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It is a very interesting and practical task to transform real-world images such as portraits or scenery into creative animation
images. Since this concept was put forward, it has aroused extensive research interest in the �eld of computer vision. �e
generative adversarial networks (GAN) model is widely used in this �eld. Depth convolution GAN (DCGAN) and Wasserstein
GAN (WGAN) improve the original GAN, but there are still problems existing in creative animation generation such as model
collapse. To solve these problems, the Wasserstein distance is introduced to replace the JS divergence in the GAN model to
measure the gap between the sample distribution generated by the generator and the real distribution, and the loss function is
improved. In order to achieve a better animation generation e�ect, the training of the model is further optimized through the
adjustment of the network model structure and the setting of parameters. �rough the comparison with DCGAN and WGAN
models in the animation data set and CelebA data set and the quantitative analysis and comparison of the generation e�ects of
di�erent models, the e�ectiveness and generalization of the improved GAN model are veri�ed.

1. Introduction

It is a very interesting task for computers to be used to
generate creative animation images with artistic style. �is
task is mainly studied through image style transfer. Image
style transfer focus uses a computer to stylize the content in
an image, presenting a speci�c artistic style while the original
content can be recognized [1, 2]. �is is a new research
direction in computer vision in recent years. Style transfer
technology allows computers to create art “autonomously.”
�erefore, the concept has attracted people’s attention since
it was put forward.

Convolutional neural networks (CNN) and generative
adversarial networks (GAN) learning models are basically
adopted in the study of image style transfer [3, 4]. �ese
models can add an art style to the target image, which has
artistic properties. In image style transfer, �rstly, CNN or
GAN is used to learn style patterns from the speci�ed style

images.�en, they are converted into oil paintings, cartoons,
Chinese landscape paintings, and other di�erent artistic
images, or the transformation of seasons and textures on the
image is realized after it is applied to the target image.

GAN model is unstable and di�cult to optimize in
training. Many style migration e�orts improve it from a
loss function perspective. In these improved models,
DualGAN [5] and CycleGAN [6] can complete the image
style transfer work well. However, these GAN models can
only migrate either style or content during style migration.
In this paper, by improving the generator structure, the
model achieves a better balance in the simultaneous
transfer of style and content. �e improved model is ap-
plied to the style transformation from natural images to
animation illustrations. �e experimental results show that
the model can retain the content of the original natural
scene and have a very excellent animation illustration style
e�ect.
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2. Related Works

As the most widely used generation model in the field of
deep learning, GAN is also one of the models with the best
visual effect on image generation. It is a new network model
proposed by Ian Goodfellow of OpenAI in 2014 [4]. *e
model has attracted the attention of many scholars. *e
image quality generated by generating a countermeasure
network model is higher than that of traditional generation
models, such as variational self-encoder, and the training of
the model is faster than that of the autoregressive model.
However, the original GAN model also has some disad-
vantages, such as poor training stability and mode collapse.
With the continuous research of scholars, various improved
models have emerged one after another, and the perfor-
mance of the generated countermeasure network has been
greatly improved.

In view of the phenomenon that the training speed of the
model is slow, the gradient is not updated in time, and even
the model collapses when using the original GAN model.
Mao et al. proposed the least squares GAN (LSGAN) [7], and
the gradient of the model will be reduced to 0 when the data
distribution is completely consistent with the real sample.
*e problem of gradient disappearance in model training
caused by using Sigmoid and other functions as activation
functions is avoided.

However, the real problem of GAN is how to better
measure the gap between generated sample distribution and
real sample distribution so that the generator can learn
better. *is problem did not make a major breakthrough
until Wasserstein GAN (WGAN) was put forward.

WGAN was proposed by Arjovsky et al. [8]. *e model
uses Wasserstein distance instead of JS distance in tradi-
tional GAN as the standard to measure the difference be-
tween distributions. *e common problem of JS divergence
is that it is unable to measure the distance between two non-
coincident distributions, and the gradient often disappears
in the process of model training. UsingWasserstein distance
can better measure the gap between the generated sample
distribution and the real sample distribution, effectively
alleviate the problems of mode collapse and training in-
stability in network model training, and achieve good ex-
perimental results without a complex network model
structure.

Ishaan Gulrajani et al. proposed WGAN’s improved
model WGAN-GP on the basis of WGAN [9]. In the model,
the gradient penalty method is used to replace the weight
clipping in WGAN to achieve the approximate 1-Lipschitz
restriction effect on the discriminator network, and the
normalization operation is cancelled in the discriminator
network. David Berthelot et al. proposed the boundary
equilibrium GAN (BEGAN) model and designed a new way
to evaluate the generation quality of generators [10]. By
estimating the difference between the distribution of dis-
tribution errors instead of the traditional generation, they
can directly estimate the generation distribution and the real
step-by-step errors in the antinetwork model.*emodel can
also be trained stably under the standard GAN structure, and
the model can converge quickly. At the same time, a super

parameter is added to adjust the quality and diversity of the
image generated by the generator.

*e improvement methods mentioned above are to
improve the original generated countermeasure network
model from the loss function of the model. In terms of the
structural improvement of the generated countermeasure
network, the earliest is the deep convolution GAN
(DCGAN) [11] proposed by Alec Radford et al. *e model
combines the powerful convolution neural network with the
generator and discriminator that generates the counter-
measure network, replaces the pool layer in the original
generated countermeasure network with the convolution
layer with step size, and uses the batch normalization op-
eration [12] in the generator network and discriminator
network to cancel the full connection layer in the network so
that the generator can better learn the characteristic in-
formation of the image. *e generated image has higher
quality. Zhang et al. proposed self-attention GAN (SAGAN)
[13] and added a self-control module to the model structure
of the generation countermeasure network. *e self-atten-
tionmodule can well deal with the long-range andmultilayer
dependence of image information. When generating the
image, it can coordinate the details of each position and the
details of the far end. At the same time, spectral regulari-
zation is added to the discriminator, which has achieved
good results in the field of image generation. Andrew et al.
proposed the BigGAN [14] model, which has achieved a
major breakthrough in the field of image generation. *e
model not only increases the batch size but also increases the
number of filters in each layer of the network. *rough the
shared embedding between network levels, the random
noise and input conditions are spliced and input to each
batch normalization layer of the generator network model,
which greatly improves the quality of the generated image.

In order to apply the GAN model to a wider range of
fields, Mirza and Osindero proposed conditional GAN
(CGAN) [15]. By adding additional label information
conditions to the generation network and discrimination
network to guide the data generation process, the network
can generate specific image samples according to the ad-
ditional condition information. Phillip et al. proposed the
pix2pix model [16] on the basis of CGAN and applied GAN
to the field of image style migration.*e model adds a U-net
structure [17] to the generator network and an L1 regula-
rization term to the loss function to realize the image
translation task. In the image style conversion, the most
popular is the cycle neural network GAN (cycle GAN) [18]
proposed by Zhu et al. It realizes the conversion between
images of two different styles (such as the conversion from
horse to zebra) and the conversion between different
painting styles. Different from the pix2pix model, the cycle
GAN model can be trained in non-paired data set, while the
training data and data of the pix2pix model must be paired.
Yunjey et al. proposed the star GAN [19] model to realize the
conversion between multiple different style fields through
fewer generators. Star GAN realizes the image cross style
conversion under different data sets with less training cost by
adding one hot condition feature and mask vector to the
model.
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In the field of more widely used image restoration and
image super-resolution reconstruction, there is the Deblur
GAN [20] model proposed by Orest Kupyn et al. Based on
conditional GAN structure and content loss, it realizes
image deblurring through end-to-end learning.

In the practical application of image super-resolution
reconstruction, the more popular is the SRGAN model [21]
proposed by Christian et al. *e generation network model
of SRGAN adopts the deep-seated residual network as the
network structure and adds the perception loss based on the
VGG network [50] to the loss function so that GAN has
more real details in generating super-resolution images and
faster training speed.

3. Principles of GAN

GAN is also a generative model. But it does not have to
explicitly express the probability distribution of the sample.
It is the idea of adversarial learning. *e intrinsic distri-
bution of data is implicitly learned through a zero-sum game
between generator and discriminator [22–25]. When the
generator and discriminator reach a Nash equilibrium state,
the data generated by the generator can have the same in-
herent properties as the real data. *is allows using gen-
erators to get real data [25].

*e GAN model consists of two basic modules: gener-
ator G and discriminator D. Generator G and discriminator
D can be any learning model with generative and dis-
criminant capabilities. Compared with the traditional
shallow machine learning model, the deep model has richer
parameters and stronger learning ability. In particular, CNN
has unique advantages in processing image data. *erefore,
CNN is generally used as a discriminator in the GANmodel.
CNN with transpose convolution structure is used as a
generator.

When using the GAN model to generate image data,
random noise vector Z needs to be input for generator
G. *e output result G(z) is obtained by transposing con-
volution – upsampling – non-linear activation – batch
normalization. G(z) has the same structure and size as real
training data. *ey will be fed into discriminator D along
with real training data X. *eir labels are usually separated
by zeros and ones. If the input sample is G(z), then dis-
criminator D should determine its category label as 0. If the
input is true sample X, the category label of it is judged to be
1. In the training process, discriminator D needs to maxi-
mize the accuracy of label prediction for X and G(z).
Generator G, meanwhile, tries to make the generated G(z)
indistinguishable from the x from the real training set. *us,
generator G and discriminator D will constantly play against
each other throughout the training process. *e generative
and discriminant abilities of both will be improved con-
tinuously. *e output of the final generator will have the
same appearance as the real data. Judge D will not be able to
distinguish the true source of the data. *e classification
probability of both the real sample and the “false” data
generated by G will approach 1/2. At this point, you can
assume that generator G has learned the inherent distri-
bution of real data. *e “fake” data it generates already has

the same properties as the real data. *is enables data
distribution without explicitly expressing it. *e goal of the
intrinsic distribution of training data is obtained through
adversarial learning.

*e learning objectives of the GAN model can use the
following form of expression:

min
G

max
D

LGAN(D, G) � Ex∼pdata
[log D(x)]

+ Ez∼pz
[log(1 − D(G(z)))],

(1)

where pdata is the probability distribution obeyed by real
training sample x. pz(z) is the probability distribution that
noise z obeys. Ex∼pdata

[·] and Ez∼pz
[·] are the mathematical

expectation of x and z classification probability output by
discriminator D, respectively.

4. Animation Style Migration Model

A deep convolution generated countermeasure network
(DCGAN) is an improved model of generating counter-
measure network GAN. Its principle is consistent with that
of GAN. *e biggest improvement is the perfect combi-
nation of convolution neural network, which is most widely
used in image processing, and generated countermeasure
network. Deep convolution generated countermeasure
network uses convolution neural network structure for both
generator and discriminator in the model, At the same time,
some changes are made to the structure of the added
convolutional neural network to improve the performance
of the network model.

4.1. Improvement of Loss Function. Since GANwas proposed
in 2014, although it has been widely used in the field of
machine vision and achieved good results, the initial GAN
model often has problems such as training difficulties,
unbalanced training between generator and discriminator,
and insufficient diversity of samples generated by the gen-
erator. In the original GAN model, KL (Kullback–Leibler
divergence) is used to measure the gap between the sample
distribution generated by the generator and the real dis-
tribution. *e loss function used in the standard generation
countermeasure network model is shown in formula (1).

From formula (1), it can be calculated that when the
parameters of generator g are fixed, it is the optimal dis-
criminator D. *e calculation process is as follows:

min
G

max
D

V(D, G) � Ex∼pr(x)[log D(x)]

+ Ex∼pg(x)[log(1 − D(x))],
(2)

where Ex∼pr(x)[log D(x)] represents the probability distri-
bution that sample x belongs to real data and
Ex∼pg(x)[log(1 − D(x))] represents the probability distri-
bution that sample x belongs to the sample data generated by
the generator.

*en the contribution of x to the loss function is

contribution(x) � prlog D(x) + pglog(1 − D(x)). (3)
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By taking the derivative of formula (3) to D(x) and
making its derivative value 0, it can be obtained that

pr

log D(x)
+

pg

log(1 − D(x))
� 0. (4)

By simplification, the best discriminator can be obtained
as follows:

D(x) �
pr

pr + pg

. (5)

*e above results show that the task of the discriminator
is to judge the possibility that the input sample x comes from
real data and generated data. When pr(x)� 0 and pg(x)≠0,
the discriminator can easily determine the source of x. When
pr(x)� pg(x), it indicates that the probability that the sample
belongs to the real sample is equal to that of the generated
sample. At this time, the output of the optimal discriminator
is 0.5, which means that the generator and the discriminator
have reached Nash equilibrium.*e sample generated by the
generator is enough to confuse the true with the false so that
the discriminator cannot make a correct judgment on the
input sample. If the obtained optimal discriminator is
replaced back into the loss formula of the original GAN, the
following can be obtained:

Ex∼pr(x) log
pr

pr + pg

􏼢 􏼣 + Ex∼pg(x) log 1 − log
pr

pr + pg

􏼠 􏼡􏼢 􏼣

� 􏽚
x∈X

prlog
pr

pr + pg

dx + 􏽚
x∈X

pglog
pr

pr + pg

dx

� 􏽚
x∈X

prlog
2pr

pr + pg

dx + 􏽚
x∈X

pglog
2pr

pr + pg

dx − 2 log 2

� KL pr‖
pr + pg

2
􏼒 􏼓 + KL pg‖

pr + pg

2
􏼒 􏼓 − 2 log 2

� 2JS pr‖ pg􏼐 􏼑 − 2 log 2.

(6)

It can be seen from the above results that the form of the
optimal discriminator can be obtained according to the loss
function in the original generated countermeasure network.
When the discriminator is in the optimal state, the generator
loss defined by the original generation countermeasure
network can be equivalent to minimizing the Jensen–
Shannon (JS) divergence between the real sample data
distribution and the generated data sample distribution.

However, there is often a problem when optimizing JS
divergence. Nomatter whether the two data distributions are
very close or far apart, as long as there is no overlap between
the two data distributions or the overlap can be ignored, JS
divergence will not be updated and will always be the fixed
value log2. *is also means that the gradient vanishing
problem will occur when using the loss function of the
original GAN for training.

In the process of generating countermeasure network
training, especially at the beginning of training, the input of
the generator is random noise, so there is no intersection

between the large probability of the sample distribution
generated by the generator and the real sample distribution.
As a result, the JS divergence is fixed at the constant log2, and
the gradient is 0, so the gradient descent method cannot be
used to train the network parameters. At this time, for the
generator network, there will be no gradient information fed
back from the discriminator network, which leads to the
disappearance of the gradient in the network training.
*erefore, the training instability and model collapse often
occur in the original generated countermeasure network. On
the one hand, when the discriminator network is trained too
well, the gradient fed back to the generator network will
disappear, and the generator network cannot be updated and
optimized. On the other hand, when the discriminator
network is not trained well, the correct gradient cannot be
fed back to the generator network to guide the generator
network to optimize better.

*erefore, we use the loss function of the WGAN model
to replace the loss function of the original generated
countermeasure network and use Wasserstein distance in-
stead of JS divergence to measure the distance between two
data distributions, which effectively reduces the instability of
model training. Wasserstein distance is also called earth-
mover (EM) distance, which is defined as follows:

W pr, pg􏼐 􏼑 � inf
c∼􏽑 pr,pg( 􏼁

E(x,y)[‖x − y‖].
(7)

*e advantage of Wasserstein distance over KL diver-
gence and JS divergence in the original generated coun-
termeasure network is that it can reflect the distance between
the two data distributions without overlapping.

In order to addWasserstein distance to the loss function,
a constrained discriminator is proposed, that is, it satisfies 1-
Lipschitz continuity, and the Lipschitz continuity condition
limits the maximum local variation amplitude of a con-
tinuous function. In order to meet the constraints, the
weight updated during backpropagation is forcibly trimmed
to the specified range by weight clipping, and then the
V(G,D) is maximized to realize the training of the model.

*e proposed loss function is

V(G, D) � max
D∈1 Lipschits

Ex∼Pdata
[D(x)] − Ex∼PG

[D(x)]. (8)

*e larger the value of the proposed loss function, the
closer the generated data distribution is to the real data
distribution, and the better the network training.

4.2. Structure of the Migration Model for Creative Animation
Generation. Similar to the general GAN model, the ani-
mation illustration style transfer model proposed in this
paper is also composed of generators and discriminators.
*e internal distribution of data can be obtained by leaning
against each other. In order to better retain the original
content of images and achieve the transfer of artistic styles in
animation illustration style transfer, we design the generator
structure of the deep learning-driven migration model for
creative animation generation as shown in Figure 1. Taking
ResNet-18 as the basic model, the generator structure
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divides image generation into two parts, including down-
sampling and upsampling.

*e downsampling part of the image is composed of a
basic convolution module and four residual layers (reslayer-
1–reslayer-4). However, the basic convolution module
consists of four layers: Conv – Instance Norm (IN) – ReLU
– MaxPooling. *e convolution kernel used is 7× 7. *is
makes the convolution operation have a relatively large
receptive field. In the four residual layers, each residual layer
contains two residual blocks. *eir internal structure is
Conv-IN-ReLU-Conv-IN. *e output of the latter IN layer
will concatenate with the input of the entire residual layer.
And then it goes through another convolution layer. *e
entire residual block has the same short-circuit connection
structure as BottelNeck in ResNet. *is allows the input of
the entire residual layer to be reused. It can effectively
improve the gradient propagation performance of network
optimization. In the downsampling part, each convolution
layer uses a 3× 3 convolution kernel. After each residual
layer, 1/2 horizontal and vertical downsampling is done.

After the basic convolution module and four residual
layers, the size of the feature map will be 1/16 of the original
image. It will then be upsampled. First, the feature graph
output by reslayer-4 is convolved. It is then upsampled to
restore the feature image to 1/8 of the original image. As
shown in Figure 1, add it to the output of reslayer-3 for

upsampling. *is operation is then repeated until the output
of reslayer-1 is added. Such a short circuit connection makes
the details of the feature map of the previous processing
better preserved. *is avoids damage to the content of the
image when migrating styles later. After a short circuit
connection and addition, the feature graph passes through
two convolution layers. It will be transformed back into a
three-channel image again. In the convolution operation of
the upsampling part, the convolution kernel of the first two
convolution layers is 1× 1. *e convolution kernel at the last
layer is set to 7× 7. Tanh activation function is used before
conversion to a three-channel image.

PatchGAN discriminator structure of 70× 70 was used
in the discriminator in this paper. Compared with the
general convolutional neural network structure, the
PatchGAN discriminator has fewer parameters and can
receive images of arbitrary size. *e PatchGAN discrimi-
nator contains three convolution blocks. Each block con-
tains two convolution layers. In terms of the number of
channels in the convolution kernel, this paper sets the output
channel of the first convolution layer as 64. *e number of
channels is doubled in each subsequent block.

In the loss function design of the model, this paper
adopts the same cyclic consistency loss as that in CycleGAN.
For image transformationG and F, CycleLoss means that the
result of source image transformation after x⟶G(x)⟶

Conv

Conv
UpSample

Sum
UpSample

Sum
UpSample

Sum
UpSample
Conv

ResLayer-4

ResLayer-3

ResLayer-2

Conv
Concate

IN
Conv
IN

Conv

Conv
Concate

IN
Conv
IN

Conv

Max-pool
IN

Conv

ResLayer-1

Figure 1: *e generator structure of the deep learning-driven migration model for creative animation generation.
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F(G(x)) should have the attribute of F(G(x))� x. Similarly,
for the target image through y⟶F(y)⟶G(F(y)) should
also be G(F(y))� y. When L1 distance is used to measure the
difference between the result after cyclic transformation and
the original image, CycleLoss can be expressed as follows:

Lcyc(G, F) � Ex∼pdata
F(G(x) − x)1

����
����􏽨 􏽩 + Ey∼pdata

F(G(x) − y)1
����

����􏽨 􏽩.

(9)

When using the CycleLoss training model, we need to
consider not only the cyclic consistency loss from source
image to target image to source image but also the back-
tracking CycleLoss from target image to source image to
target image. *erefore, two pairs of generators and dis-
criminators need to be set up simultaneously in the model. It
was also trained with CycleLoss in formula (2). *e final loss
function can be expressed as follows:

L G, F, Dx, Dy􏼐 􏼑 � LGAN G, Dx( 􏼁 + LGAN F, Dy􏼐 􏼑

+ λLcyc(G, F),
(10)

where Dx and Dy refer to the discriminators of source image
x and target image y, respectively. λ is the equilibrium
parameter set based on experience.

4.3. Image Evaluation Index. In the image generation task,
the evaluation of the result quality of the generated image
not only can rely on the subjective judgment of human
vision but also need to analyze the generated image quan-
titatively. It is mainly considered from two aspects: (1) the
quality of the generated image itself, that is, whether the
image content is realistic and whether the image details are
clear, and (2) for the diversity of generated images, a good
generation should generate a variety of images rather than a
fixed number of similar types of images. At present, in the
field of image generation, the evaluation indicators are is IS
(inception score) and FID (Fréchet inception distance).

4.3.1. IS. It uses the pretrained inception neural network as
the classifier, inputs the image samples generated by the
generator into the classifier, and statistically analyzes the
output value of the classifier. Its calculation is

IS(G) � exp Ex∼pg
KL(p(y|x)‖ p(y))􏼒 􏼓, (11)

where x ∼ pg means that x is the image sample generated
from pg, KL(p(y|x)‖ p(y)) means that KL divergence is
used to measure the distance between two distributions,
p(y|x) represents the probability that the image sample x is

Figure 2: *e original representative partial face image.
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classified as y, and p(y) � 􏽒
x
p(y|x)pg(x) represents the

edge distribution of all categories of images.
*e larger the IS value, the better the image generated by

the generator model.

4.3.2. FID. It is a method to evaluate the image quality by
calculating the distance between the feature vector of the real
image and the generated image, and the feature vector of the
image is extracted after removing the last layer of the net-
work through the perception neural network. *e calcula-
tion is

FID Pr, Pg􏼐 􏼑 � μr − μg

�����

�����
2

+ Tr 􏽘 r + 􏽘 g − 2
��������

􏽘 r 􏽘 g

􏽱

􏼒 􏼓,

(12)
where μ represents the mean vector of the real image and the
generated image in the feature space, 􏽐 represents the co-
variance matrix of the real image and the generated image in
the feature space, and Tr represents the trace of the matrix.

On the contrary to IS, if the FID value is smaller, it means
that the similarity between the generated image and the real
image is higher, indicating that the generation effect of the
model is better.

5. Experimental Results and Analysis

5.1. Experimental Data. *e animation avatar data set used
in the model training in this paper is randomly crawled from
the animation material website SafeBooru through the web
crawler and screened it. Finally, 150,000 animation images
are obtained; 60,000 images are randomly selected as the
training samples; and the image size is uniformly processed
to 96 × 96 for the experiment.

In order to verify the generalization of the improved
model, experiments were carried out on CelebFace data
set. A total of 10,200 samples and 202,677 face data were
collected in this data set, and the face styles in the images
were quite different. All the image sizes were 178 × 218.
However, if all the data sets were used as training data, the
training time of the model would be too long, so 100,000
images are used as training data in this experiment. At the
same time, the size of the original image is 178 × 218, which
is not conducive to the construction of the neural network
model. It is necessary to preprocess the original image and
change it to the size of 128 × 160, which not only can ensure
the simplicity of the network model but also can ensure the
image proportion.

Figure 3: *e animation generated by the original DCGAN model.
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5.2. Experimental Configuration. PyTorch deep learning
framework was used in the Ubuntu 18.04 environment. It
uses an NVIDIA-1080 GPU with CUDA10 for acceleration.
An SGD optimizer with a learning rate of 0.002 was used to
optimize the model as 200 Epochs. It was then used to test
the generation of animation illustration-style images.

5.3. Results and Discussion. Figure 2 is the original repre-
sentative partial face image, which shows the training results
obtained from the CelebA data set. Due to the excessive
number of original sample sets, 100,000 face images are
randomly selected as training samples in order to reduce
training time.

In order to verify the performance of the improved
model proposed in this paper in animation generation,
comparative experiments are carried out on the original
DCGAN model and the original WGAN model in the
100,000 face image data set shown in Figure 2. *e com-
parative experimental results are shown in Figures 3–5.
*rough the steps of facial emotion recognition and in-
formation aggregation, Figures 3–5 show the effects of three
different GAN methods in the animation data set. Figure 3
shows the animation generated by the original DCGAN
model; Figure 4 shows the generation results of the WGAN

model; and Figure 5 shows the animation effect generated by
the proposed algorithm.

It is not difficult to see that although the images gen-
erated by the three different methods have good
identifiability.

However, compared with other methods, the animation
image content generated by traditional DCGAN lacks au-
thenticity, and the facial details of the generated animation
characters are seriously lost, which gives people a sense of
disharmony, and the whole image appears the phenomenon
of information collapse.

For the animation generated by the WGAN model, it
performs well in the color brightness of the whole image, but
the image quality is significantly lower than the other two
methods, and the facial features of the animation avatar in
the generated image are not clear.

Compared with these two methods, the improved GAN
model designed in this paper combines the respective ad-
vantages of the original DCGAN andWGAN.*e generated
animation avatar is closer to the real sample; the details
generated on the image are clearer; and the color saturation
is high and has stronger authenticity.

*e above only analyzes and compares the generation
effects of the original DCGAN model, WGAN model, and
the algorithm model in this paper on the same data set from

Figure 4: *e animation generated by the original WGAN model.
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the perspective of human visual intuition, which has a
certain subjectivity. In order to evaluate these three models
more objectively, we use IS and FID as quantitative evalu-
ation indicators of the image effect generated by the model.
*ese two evaluation indicators are the most widely used
evaluation indexes in the GAN model at present. *rough
these two indicators, the animation generated by three
different network models is evaluated, and the evaluation
results are shown in Table 1.

For these two evaluation indicators, the larger the value
of IS, the better the quality and diversity of the generated
animation image, while the smaller the value of FID, the
better the diversity and quality of the generated animation
image. From the data in Table 1, it can be concluded that the
proposed GAN model has better performance in generating
images than the original DCGANmodel andWGANmodel.

*e score of the same model in the CelebA data set is lower
than that in animation data set due to the influence of
character background information. It can be seen that in the
training of depth model, the quality of the data set also has a
great impact on the final training results of the model.

6. Conclusion

*is paper studies the style transfer of animation based on
the GAN model. A new generator network is designed to
allow simultaneous migration of image style and content.
After training using natural world images as source domain
data and art illustration images as target domain data. *is
method can generate animation images with excellent visual
quality. Compared with the images generated by DCGAN
and WGAN models, the proposed method achieves a better

Figure 5: *e animation generated by the proposed GAN model.

Table 1: *e evaluation results of three models.

Model
Evaluation indicators

IS FID
CelebA data set Animation CelebA data set Animation

DCGAN 6.22± 0.13 6.56± 0.25 43.22± 0.22 39.52± 0.12
WGAN 7.01± 0.15 7.12± 0.18 40.55± 0.10 36.36± 0.22
*e proposed GAN model 7.45± 0.22 7.88± 0.24 35.69± 0.23 31.28± 0.26
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balance between the image style and the original image
content. Aiming at the problem of model collapse that often
occurs in the process of network model training, in order to
avoid this problem, this paper uses Wasserstein distance
instead of JS divergence as the measurement standard. In
order to make the weight meet the constraints, the model
adopts the method of weight forced cutting, which is not
conducive to the learning of the network model. In the next
work, we will consider using gradient punishment instead of
weight forced cutting to make the weight meet the
constraints.
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