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In view of the problems of low measurement accuracy and repeated calibration during the use of coal mine water quality analysis,
the hyperspectral reflection noncontact measurement technology was proposed to solve the existing problems. KCI, NaCl, pH,
NaHCOs3, and CaCl,were used to indicate the characteristic ion information of Na*, K*, Ca**, CI", HCO5 ™, and pH mine water in
the laboratory, and 2220 spectral data were obtained by spectral determination. Savitzky-Golay convolution smoothing was used
to smooth and denoise the original spectral data of each ion, and the relationship between the spectrum and the concentration of
each reagent was obvious after smoothing and denoising pretreatment. The principal component regression method was used to
build the inversion model of each ion content, and through the modeling study, the prediction set of KCl was found: the coefficient
R"2 reaches 0.907, RPD is up to 2.7; the prediction set of NaCl was found: the coefficient R"2 reaches 0.957, RPD is up to 3.1; the
PH prediction set was found: the coefficient R*2 reaches 0.785, RPD is up to 2.1; the prediction set of NaHCO3 was found: the
coefficient R"2 reaches 0.137, RPD is up to 1.2; the prediction set of CaCl2 was found: the coefficient R"2 reaches 0.622, and RPD is
up to 1.7. The results show that the hyperspectral method can play a better role in the extraction of K*, Cl,Na', Ca*", and pH. Itis

difficult to extract HCO5  ions.

1. Introduction

Water hazard is one of the main threats to the safety of coal
mine production, which causes serious loss of life and
property. The prevention and control of water disaster in
coal mines take water filling channel, water filling source,
and water filling intensity as the main objects and take
exploration, prevention, blocking, dredging, drainage, in-
terception, and monitoring as the main means. Water
samples are collected after water inrush or water gushing
occurs in a mine, and the source of the water inrush or water
gushing is judged by using the chemical composition of the
water. It is a method widely used by technicians of geological
survey and water control engineering in coal mines.

In foreign countries, the rock mass structure of coal seam
floor and the prevention and drainage technology have been
studied in depth, and a lot of experience has been accu-
mulated in the mechanism of water inrush and the iden-
tification of water hazards. In the book Hydrogeochemistry

written by Clevers et al., the application of groundwater
pollution and chemical evaluation in hydrochemical analysis
is systematically discussed from the perspective of hydro-
geochemistry [1-4]. Clevers et al. obtained it by using the 3D
edge detection seismic attribute method [1-4]. Clevers et al.
used hydrological observation and a tracer test to test the
effect of the tunnel drainage system [1-4]. However, there is
little research work on the application of mine water
chemistry and the identification of mine water inrush
sources.

The main method of discriminating the source of water
inrush in coal mines in China is the conventional hydro-
chemical discrimination method. By measuring the eight
most widely distributed ions in groundwater, such as Ca**,
Mg**, K*, Na*, CO3*", HCO5", SO4*", and CI. Its con-
centration accounts for more than 90% of the total ion
concentration in groundwater, as well as the characteristic
ion ratio, hardness, temperature, TDS index, and pH value
[5-10]. The mine water chemical data of Taoyuan Coal Mine
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was processed by using Piper’s three-line diagram [5-7]. The
hydrochemical characteristics of each aquifer in the Xuzhou
mining area were introduced [8, 9]. Conventional hydro-
chemical methods were used to carry out hydrogeochemical
analysis of underground aquifers in a mine in Xuzhou
[10-12]. The conventional hydrochemistry of four water-
bearing subsystems in Yaoqiao Mine, Xuzhou, was studied
[13-16]. A systematic study on the hydrochemical charac-
teristics of groundwater in the Ordovician karst aquifer in
the middle part of the Taihang Mountains was made [17-20].
The Chongqing Research Institute of China Coal Science
and Technology Group, Beijing Huaan Auto, and Wuhan
Dida Huarui have carried out relevant research on water
quality analysis technology and equipment and have applied
it in various coal mine groups [21-29].

However, there are still some problems in the current
underground ion electrode monitoring, such as inaccurate
measurement and repeated calibration during use, which
cannot meet the needs of online identification of water
sources. It is urgent to develop a new type of online water
quality analysis sensors.

2. Hyperspectral Experimental
Determination of Common Ions in
Mine Water

The purpose of the experimental test is to find the hyper-
spectral characteristic band of the liquid related to the coal
mine. The experimental spectral acquisition equipment is a
self-made spectral probe, and the experimental measure-
ment process is composed of three parts of spectrometer
calibration, standard solution production, spectral mea-
surement, and accuracy evaluation [30].

Five reagents, NaCl, KCl, CaCl,, NaHCOj3, and pH
buffer, were measured to indicate Na*, K*, Ca**, CI,
HCO;", and pH ion information, wherein the potassium
ion and the chloride ion are indicated by KCI standard
solution for a set of data (see Table 1 for details) [31-33].
Before measurement, the mother liquor is diluted with
deionized water, and according to the test requirements,
the sodium ion, potassium ion, chloride ion, and calcium
ion dilution levels are 10, 50, 100, 500, 1000, and 10000 mg/
L, the carbonate dilution levels are 0.44, 2.2, 4.4, 22, 44, and
440 mg/L, and the pH dilution levels are 4, 6.86, and 9.18.
According to the order of KCI, NaCl, pH, NaHCO3;, CaCl,,
pure water, empty barrel, and green plants, 8 kinds of
targets were measured, totaling 2220 hyperspectral data.
Figure 1 shows the number of spectra of various standard
solutions.

3. Ion Hyperspectral Data Preprocessing and
Sensitive Band Selection

We carry out spectral quality evaluation on all obtained
spectral data and select qualified spectral data [34-37]. At
the same time, due to the influence of the external envi-
ronment, there are many “burr” noises on the spectral curve,
so it is necessary to reduce the noise on the spectral curve
after smoothing and filtering. In this study, Savitzky-Golay
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convolution smoothing was used to smooth and denoise the
original spectral data of each ion. The value of the spectrum
after Savitzky-Golay smoothing at wavelength I is

"X
xi,Savitzky—Golay = M (1)
N

In the formula, X;g,yitky—Golay 1S the smoothed value at
the wavelength I, x is the value before smoothing, m is the
number of smoothing windows on the wavelength side, N is
the normalization index, and "' c; is the smoothing
coefficient, which can be obtained by polynomial fitting.

After smooth denoising pretreatment, the relationship
between the spectrum and the concentration of each reagent
is evident. Compared with the spectral data of “pure
water + gradient” concentration, KCI, NaCl, pH, NaHCO;,
and CaCl, have obvious sensitive bands and rules. The
higher the concentration of KCl, NaCl, and CaCl,, the lower
the overall reflectivity, which should be the mechanism
under the action of CI". The pH data show that the
reflectivity of pure water and acidic liquid is in the middle.
The reflectivity of neutral liquid is low and that of alkaline
liquid is the highest. As a whole, the higher the concen-
tration of NaHCOs, the higher the reflectivity. Figure 2
shows the comparison of the KCI, NaCl, and pH spectral
data before and after denoising, while Figure 3 shows the
comparison of the spectral data of NaHCO3, CaCl,, and pure
water before and after denoising.

4. Establishment of the Quantitative Inversion
Prediction Model for Ion Hyperspectral Data

The mine water is a complex system composed of various
chemical ions in the water. In this study, the principal
component regression (PCR) method is used to establish the
quantitative inversion model, which is based on principal
component analysis (PCA) [38-46]. PCA is a multiple
collinearity regression analysis method. The principle is that
after the multicollinearity in the regression model is elim-
inated by the principal component analysis method, the
principal component variables are used as independent
variables for regression analysis, and then, the original
variables are substituted back into the new model according
to the score coefficient matrix.
The basic steps of PCA are as follows:

(1) The aim is to acquire a principal component of
independent variable data through principal com-
ponent analysis and select a principal component
subset through standardized classification.

(2) The principal component obtained in step (1) is used
as a new independent variable, and an estimated
regression coefficient vector is obtained through
linear regression analysis (the dimension is equal to
the number of the selected principal components).

(3) We transform the regression coefficient vector into
the proportion of the actual independent variables
and use the selected PCA load (corresponding to the
eigenvector of the selected principal component) to
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TaBLE 1: Standard solutions of five ions.
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FiGure 1: The number of spectra of various standard solutions.

obtain the final PCR estimator (dimension equal to
the total number of independent variables) for es-
timating the regression coeflicients.

For model evaluation, cross-validation was used to
evaluate the model, and determination coefficients (R*> and
root mean of squared error (RMSE) were selected. The RMSE
and relative percent deviation (RPD) were used as evaluation
indexes. When the R* value of the calculated validation set is
closer to 1, the RMSE value is lower, and when the RPD value

is closer to 2, the model is more stable, the accuracy is higher,
and the model is better. When R is less than 0.50 and RPD is
less than 1.40, the estimation ability of the model to the
sample is poor, and the model is not available; 0.50 < R* < 0.75
and 1.40 < RPD < 2.00, the estimation ability of the model to
the sample is improved, but only rough estimation can be
made, and the model is available. When R*>0.75 and
RPD >2.00, the model accuracy is high, the model is good,
and the calculation formula is
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FIGURE 2: Comparison of the KCI, NaCl, and pH spectral data before and after denoising.
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F1GURrE 3: Comparison of the spectral data of NaHCO3;, CaCl,, and pure water before and after denoising.
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Figure 4: KCl principal component results.
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Figure 5: Comparison between the KCl actual measurement set and prediction sets.
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FIGURE 6: The role of sample points in the calculation of KCI content.

Y ()’i - )’A)z ) RPD = SD

R=1- % RMSE’
Y (- )

(4)

In the formula, y; represents the measured value of the

RMSE

values of the validation set samples.

sample I, y? represents the predicted value of the sample I,
(3) Y represents the mean of all samples, # is the number of
samples, and SD is the standard deviation of the measured
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Ficure 7: NaCl principal component results.
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FiGure 8: Comparison between measured and predicted NaCl sets.

4.1. KCI Content Spectral Prediction Modeling. 382 standard
solution spectral data were selected, the largest 7 principal
components were selected, and the weights were set equally
[47-51]. CV prediction detection, cross-validation, and the
principal component analysis model were established when
the proportion of the validation set and modeling set was
0.70. The first three principal components can represent
more than 80% of the content information. In the modeling
set, the coeflicient reaches R2 which reaches 0.908, and in the
prediction set, the coeflicient reaches R2 which reaches
0.907, and RPD is up to 2.7. In the process of computational
modeling, the importance of all sample points and the
samples collected in the middle section play a greater role.
Figure 4 shows the KCI principal component results, Fig-
ure 5 shows the comparison between the KCl actual mea-
surement set and prediction sets, and Figure 6 shows the role
of sample points in the calculation of KCI content.

4.2. NaCl Content Spectral Prediction Modeling. Three
hundred and ninety-nine standard solution spectral data were
selected, the largest seven principal components were selected,
and the weights were set equally [47-51]. CV prediction
detection, cross-validation, and the principal component
analysis model were established when the proportion of the
validation set and the modeling set was 0.70. The first three
principal components can represent more than 90% of the
content information. In the modeling set, the coeflicient
reaches R2 which reaches 0.958, and in the prediction set, the
coefficient reaches R2 which reaches 0.957, and RPD is up to
3.1. In the process of computational modeling, the importance
of all sample points and the samples collected in the middle
section play a greater role. Figure 7 shows the NaCl principal
component results, Figure 8 shows the comparison between
measured and predicted NaCl sets, and Figure 9 shows the
role of sample points in the calculation of NaCl content.
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FIGURE 9: The role of sample points in the calculation of NaCl content.
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Figure 10: pH principal component results.

4.3. pH Content Spectral Prediction Modeling. 240 spectral
data of standard solution were selected, the largest 7
principal components were selected, and the weights were
set equally [47-51]. CV prediction detection, cross-vali-
dation, and the principal component analysis model were
established when the proportion of the validation set and
the modeling set was 0.70. The first three principal com-
ponents can represent more than 85% of the content in-
formation. In the modeling set, the coefficient reaches R2
which reaches 0.791, and in the prediction set, the coeffi-
cient reaches R2 which reaches 0.785, and RPD is up to 2.1.
In the process of calculation and modeling, the importance
of all sample points and the samples collected in the

previous section play a greater role. Figure 10 shows the pH
principal component results, Figure 11 shows the com-
parison between measured and predicted pH sets, and
Figure 12 shows the role of sample points in the calculation
of pH content.

4.4. NaHCOj; Content Spectral Prediction Modeling. 404
standard solution spectral data were selected, the largest 7
principal components were selected, and the weights were
set equally [47-51]. CV prediction detection, cross-vali-
dation, and the principal component analysis model were
established when the proportion of the validation set and
the modeling set was 0.70. The first three principal
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Figure 11: Comparison between measured and predicted pH sets.
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FiGUure 12: The role of sample points in the calculation of pH content.

components can represent more than 75% of the content
information. In the modeling set, the coefficient reaches
R2 which reaches 0.162, and in the prediction set, the
coeflicient reaches R2 which reaches 0.137, and RPD is up
to 1.2. In the process of computational modeling, the
importance of all sample points and the samples collected
in the middle and back end play a greater role. Figure 13
shows the NaHCO; principal component results, Fig-
ure 14 shows the comparison between measured and
predicted NaHCOj sets, and Figure 15 shows the role of
sample points in the calculation of NaHCOj; content.

4.5. CaCl, Content Spectrum Prediction Modeling. Four
hundred and seventeen standard solution spectral data were
selected, the largest seven principal components were se-
lected, and the weights were set equally [47-51]. CV pre-
diction detection, cross-validation, and the principal
component analysis model were established when the
proportion of the validation set and the modeling set was
0.70. The first three principal components can represent
more than 55% of the content information. In the modeling
set, the coeflicient reaches R2 which reaches 0.630, and in the
prediction set, the coeflicient reaches R2 which reaches



Scientific Programming

X-Variance
S
w

PC-0 PC-1 PC-2 PC-3 PC-4 PC-5 PC-6
PCs

Ficure 13: NaHCOj; principal component results.
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FIGURE 14: Comparison between measured and predicted NaHCOj sets.
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FIGURE 15: The role of sample points in the calculation of NaHCO; content.
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FiGgure 16: CaCl, principal component results.
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0.622, and RPD is up to 1.7. In the process of computational
modeling, the importance of all sample points and the
samples collected in the middle section play a greater role.
Figure 16 shows the CaCl, principal component results,
Figure 17 shows the comparison between measured and
predicted sets of CaCl,, Figure 18 shows the role of sample
points in the calculation of CaCl, content, and Figure 19
shows the comparison of extraction accuracy of various ions.

5. Conclusion

Through the spectrum analysis of the characteristic ions of
the mine water, the principal component regression method
is used to carry out the quantitative inversion modeling of
various ions, and the five standard solutions of KCI, NaCl,
pH, NaHCO3, and CaCl, indicate six ions (KCI includes K
ions and Cl ions). The extraction precision of KCl and NaCl
is higher than 0.9, followed by pH and CaCl,, the precision is
more than 0.6. The extraction precision of HCOj; is the
lowest, only 0.162. The results show that the hyperspectral
method can play a better role in the extraction of K*, CI,
Na*, Ca**, and pH. It is difficult to extract HCO; ions.
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