms. In terms of NNS, except for instance group
j100c3a∗ , MODE/MPC got more nondominated solutions
in the other 9 instance groups. From the perspective of
NNS metric, the larger the problem scale, the better the
MODE/MPC performance compared with the other three
algorithms. In Figure 10, it is obvious that the frontier
solutions of MODE/MPC are closer to the Pareto frontier
solution and have better distribution than the other three
algorithms. Based on the above analysis, the MODE/MPC
outperforms the SPEA2, NSGAII, and PDACO in
addressing UPBPMSP.

6. Conclusion

In this paper, an algorithmMODE/MPC is proposed to solve
the scheduling problem of UPBMP tominimize the TEC and
makespan simultaneously. Firstly, more constraints are
considered here, such that the batch processing machine has
different capacity and power, the jobs to be processed have
different arrival time, different processing time, and size, and
some jobs need specific machines and specific processing
power. Secondly, the algorithm consists of two populations,
and each of them has different search centers, so as to realize
division of labor and cooperation and ensure the diversity
and distribution of solutions.)e VNS and the initialization
strategy further improve the performance of the algorithm
MODE/MPC.)e experiment results show that the MODE/
MPC significantly outperformsNSGAII, SPEA2, and PACO.
In the future, the research can be expanded from the fol-
lowing aspects.

Constraints: in addition to the constraints considered in
this paper, there are other constraints that can be considered,
such as different deadlines of jobs, machine malfunction,
and different speeds of machines.

Algorithm: in the real production environment, with the
change of time, the production objectives will also change.
)erefore, the dynamic multiobjective production sched-
uling algorithm will become a research direction.

Data Availability

)e data used to support the findings of this study are
available from the corresponding author upon quest.

Conflicts of Interest

)e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

)is work was supported by Liaoning Educational Com-
mittee Program (LJKZ0489and LJKZ0486); open fund
projects of Artificial Intelligence Key Laboratory of Sichuan
Province (2020RYJ04);

References

[1] F. Zhao, X. He, and L. Wang, “A two-stage cooperative
evolutionary algorithm with problem-specific knowledge for
energy-efficient scheduling of no-wait flow-shop problem,”
IEEE Transactions on Cybernetics, vol. 99, pp. 1–13, 2020.

[2] C. Song, “A hybrid multi-objective teaching-learning based
optimization for scheduling problem of hybrid flow shop with
unrelated parallel machine,” IEEE Access, vol. 99, p. 1, 2021.

[3] F. Zhao, R. Ma, and L. Wang, “A self-learning discrete Jaya
algorithm for multiobjective energy-efficient distributed no-
idle flow-shop scheduling problem in heterogeneous factory
system,” IEEE Transactions on Cybernetics, pp. 1–12, 2021.

[4] F. Zhao, L. Zhao, L. Wang, and H. Song, “An ensemble
discrete differential evolution for the distributed blocking
flowshop scheduling with minimizing makespan criterion,”
Expert Systems with Applications, vol. 160, Article ID 113678,
2020.

[5] W.-L. Liu, Y.-J. Gong, W.-N. Chen, Z. Liu, H. Wang, and
J. Zhang, “Coordinated charging scheduling of electric ve-
hicles: a mixed-variable differential evolution approach,”
IEEE Transactions on Intelligent Transportation Systems,
vol. 21, no. 12, pp. 5094–5109, 2020.

[6] S. Zhou, X. Li, N. Du, Y. Pang, and H. Chen, “A multi-ob-
jective differential evolution algorithm for parallel batch
processing machine scheduling considering electricity con-
sumption cost,” Computers & Operations Research, vol. 96,
no. 8, pp. 55–68, 2018.

[7] C. Zhu-Min, “A heuristic algorithm for hybrid flow shop’s
master scheduling,” Industrial Engineering & Management,
vol. 14, no. 5, pp. 69–78, 2009.

[8] C. Lu, L. Gao, Q. Pan, X. Li, and J. Zheng, “A multi-objective
cellular grey wolf optimizer for hybrid flowshop scheduling
problem considering noise pollution,” Applied Soft Com-
puting, vol. 75, pp. 728–749, 2019.

[9] T. Gu, S. Li, Y. Lin, and X. Wu, “Research on the re-entrant
batch discrete flow shop scheduling for periodic annealing

Scientific Programming 15

furnace as batch processor,” Journal of Mechanical Engi-
neering, vol. 56, no. 2, pp. 220–232, 2020.

[10] H. Yuan and G. Guo, “Vehicle cooperative optimization
scheduling in transportation cyber physical systems,” Acta
Automatica Sinica, vol. 45, no. 1, pp. 143–152, 2019.

[11] L. Tang, H. Gong, J. Liu, and F. Li, “Bicriteria scheduling on a
single batching machine with job transportation and dete-
rioration considerations,” Naval Research Logistics, vol. 61,
no. 4, pp. 269–285, 2014.

[12] Y. Zarook, J. Rezaeian, R. Tavakkoli-Moghaddam, and
I. Mahdavi, “Minimization of makespan for the single batch-
processing machine scheduling problem with considering
aging effect and multi-maintenance activities,” International
Journal of Advanced Manufacturing Technology, vol. 76, no. 9,
pp. 1879–1892, 2015.

[13] H. Zhou, J. Pang, P.-K. Chen, and F.-D. Chou, “A modified
particle swarm optimization algorithm for a batch-processing
machine scheduling problem with arbitrary release times and
non-identical job sizes,” Computers & Industrial Engineering,
vol. 123, no. 9, pp. 67–81, 2018.

[14] Z. Xin, X. Li, and J. Wang, “Local search algorithm with path
relinking for single batch-processing machine scheduling
problem,” Neural Computing & Applications, vol. 28, no. 1,
pp. 313–326, 2017.

[15] İ. Muter, “Exact algorithms to minimize makespan on single
and parallel batch processing machines,” European Journal of
Operational Research, vol. 285, no. 2, pp. 470–483, 2020.

[16] X. Li, Y. Huang, Q. Tan, and H. Chen, “Scheduling unrelated
parallel batch processing machines with non-identical job
sizes,” Computers & Operations Research, vol. 40, no. 12,
pp. 2983–2990, 2013.

[17] F. Chou and H. Wang, “Minimizing total weighted tardiness
on parallel batch-processing machine scheduling problems
with varying machine capacities,” Applied Mechanics and
Materials, vol. 110-116, pp. 3906–3913, 2012.

[18] I. V. Lerner and Y. E. Lozovik, “Mott exciton in a quasi-two-
dimensional semiconductor in a strong magnetic field,”
Journal of Experimental and Aeoretical Physics, vol. 51, no. 3,
pp. 559–574, 1980.

[19] J. Huang and L. Wang, “Makespan minimization on single
batch-processing machine considering preventive mainte-
nance,” in Proceedings of the 2018 5th International Confer-
ence on Industrial Engineering and Applications (ICIEA),
pp. 294–298, Singapore, April 2018.

[20] A. H. Kashan, B. Karimi, and F. Jolai, “Effective hybrid genetic
algorithm for minimizing makespan on a single-batch-pro-
cessing machine with non-identical job sizes,” International
Journal of Production Research, vol. 44, no. 12, pp. 2337–2360,
2006.

[21] X. P. Guo, “A variable neighborhood based memetic algo-
rithm for scheduling single batch processing machine with
non-identical job sizes,” Applied Mechanics and Materials,
vol. 197, pp. 489–495, 2012.

[22] N. Rafiee Parsa, B. Karimi, and S. M. Moattar Husseini,
“Minimizing total flow time on a batch processing machine
using a hybrid max-min ant system,” Computers & Industrial
Engineering, vol. 99, no. 9, pp. 372–381, 2016.

[23] F. Jolai Ghazvini and L. Dupont, “Minimizing mean flow
times criteria on a single batch processing machine with non-
identical jobs sizes,” International Journal of Production
Economics, vol. 55, no. 3, pp. 273–280, 1998.

[24] Z.-h. Jia, H. Zhang, W.-t. Long, J. Y.-T. Leung, K. Li, and
W. Li, “A meta-heuristic for minimizing total weighted flow

time on parallel batch machines,” Computers & Industrial
Engineering, vol. 125, pp. 298–308, 2018.

[25] Z.-h. Jia, X.-x. Zhuo, J. Y.-T. Leung, and K. Li, “Integrated
production and transportation on parallel batch machines to
minimize total weighted delivery time,” Computers & Oper-
ations Research, vol. 102, pp. 39–51, 2019.

[26] Z. Jia, J. Yan, J. Y. T. Leung, K. Li, and H. Chen, “Ant colony
optimization algorithm for scheduling jobs with fuzzy pro-
cessing time on parallel batch machines with different ca-
pacities,” Applied Soft Computing, vol. 75, pp. 548–561, 2019.

[27] S. Zhou, M. Jin, and N. Du, “Energy-efficient scheduling of a
single batch processing machine with dynamic job arrival
times,” Energy, vol. 209, 2020.

[28] R. Zhang, P.-C. Chang, S. Song, and C. Wu, “A multi-ob-
jective artificial bee colony algorithm for parallel batch-
processing machine scheduling in fabric dyeing processes,”
Knowledge-Based Systems, vol. 116, no. 15, pp. 114–129, 2017.

[29] O. Shahvari and R. Logendran, “An Enhanced tabu search
algorithm to minimize a bi-criteria objective in batching and
scheduling problems on unrelated-parallel machines with
desired lower bounds on batch sizes,” Computers & Opera-
tions Research, vol. 77, pp. 154–176, 2017.

[30] S.-y. Qian, Z.-h. Jia, and K. Li, “Amulti-objective evolutionary
algorithm based on adaptive clustering for energy-aware
batch scheduling problem,” Future Generation Computer
Systems, vol. 113, pp. 441–453, 2020.

[31] R. Storn and K. Price, “Differential evolution–a simple and
efficient heuristic for global optimization over continuous
spaces,” Journal of Global Optimization, vol. 11, no. 4,
pp. 341–359, 1997.

[32] Z. Shengchao, X. Lining, Z. Xu, N. Du, L. Wang, and
Q. Zhang, “A self-adaptive differential evolution algorithm for
scheduling a single batch-processing machine with arbitrary
job sizes and release times,” IEEE Transactions on Cybernetics,
vol. 51, no. 3, pp. 1430–1442, 2021.

[33] J. Liang, P. Wang, L. Guo, and B. Qu, “Multi-objective flow
shop scheduling with limited buffers using hybrid self-
adaptive differential evolution,” Memetic Computing, vol. 11,
no. 6, 2019.

[34] W. Zhang, Y. Wang, Y. Yang, and M. Gen, “Hybrid multi-
objective evolutionary algorithm based on differential evo-
lution for flow shop scheduling problems,” Computers &
Industrial Engineering, vol. 130, pp. 661–670, 2019.

[35] J. E. C. Arroyo and J. Y.-T. Leung, “Scheduling unrelated
parallel batch processing machines with non-identical job
sizes and unequal ready times,” Computers & Operations
Research, vol. 78, pp. 117–128, 2017.

[36] E. Zitzler, M. Laumanns, and L.)iele, “SPEA2: improving
the strength pareto evolutionary algorithm,” Technical Report
Gloriastrasse, pp. 1–21, 2001.

[37] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm: NSGA-II,” IEEE
Transactions on Evolutionary Computation, vol. 6, no. 2,
pp. 182–197, 2002.

[38] Z. H. Jia, Y. Wang, and Y. W. Zhang, “A bi-objective synergy
optimization algorithm of ant colony for scheduling on non-
identical parallel batch machines,” Acta Automatica Sinica,
vol. 46, no. 6, pp. 1121–1135, 2020.

16 Scientific Programming

