
Research Article
Recognition of Gurmukhi Handwritten City Names Using Deep
Learning and Cloud Computing

Sandhya Sharma,1 Sheifali Gupta ,2 Deepali Gupta ,2 Sapna Juneja ,3

Gaurav Singal ,4 Gaurav Dhiman ,5 and Sandeep Kautish 6

1Chitkara University Institute of Engineering and Technology, Chitkara University, Solan, Himachal Pradesh, India
2Chitkara University Institute of Engineering and Technology, Chitkara University, Patiala, Punjab, India
3KIET Group of Institutions, Delhi, Ghaziabad, India
4Netaji Subhash University of Technology, Delhi NCR, India
5Govt. Bikram College of Commerce, Patiala, Punjab, India
6LBEF Campus, Kathmandu, Nepal

Correspondence should be addressed to Sandeep Kautish; dr.skautish@gmail.com

Received 19 October 2021; Accepted 13 December 2021; Published 4 January 2022

Academic Editor: Punit Gupta

Copyright © 2022 Sandhya Sharma et al. )is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

)e challenges involved in the traditional cloud computing paradigms have prompted the development of architectures for the
next generation cloud computing. )e new cloud computing architectures can generate and handle huge amount of data, which
was not possible to handle with the help of traditional architectures. Deep learning algorithms have the ability to process this huge
amount of data and, thus, can now solve the problem of the next generation computing algorithms. )erefore, these days, deep
learning has become the state-of-the-art approach for solving various tasks andmost importantly in the field of recognition. In this
work, recognition of city names is proposed. Recognition of handwritten city names is one of the potential research application
areas in the field of postal automation For recognition using a segmentation-free approach (Holistic approach). )is proposed
work demystifies the role of convolutional neural network (CNN), which is one of the methods of deep learning technique.
Proposed CNN model is trained, validated, and analyzed using Adam and stochastic gradient descent (SGD) optimizer with a
batch size of 2, 4, and 8 and learning rate (LR) of 0.001, 0.01, and 0.1. )e model is trained and validated on 10 different classes of
the handwritten city names written in Gurmukhi script, where each class has 400 samples. Our analysis shows that the CNN
model, using an Adam optimizer, batch size of 4, and a LR of 0.001, has achieved the best average validation accuracy of 99.13.

1. Introduction

Cloud computing is equipped with good solutions to meet
the increasing demand of data storage. It has provided users
with various benefits, thereby reducing the efforts to manage
the data in an efficient and effective manner.)e cloud relies
mainly on the data centers, and the data centers, which are
located far away from the user, are further linked together to
build data center networks. So, the next generation cloud
computing architectures have made it possible to process the
data closer to the user instead of processing it at the data
center. )ese emerging paradigms of cloud computing

generate huge amount of data. But there is the possibility
that this huge data may not be analyzed to uncover the new
information [1]. Various algorithms can be applied for the
analysis of data. Performance of traditional algorithms de-
creases when the amount of data increases. But, the per-
formance of these deep learning algorithms improves when
the amount of data increases. Deep learning is the subset of
machine learning, and it has gained the attention of various
researchers due to its strength of handling huge amount
data. )is is the reason why applications of deep learning in
the emerging paradigms of cloud computing are also gaining
the attention of research community. )ese days, all the

Hindawi
Scientific Programming
Volume 2022, Article ID 5945117, 16 pages
https://doi.org/10.1155/2022/5945117

mailto:dr.skautish@gmail.com
https://orcid.org/0000-0001-5692-418X
https://orcid.org/0000-0002-3207-5248
https://orcid.org/0000-0003-4601-7679
https://orcid.org/0000-0001-7570-6292
https://orcid.org/0000-0002-6343-5197
https://orcid.org/0000-0001-5120-5741
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5945117


information in our lives is being processed through elec-
tronic devices. As computers are involved in every field,
there is a requirement to transfer all the information be-
tween humans and computers with the help of some efficient
and fast algorithms. So, there exists text recognition, which
helps in providing an interface, so that humans and com-
puters can interact with each other. An example of such
systems lies in the digitization of documents images, which
may be handwritten or printed. Such systems are relevant in
many applications like automatic form processing, postal
automation, cheques processing, preservation of historical
documents, etc. In this proposed work, recognition of city
names that are written in Gurmukhi script is implemented
and is one of the application research areas of postal au-
tomation. As manual sorting of mails is a cumbersome as
well as labor-intensive task due to the high labor cost in-
volved in the process. So, it is required to develop a postal
automation system that can read all the necessary fields of
the postal document and can help in reaching the document
to its destination. Gurmukhi script is the Punjab state’s
official language, which is used by the Punjab state’s gov-
ernment officials to communicate their documents. An
example of such a document is shown in Figure 1, in which
the address field of the document to be posted is written in
Gurmukhi [2] script, and the city name “Mohali” is also
highlighted.

Several researchers are already working in the field of
postal automation, and research is already going on for the
recognition of various scripts like Devanagari, Bangla, En-
glish, Russian, etc., but still no postal automation system
exists for Gurmukhi script. )is proposed work aims to
employ a deep learning technique based on CNN for the
recognition of Gurmukhi handwritten city names. Out of
various deep learning techniques, CNN is widely used for the
purpose of text recognition [1]. )e most important chal-
lenge for the recognition of Gurmukhi script is its cursive
writing style, and the characters are so closely written, which
makes their segmentation a difficult task. So, this paper has
proposed the recognition technique using a segmentation-
free approach, which is known as the Holistic approach.
Figure 2 is showing the sample of handwritten Gurmukhi
script.

2. Related Work

Emerging cloud computing paradigms have helped the user
by generating data at the edge of the network without being
transferred at the far cloud center. In this section, a literature
survey is given on the use of ConvNet in the emerging cloud
computing architectures. Huang et al. [3] have proposed a
ConvNet model using edge computing algorithm for the
classification of various mosquitoes. A device was developed
for the detection of mosquitoes and preprocessing of videos
before sending them to data center. Later, a ConvNet model
is employed for the classification of mosquitoes. Similarly,
Liu et al. [4] have also proposed a CNN based ConvNet
model for the recognition of food. A server equipped with
the centos 7.0 was used at the cloud. Later, again, the CNN
based model ConvNet is implemented for the purpose of

identification and classification of food images. Azimi et al.
[5] have used ConvNet for the diagnosis of heart diseases.
For the reading of files, a local Wi-Fi is programmed and for
the uploading POST request to the edge device, a machine
with Apache server is used. Hosain et al. [6] have proposed
ConvNet model using edge cloud computing, in which data
is sent to the center using radio access technology. For the
formation of edge cloud, a MEC server is used, and later, a
CNN based ConvNet is used for the classification. Similarly,
in the field of postal automation, i.e., for the recognition of
various fields like city name, pin code, and street name, a
huge amount of data is required. )is huge data can be
processed efficiently by deep learning algorithms. Among
the relevant works, recognition of such fields is done in
various scripts using character-level recognition, in which
the word is segmented into individual characters before
recognition (analytical approach) or word level recognition,
which is segmentation-free approach (holistic approach).
Pal et al. [7] have employed character-level recognition using
machine learning for the recognition of multilingual script-
based city names for Indian postal automation. Similarly,
)adchanamoorthy et al. [8] have proposed a technique for
the recognition of Tamil city names. )e accuracy obtained
is 96.89%. Some have worked on the recognition of pin codes
only, which are written in different scripts like English,
Bangla, etc. One such example is Vajda et al. [9], where the
authors have recognized pin codes written in Bangla as well
as in English script using a nonsymmetric half-plane hidden
Markov model and achieved an accuracy of 94.13% and 93%,
respectively. Sahoo et al. [10] have implemented a holistic
approach for the recognition of city names written in Bangla
script using shape-context features, while multiclassifiers are
employed for the classification purpose. )e datasets used
here are the large datasets that are stored on the cloud.)ere
are some other examples where authors have implemented
only a holistic approach for the recognition of various scripts
like English, Bangla, and Arabic and achieved an accuracy of
90.3%, 83.64%, and 63% [11–13]. Manchala et al. [9] have
used NN for the recognition of English script using the
Holistic approach. Similarly, Bhowmik et al. [10] have
proposed a technique for the recognition of Bangla script.

Figure 1: Postal document with city name written in Gurmukhi.

Figure 2: Sample of Gurmukhi script.

2 Scientific Programming



Wahbi et al. [11] have worked on the recognition of Arabic
script again by holistic approach, and the model employed
for the recognition is hidden Markov model. Few other
authors have also used the holistic approach for the rec-
ognition of text, in which features are manually extracted
[14, 15], while others have used CNN for character recog-
nition, in which features are automatically extracted [16].
)e aim of this proposed work is to employ CNN with the
holistic approach for the recognition of Gurmukhi hand-
written city names. All these techniques have been employed
on huge datasets, which are stored on cloud.

2.1. Contributions of the Proposed Work

(i) A dataset having 4000 samples of the handwritten
images in the Gurmukhi script for the 10 city names
has been generated.

(ii) A CNN model for the automation of postal system
for the recognition of Gurmukhi handwritten city
names has been prepared. )e model can recognize
all the 10 city names with an average validation
accuracy of 99.13%.

3. Present Work

In this proposed work, a dataset of 4000 Gurmukhi hand-
written city names is created for 10 different classes (city
names), where each class is having 400 samples that can be
fed to the model. As manual sorting of postal documents is a
labor-intensive task, so, recognition of city names will help
in the automation of postal system for the state of Punjab.
Finally, the designed model has predicted various param-
eters for the recognition of city names. )e methodology
followed for the recognition is shown in Figure 3.

3.1. Dataset. For the preparation of dataset, each sample is
written 10 times by 40 different writers generating 4000
samples. For collecting the dataset, two sheets were given to
each writer to write each word five times on each sheet,
generating total 10 samples for each word from both sheets.
So, each writer generated 100 samples. Writers were selected
from different age groups, educational levels, and different
dialects. Writers were free to use any colored pen.

3.2. Digitization and Preprocessing of Dataset. For the dig-
itization of collected samples, a scanner with 300 dpi was
used to scan the collected sheets containing samples. For the
preprocessing of dataset, each scanned sheet is converted
into gray scale image, and later, normalization is performed.
Further, brightness adjustment, contrast adjustment, and
intensity level adjustment are performed to improve the
quality of the image before cropping the word samples from
the digitized sheets. Adobe Photoshop is used for the
purpose of contrast adjustment, brightness adjustment,
intensity level adjustment, and cropping of images. Later,
cropped samples were placed in their respective folders that
were named as per the city name. Later, the prepared dataset

is stored on the cloud as it has to be accessed using the deep
learning network.

Once the preprocessing is done, the dataset is divided
into training and validation dataset [17, 18]. 80% of the data
is kept for training the model, and 20% is kept for validating
the performance of the model. Table 1 below is showing the
city name and its corresponding handwritten digitized
image in the Gurmukhi script.

3.3. Data Augmentation. Data augmentation is the tech-
nique that helps in increasing the available data. So, available
data is further increased by flipping or rotating the images,
and data augmentation is the inbuilt function of the pro-
posed model. Rotation of city name “Amritsar” is shown in
Figure 4.

3.4.Model Design. To build the CNNmodel, three layers are
required: (i) convolution layer; (ii) pooling layer; (iii) output
layer.)e primary function of the first convolution layer is to
apply the predefined filter weight to derive the features from
an image. Based upon the weighting filter used, the number
of feature maps is produced.)e complexity of the extracted
features keeps on increasing with the increasing model
depth, while the last convolution layer of the model gen-
erates the feature maps, which are much closer to the re-
quired recognition task. )e next layer is the pooling layer,
and the most commonly used pooling technique is max
pooling. )is further helps in preserving the features by
selecting the maximum value as this has the closest similarity
to the required features. )e pooling layer also helps in
reducing the size of the image by getting rid of the features,
which are not important. )e last layer is the fully connected
layer, and from here, the output classes are obtained. )e
proposed CNN model is shown in Figure 5.

)e first convolution layer used in this proposed work
has 32 filters of size 3 ∗ 3 with a stride of 1 ∗ 1, 32 feature
maps are derived from this, and the convolution layer is

Collecting the dataset

Digitization and Pre-
processing

Building the proposed CNN

Training of Network

Testing

Figure 3: Methodology of the proposed work.

Scientific Programming 3



followed by the ReLU activation function. )e obtained
featuremaps are then passed to themax pooling layer of 2 ∗ 2
filter size and a stride of 2 ∗ 2, which means that the pooling
layer has reduced the size of the feature map by a factor of 2.
)e obtained pooled feature maps are passed to the next
convolution layer, which has 64 filters with a size of 3 ∗ 3 and
a stride of 1 ∗ 1, which is again followed bymax pooling layer
of size 2 ∗ 2 and a stride of 2 ∗ 2, which is further followed by
another max pooling layer of the same size. Lastly, a fully
connected layer is introduced with the SoftMax activation
function, having 2048 neurons in the input layer, then 120
neurons in the middle layer, and 10 neurons in the last,
which is the output layer. )e fully connected layer trans-
forms the obtained feature maps to the 10 classes. Rectified
linear unit (ReLu) is used as the activation function for all
the layers in the model, except for the pooling layers.

4. Experiments and Results

)e proposed model is implemented on the dataset of 4000
images using Python with the help of Keras and Tensorflow,
which are machine learning libraries.

4.1. Experimental Setup and Performance Metrics Used.
)e efficiency of the model is impacted by various param-
eters, but in this paper, three important parameters are
considered: the optimizer, LR, and the batch size of the
model. )e optimizer is used to update the network weights;
also, the choice of optimizer means good results in minutes,
hours, or days. LR tells how rapidly the neuron weights will
be adapted, while the batch size tells the number of samples
that are processed before the model is being updated. )e

Table 1: Ten city names with their corresponding handwritten digitized image in Gurmukhi.

S. no. City name Written by “writer 1” Written by “writer 2”

1 Amritsar

2 Fazilka

3 Hoshiarpur

4 Jalandhar

5 Ludhiana

6 Mansa

7 Mohali

8 Muktsar

9 Pathankot

10 Patiala

(a) (b) (c)

Figure 4: Augmentation. (a) Actual image. (b) Rotated by 60°deg. (c) Rotated by 180°deg.

64x32x3 64x32x32

32x16x32 32x16x64
16x8x64 8x4x64

2048

120
10

output
classesdense

dense

flatten

maxpool
maxpool 2x2 2x2

stride (2,2)maxpool
2x2
stride (2,2)

stride (2,2)stride (1,1)
conv 3x3, 64

stride (1,1)
conv 3x3, 32

Figure 5: Proposed CNN model.

4 Scientific Programming



proposed model is analyzed using two different optimizers,
Adam and stochastic gradient descent (SGD), three different
LRs, 0.001, 0.01, and 0.1, and the batch size: 2, 4, and 8. It is
known that the batch size is an important hyperparameter
for deep learning systems. Large batch size helps in speeding
up the computation, but it leads to poor generalization [19].
So, it is always preferable to use a small batch size. )is
proposed model has given good generalization with batch
size of 2, 4, and 8 only, while the accuracy drastically reduced
when the batch size is further increased. Response time for
the training and validation of the model varies from model
to model, depending on the dataset to be trained, batch size,
and LR, and it also depends on the hardware of the system
used like CPU, GPU, RAM, etc. [20]. To evaluate the pro-
posed CNN model, various parameters are calculated like
training and validation loss, validation accuracy [21, 22],
precision, and recall also. All these parameters are calculated
using the different metrics of the confusion matrix, which
are true positive (TP), false positive (FP), true negative (TN),
and false negative (FN). )e parameters are defined as
follows:

4.1.1. Accuracy. Accuracy is defined as the ratio of the
number of correct predictions made by themodel to the total
number of predictions made as shown in

Accuracy �
(TP + TN)

(TP + TN + FP + FN)
. (1)

4.1.2. Precision. It is a metric that tells about the proportion
of cases that report true and are actually true as shown in

Precision �
TP

(TP + FP)
. (2)

4.1.3. Recall (Sensitivity). )e recall measures the ability of
the designedmodel to detect positive samples. It is calculated
as the sum of true positive across all classes divided by the
sum of true positive and false negative across all classes as
shown in

Recall �
TP

(TP + FN)
. (3)

4.2. Results ObtainedUsingAdamOptimizerwith aBatch Size
of 4. In this section, various parameters are obtained on
three different LRs, while the Adam optimizer is used with a
batch size of 4.

4.2.1. Results Obtained with a LR of 0.001. Table 2 shows the
values of various parameters obtained with the LR of 0.001,
while the optimizer used is Adam with a batch size of 4.
Maximum obtained validation accuracy on the validation
dataset is 99.8% with a minimum validation loss of 0.01, and
the average obtained validation accuracy is 99.13%.

Figure 6 shows the different parameters convergence
plots for the training dataset, as well as for the validation
dataset. Y-axis is showing the particular value obtained,
while the X-axis is the number of epochs, for which the
model is trained. Validation accuracy is the main parameter;
while checking the model’s performance for the recognition
of text, it can be observed that the accuracy plot is almost
increasing after the run of few epochs. )e maximum val-
idation accuracy obtained is 99.8%. )e value of loss should
be less, and the minimum value of the loss obtained is 0.01
and 0.07 for the validation and training dataset. Values of
other parameters are approaching 1, which shows that the
designed model is reasonably good.

Results can also be analyzed by plotting the confusion
matrix. Figure 7 is showing the plot of the confusion matrix
for multiclassification results obtained in Figure 6. On the X-
axis, the predicted labels are depicted, while on the Y-axis,
true labels are depicted. )e confusion matrix tells the in-
formation about the actual (true) and the predicted classi-
fication done by the designed classification model. )e
highlighted value in blue boxes represents the true positive
values, which tell how much the designed model has cor-
rectly predicted the positive classes as positive [23]. For
example, for the city Amritsar, the designed model has
correctly predicted all the 80 samples, while, for the city
Fazilka, the model has correctly predicted 78 samples and
incorrectly predicted 2 samples as Ludhiana, which can be
observed in Figure 7.

4.2.2. Results Obtained with a LR of 0.01. Now, the LR is
changed to 0.01, while the optimizer used is Adam. Table 3
shows the outcomes of various parameters, when the LR is
changed from 0.001 to 0.01, while other parameters are kept
the same. From the obtained results, it can be observed that
the LR of the model impacts the accuracy results. )e
validation accuracy obtained on 10th epoch is 99%, and the
values of training loss, validation loss, validation precision,
and validation recall are 0.11, 0.01, 0.99, and 0.99, respec-
tively. )e average obtained validation accuracy is 96.95%,
which is less than the average validation accuracy obtained,
with the LR of 0.001, which was 99.13%. Figure 8 shows the
parameters convergence plot, and the confusion matrix for
the same is shown in Figure 9, where it has misclassified 4
classes. It can be observed from Figure 8 that the obtained
plots are not so linear as compared to the plots obtained in
Figure 6, while linearity can be observed in the last few
epochs only [24].

4.2.3. Results Obtained with a LR of 0.1. Table 4 shows the
outcomes of various parameters, when the LR is further
changed from 0.01 to 0.1, while other parameters are kept the
same. On the 10th epoch, maximum validation accuracy
obtained is 99.3%. )e obtained values for training loss,
validation loss, validation precision, and validation recall are
0.10, 0.00, 0.99, and 0.99. )e average obtained validation
accuracy is 98.17%, which is less than the average validation
accuracy obtained with the LR of 0.001, which was 99.13%.
Figure 10 shows the parameters convergence plot, and the

Scientific Programming 5



2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5
Training and Validation loss

Training loss

epochs

Validation loss

Lo
ss

(a)

2 4 6 8 10

0.92

0.90

0.88

0.86

Training and Validation accuracy

0.94

0.96

0.98

1.00

Training accurarcy
Validation accurarcy

epochs

Ac
cu

ra
cy

(b)

2

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

4 6
epochs

8 10

Training and Validation precision

Training precision
Validation precision

Pr
ec

isi
on

(c)

2 4 6 8 10

0.80

0.85

0.90

0.95

1.00

epochs

Training and Validation recall

Training recall
Validation recall

Re
ca

ll

(d)

Figure 6: Plots obtained with a LR of 0.001 by employing Adam optimizer. (a) Training and validation loss plot. (b) Training and validation
accuracy plot. (c) Training and validation precision plot. (d) Training and validation recall plot.

Table 2: Results obtained with a LR of 0.001 by employing Adam optimizer.

Epoch Training loss Validation loss Validation accuracy (%) Validation precision Validation recall
1 0.49 0.08 98.5 0.98 0.97
2 0.19 0.07 98.3 0.98 0.97
3 0.13 0.05 99.2 0.99 0.99
4 0.12 0.04 99.1 0.99 0.98
5 0.09 0.02 99.3 0.99 0.98
6 0.09 0.01 99.5 0.99 0.99
7 0.09 0.03 99.6 0.99 0.98
8 0.09 0.02 99.6 0.99 0.99
9 0.09 0.02 99.8 0.99 0.99
10 0.07 0.01 99.8 0.99 0.99

6 Scientific Programming



confusion matrix for the same is shown in Figure 11. In
Figure 10, all the plots are linearly varying, the loss plot is
almost decreasing, and other plots are approaching to 1.

From Figure 11 of confusion matrix for LR 0.1, it can be
observed that the proposed model has misclassified few
more classes as compared to the previous confusion matrix.
56 samples of the city “Fazilka,” 73 samples of the city
Hoshiarpur, 78 of Jalandhar, and so on are correctly
predicted.

It can be observed from Tables 2, 3, and 5 that the LR of
the model impacts the accuracy results obtained for rec-
ognition. A LR of 0.001 has generated the average validation
accuracy of 99.13%, which is highest as compared to the
validation accuracies obtained by other LRs.

4.2.4. Optimal LR Selection with Adam Optimizer.
Analysis of the validation accuracy obtained from Tables 2, 3,
and 5 is done in Figure 12. It shows that the Adam optimizer
with a LR of 0.001 has performed better for the available
dataset. Figure 12 shows the validation accuracy obtained on

10 epochs for all the three LRs. Y-axis shows the validation
accuracy obtained, while the X-axis shows three different
LRs on 10 epochs. It can be observed on the 10th epoch that
the validation accuracy obtained with a LR of 0.001 is the
highest as compared to the LR of 0.01 and 0.1. It can also be
observed that the validation accuracy is high for most of the
epochs using LR of 0.001. Figure 13 shows some of the
misclassified results obtained by Adam optimizer. City name
“Ludhiana” is misclassified as “Patiala” in Figure 13(a), while
city “Fazilka” is misclassified as “Ludhiana” in Figure 13(b).

From the above discussions of the accuracy results
obtained using Adam optimizer with a LR of 0.001, 0.01, and
0.1, it can be observed that the proposed model has achieved
the best validation accuracy with a LR of 0.001, as the
proposed model has also misclassified few images. Results
for the same are shown in Figure 13.

4.3. Results Obtained Using Adam Optimizer: LR of 0.001 on
Different Batch Sizes. It has been analyzed from Figure 12
that LR of 0.001 has achieved better validation accuracy as

A
m

rit
sa

r

 

Fa
zi

lk
a

H
os

ha
irp

ur

Ja
la

nd
ha

r

Lu
dh

ia
na

M
an

sa
 M
oh

al
i

 

M
uk

ts
ar

Pa
th

an
ko

t

Pa
tia

la
 

Amritsar

Confusion matrix

2

2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0

0 0

0

0

0

0

0

0

0

0

0 80

80

78

80

80

80

80

80

78

80 0 0 0 0

0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

0 0

0

0

10

20

30

40

50

60

70

80

Fazilka

Hoshairpur

Jalandhar

Ludhiana

Mansa 

Mohali

Tr
ue

 la
be

l

 

Muktsar

Pathankot

Patiala

Figure 7: Confusion matrix for LR 0.001.

Table 3: Results obtained with a LR of 0.01 by employing Adam optimizer.

Epoch Training loss Validation loss Validation accuracy (%) Validation precision Validation recall
1 0.58 0.12 95 0.95 0.95
2 0.28 0.74 90 0.90 0.89
3 0.18 0.19 97 0.97 0.97
4 0.15 0.04 98 0.98 0.98
5 0.12 0.25 94 0.95 0.94
6 0.14 0.38 97 0.96 0.96
7 0.10 0.49 99 0.99 0.99
8 0.14 0.32 98 0.98 0.98
9 0.10 0.24 99 0.99 0.99
10 0.11 0.01 99 0.99 0.99

Scientific Programming 7



2
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

4 6 8 10

Training and Validation loss

Training loss

epochs

Validation loss

Lo
ss

(a)

Training and Validation accuracy

2 4 6 8 10
epochs

0.825
0.850
0.875
0.900
0.925
0.950
0.975
1.000

Training accurarcy
Validation accurarcy

Ac
cu

ra
cy

(b)

Training and Validation precision

2

0.88

0.90

0.92

0.94

0.96

0.98

1.00

4 6 8 10
epochs

Training precision

Pr
ec

isi
on

Validation precision

(c)

Training and Validation recall

2 4 6 8 10
epochs

0.80

0.85

0.90

0.95

1.00

Training recall
Validation recall

Re
ca

ll

(d)

Figure 8: Plots obtained with a LR of 0.01 by employing Adam optimizer. (a) Training and validation loss plot. (b) Training and validation
accuracy plot. (c) Training and validation precision plot. (d) Training and validation recall plot.

A
m

rit
sa

r

Fa
zi

lk
a

H
os

ha
irp

ur

Ja
la

nd
ha

r

Lu
dh

ia
na

M
an

sa
 M
oh

al
i

 

M
uk

ts
ar

Pa
th

an
ko

t

Pa
tia

la
 

Amritsar

Confusion matrix

4

2

0 0 2 0 0 0 0 0

0 0 0 0 0 2 2

0 0 0 2 1

0 0 0 0 0 0

0 0 0 0

0 0 0

0 0

0

0

0

0

0

0

0

0

0 78

76

75

80

80

80

80

80

72

80 0 0 0 0

0

0 0 0 0 0

0 4 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

0 0

0

0

10

20

30

40

50

60

70

80

Fazilka

Hoshairpur

Jalandhar

Ludhiana

Mansa 

Mohali

Tr
ue

 la
be

l

 

Muktsar

Pathankot

Patiala

Figure 9: Confusion matrix for LR 0.01.

8 Scientific Programming



compared to the LR of 0.01 and 0.1. It has been observed that
the batch size of the model also impacts the accuracy results
[25]. Now, the model is analyzed using three different batch
sizes (2, 4, and 8) with Adam optimizer and a LR of 0.001.
Table 6 shows the various results obtained by changing the
batch size, while the LR of 0.001 is used. It can be observed
from the table that batch size of 4 has given good accuracy
results as compared to batch size of 2 and 8.)e best average
validation accuracy achieved is 99.13% when the batch size is

kept at 4, while it is 97.24% and 92.07% with a batch size of 8
and 2 with a LR of 0.001.

4.3.1. Comparison of <ree Different Batch Sizes Using Adam
with a LR of 0.001. It can be observed from Figure 12 that LR
of 0.001 has given good results as compared to LR of 0.1 and
0.01. In Table 4, various parameters are obtained using three
different batch sizes. Average validation accuracy obtained

Table 4: Results obtained with a LR of 0.1 by employing Adam optimizer.

Epoch Training loss Validation loss Validation accuracy (%) Validation precision Validation recall
1 1.12 0.17 93.5 0.94 0.92
2 0.32 0.05 98.3 0.98 0.98
3 0.21 0.01 98.5 0.99 0.99
4 0.18 0.11 99 0.99 0.99
5 0.10 0.02 99.5 0.99 0.99
6 0.14 0.00 99.6 0.99 0.99
7 0.11 0.01 99.5 0.99 0.99
8 0.11 0.02 99.1 0.99 0.98
9 0.09 0.02 99.4 0.99 0.98
10 0.10 0.00 99.3 0.99 0.99

2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

4 6 8 10

Training and Validation loss

Training loss

epochs

Validation loss

Lo
ss

(a)

Training and Validation accuracy

2 4 6 8 10

Training accurarcy

epochs

Validation accurarcy

0.70
0.75
0.80
0.85
0.90
0.95
1.00

Ac
cu

ra
cy

(b)

Training and Validation precision

2

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ec

isi
on

4 6 8 10

Training precision

epochs

Validation precision

(c)

Training and Validation recall

2

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Re
ca

ll

4 6 8 10

Training recall

epochs

Validation recall

(d)

Figure 10: Plots obtained with a LR of 0.1 by employing Adam optimizer. (a) Training and validation loss plot. (b) Training and validation
accuracy plot. (c) Training and validation precision plot. (d) Training and validation recall plot.

Scientific Programming 9



by batch size 2 is 92.07%, batch size 4, 99.13%, and batch size
8, 97.24%. Now, validation accuracy obtained on 10 different
epochs of Table 4 is compared in Figures 14 and 15 by three

different batch sizes. In Figure 14, Y-axis is representing the
validation accuracy obtained, while the X-axis is repre-
senting the three different batch sizes on 10 epochs and in

A
m

rit
sa

r

Fa
zi

lk
a

H
os

ha
irp

ur

Ja
la

nd
ha

r

Lu
dh

ia
na

M
an

sa
 M
oh

al
i

 

M
uk

ts
ar

Pa
th

an
ko

t

Pa
tia

la
 

Amritsar

Confusion matrix

8

4

2 0 2 0 6 0 0 0

0 0 0 1 0 1 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 2 8

2 0

0

7

0

0

0

0

0

2

0 70

76

76

80

79

63

78

73

56

74 0 0 0 0

1

0 0 0 4 2

0 2 0 0 0 2 5

0 0 0 1 2 3

0 0 0 0 0 0

0 0 1 0 6

0 1 0 0

0 0 0

0 0

0

0

10

20

30

40

50

60

70

80

Fazilka

Hoshairpur

Jalandhar

Ludhiana

Mansa 

Mohali

Tr
ue

 la
be

l

 

Muktsar

Pathankot

Patiala

Figure 11: Confusion matrix for LR 0.1.

Table 5: Layered architecture for each layer.

Layers Input image size Filter size No of filters Activation function Output without padding Parameters
Input image 64 ∗ 32 ∗ 3
Convolution 64 ∗ 32 ∗ 3 3 ∗ 3 32 ReLU 64 ∗ 32 ∗ 32 896
Max Pooling 64 ∗ 32 ∗ 32 Pool size (2 ∗ 2) — — 32 ∗ 16 ∗ 32 0
Convolution 32 ∗ 16 ∗ 32 3 ∗ 3 64 ReLU 32 ∗ 16 ∗ 64 18496
Max Pooling 32 ∗ 16 ∗ 64 Pool size (2 ∗ 2) — — 16 ∗ 8 ∗ 64 0
Max Pooling 16 ∗ 8 ∗ 64 Pool size (2 ∗ 2) — — 8 ∗ 4 ∗ 64 0
Flatten 8 ∗ 4 ∗ 64 — — — 1024 —
Dense 1024 120 — ReLU 120 123000
Dense 120 — — SoftMax 10 1210

Validation Accuracy
100

98
96
94
92
90
88
86
84

LR=0.001
LR=0.01
LR=0.1

1 2 3 4 5 6 7 8 9 10
Epoch

Ac
cu

ra
cy

Figure 12: Analysis of validation accuracy on three different LRs using Adam Optimizer.

10 Scientific Programming



Patiala:98.9%
Ludhiana: 1.1%

(a)

Fazilka: 2%
Ludhiana: 98%

(b)

Figure 13: Misclassification results. (a) “Ludhiana” is misclassified as “Patiala.” (b) “Fazilka” is misclassified as “Ludhiana.”

Table 6: Results obtained for different batch sizes.

Batch size Epochs Training loss Validation loss Validation accuracy (%) Average validation accuracy

2

1 1.59 0.70 80.2

92.07%

2 1.22 0.39 85.1
3 1.08 0.31 92.4
4 0.92 0.30 92.5
5 0.91 0.16 94.2
6 0.76 0.24 93.5
7 0.78 0.11 95.4
8 0.76 0.43 92.6
9 0.73 0.10 97.1
10 0.68 0.08 97.5

4

1 0.49 0.08 98.5

99.13%

2 0.19 0.07 98.3
3 0.13 0.05 99.2
4 0.12 0.04 99.1
5 0.09 0.02 99.3
6 0.09 0.01 99.5
7 0.09 0.03 99.6
8 0.09 0.02 99.6
9 0.09 0.02 99.8
10 0.07 0.01 99.8

8

1 0.23 0.54 78.6

97.24%

2 0.03 0.02 99.1
3 0.02 0.03 98.5
4 0.01 0.00 99.2
5 0.01 0.00 99.2
6 0.03 0.04 97.8
7 0.02 0.02 99.1
8 0.01 0.02 99.7
9 0.00 0.01 99
10 0.00 0.01 99

Validation Accuracy
100

Batch size 2
Batch size 4

80

Batch size 8

60

40

20

0
1 2 3 4 5 6 7 8 9 10

Epochs

Ac
cu

ra
cy

Figure 14: Comparison of validation accuracy using batch sizes 2, 4, and 8 for Adam optimizer and with a LR of 0.001.

Scientific Programming 11



88.00
90.00
92.00
94.00
96.00
98.00

100.00

2 4 8

Average Validation Accuracy

Average Validation Accuracy
(%

)
Figure 15: Comparison of average validation accuracy using batch sizes 2, 4, and 8 for Adam optimizer and with a LR of 0.001.

Table 7: Results obtained using SGD optimizer with a LR of 0.001.

Epoch Training loss Validation loss Validation accuracy (%) Validation precision Validation recall
1 1.4 1.08 65.1 0.84 0.42
2 0.60 0.23 94.1 0.95 0.91
3 0.38 0.15 95.7 0.96 0.94
4 0.33 0.13 96 0.97 0.94
5 0.27 0.11 97.3 0.97 0.96
6 0.25 0.07 99.0 0.99 0.98
7 0.22 0.07 99.0 0.99 0.98
8 0.19 0.07 99.0 0.98 0.98
9 0.18 0.07 98.8 0.98 0.98
10 0.17 0.07 98.8 0.98 0.98

2

0.2

0.4

0.6

0.8

1.0

1.2

1.4

4 6 8 10

Training and Validation loss

epochs

Lo
ss

Training loss
Validation loss

(a)

Training and Validation accuracy

2

0.6

0.7

0.8

0.9

1.0

4 6 8 10
epochs

Training accuracy
Validation accuracy

Ac
cu

ra
cy

(b)

Figure 16: Continued.

12 Scientific Programming



Figure 15, Y-axis is representing the average validation
accuracy obtained, while the X-axis is representing the batch
sizes 2, 4, and 8. It can be observed from Figure 14 that batch
size 4 has given higher accuracies as compared to other batch
sizes, while Figure 15 shows that the high average validation
accuracy is given by a batch size of 4.

4.4. Results Obtained Using SGDOptimizer with a LR of 0.001
and Batch Size of 4. )e optimizer employed in CNN model
also affects the accuracy obtained. In this section, the results
are obtained using SGD optimizer with a LR of 0.001 and a

batch size of 4. LR of 0.001 and batch size of 4 are chosen
based upon the best accuracy results obtained by them in the
previous sections. Table 7 shows the results for various
parameters obtained using SGD optimizer, while Figure 16
shows the parameters convergence plot, and Figure 17 shows
the confusion matrix for the same. Figure 16 shows that the
plots are almost linear for all the parameter values obtained
in Table 7. )e plot in Figure 16(a), training and validation
loss, is approaching value “0” with each epoch, while plots in
Figures 16(b)–16(d) for training and validation accuracy,
precision, and recall are approaching “1.” )e maximum
validation accuracy obtained in the last epoch is 98.8%,

Training and Validation precision

2

0.800
0.825
0.850
0.875
0.900
0.925
0.950
0.975
1.000

4 6 8 10
epochs

Training precision
Validation precision

Pr
ec

isi
on

(c)

Training and Validation recall

0.6

0.5

0.4

0.3

0.7

0.8

0.9

1.0

2 4 6 8 10
epochs

Training recall
Validation recall

Re
ca

ll

(d)

Figure 16: Plots obtained with a LR of 0.001 by employing SGD optimizer. (a) Training and validation loss plot. (b) Training and validation
accuracy plot. (c) Training and validation precision plot. (d) Training and validation recall plot.

A
m

rit
sa

r

Fa
zi

lk
a

H
os

ha
irp

ur

Ja
la

nd
ha

r

Lu
dh

ia
na

M
an

sa

M
oh

al
i

M
uk

ts
ar

Pa
th

an
ko

t

Pa
tia

la
Amritsar

Confusion matrix

2

17

0 0 0 2 10 0 2 0

0 0 0 4 2 2 0

0 0 0 3 3

0 0 0 2 3 0

0 0 0 6

0 0 0

0 3

0

0

0

0

2

10

3

0

0 66

69

53

74

60

72

63

38

23

52 2 0 16 6

36

0 4 0 0 0

0 52 0 3 0 0 0

0 0 5 0 0 1

0 0 14 0 0 0

0 6 0 0 0

4 0 0 0

0 1 0

0 1

3

Fazilka

Hoshairpur

Jalandhar

Ludhiana

Mansa

Mohali

Tr
ue

 la
be

l

Muktsar

Pathankot

Patiala

0

10

20

30

40

50

60

70

Figure 17: Confusion Matrix for SGD optimizer with a LR of 0.001.

Scientific Programming 13



which is less than the best accuracy obtained by Adam
optimizer.

4.4.1. Comparison of <ree Different Batch Sizes Using SGD
Optimizer with a LR of 0.001. )e comparison of SGD
optimizer on three different batch sizes is carried out in this
section. Training loss, validation loss, validation accuracy,
and average validation accuracy are compared using 10

epochs. )e average validation accuracy obtained by batch
size 2 is 87.6%, batch size 4, 94.18%, and batch size 8, 93.31%.
It can be observed from Table 8 that the highest average
validation accuracy is obtained by batch size 4. Figure 18
shows the comparison plot for validation accuracy using
batch sizes 2, 4, and 8 for SGD optimizer with a LR of 0.001,
while Figure 19 shows the comparison plot for average
validation accuracy for the same. It can be concluded that,
here, also batch size of 4 has worked better for the available

Table 8: Comparison of SGD optimizer with three different batch sizes.

Batch size Epochs Training loss Validation loss Validation accuracy Average validation accuracy

2

1 1.96 1.11 63.2

87.6%

2 1.51 0.84 76.1
3 1.25 0.83 75.3
4 1.08 0.31 91.1
5 1.03 0.30 90.7
6 0.85 0.26 93.6
7 0.88 0.21 95.0
8 0.78 0.10 98
9 0.68 0.10 97.2
10 0.71 0.10 97.6

4

1 1.4 1.08 65.1

94.18%

2 0.60 0.23 94.1
3 0.38 0.15 95.7
4 0.33 0.13 96
5 0.27 0.11 97.3
6 0.25 0.07 99.0
7 0.22 0.07 99.0
8 0.19 0.07 99.0
9 0.18 0.07 98.8
10 0.17 0.07 98.8

8

1 1.1 0.99 64.3

93.31%

2 0.37 0.28 92.12
3 0.24 0.15 95.3
4 0.17 0.15 96.5
5 0.13 0.13 96.3
6 0.11 0.11 96.7
7 0.10 0.09 97.0
8 0.09 0.09 98.5
9 0.08 0.08 98.2
10 0.07 0.08 98.3

Validation Accuracy
100

80

60

40

20

0

Batch size 2
Batch size 4
Batch size 8

1 2 3 4 5 6 7 8 9 10
Epochs

Ac
cu

ra
cy

Figure 18: Comparison of validation accuracy using batch sizes 2, 4, and 8 for SGD optimizer with a LR of 0.001.

14 Scientific Programming



dataset using SGD optimizer although the achieved vali-
dation accuracy is less than the validation accuracy achieved
by Adam optimizer.

5. Testing of Some Images

In this section, some randomly selected images are given to
the CNN model, which has employed Adam optimizer with
a LR of 0.001 and BS of 4. Figure 20(a) shows that the image
of city name “Fazilka” has been recognized with an accuracy
of 84.12%, while the image of city name “Amritsar” has been
recognized 100% correctly.

6. Analysis

It can be analyzed from Tables 4 and 7 that Adam optimizer
with a LR of 0.001 and batch size of 4 has given the good
results in terms of average validation accuracy. )e best
average validation accuracy obtained by Adam is 99.13%,
while best average validation accuracy obtained by SGD
optimizer is 94.18%. Analysis plot of average validation

accuracy obtained by Adam optimizer and SGD optimizer is
shown in Figure 21. It can be concluded that Adamwith a LR
of 0.001 and batch size of 4 has performed much better as
compared to SGD optimizer using the same LR and batch
size.

7. Conclusion

Deep learning is the machine learning, which is applied to
the large datasets. Deep learning requires huge amount of
data to train the network, which can be stored on cloud.
)erefore, cloud computing helps in making deep learning
accessible and easier in handling large amount of data, and
also, the training of algorithms can be easily done on the
distributed hardware. It also helps in providing the access to
configurations of various hardware such as FPGAs, GPUs,
and high performance computing systems. It can be con-
cluded that the emerging paradigms of cloud computing
work very well with the deep learning algorithms instead of
traditional algorithms.)e performance of the deep learning
model depends on various hyperparameters like the LR,
batch size, choice of optimizers, and so on. In Tables 2, 3, and
5, various parameters are obtained using an Adam optimizer
with a LR of 0.001, 0.01, and 0.1, and the obtained average
validation accuracies are 99.13%, 96.9%, and 98.17%. Table 4
has also obtained the average validation accuracy by
changing the batch size of 2, 4, and 8, while the LR is kept
fixed at 0.001. Results are also analyzed by changing Adam
optimizer to SGD optimizer for the LR of 0.001. Average
validation accuracy obtained for SGD optimizer using batch
size of 2, 4, and 8 is 87.6%, 94.18%, and 93.31%, while the best
average validation accuracy obtained by Adam and SGD is
99.13% and 94.18%, respectively. From the above experi-
mentation, it has been observed that Adam optimizer with a
batch size of 4 and a LR of 0.001 has achieved the best

Average Validation Accuracy 
96
94
92
90
88
86
84

Average Validation Accuracy

2 4
Batch size

8

Ac
cu

ra
cy

Figure 19: Comparison of average validation accuracy using batch sizes 2, 4, and 8 for SGD optimizer with a LR of 0.001.

Fazilka: 84.12%
Faridkot: 51.74%

(a)

Amritsar: 100%
Muktsar: 28%

(b)

Figure 20: Testing of images. (a) Fazilka image. (b) Amritsar image.

Adam
91
92
93
94Ac

cu
ra

cy

95
96
97
98
99

100
Average Validation Accuracy

SGD
Optimizer

Figure 21: Analysis plot of average validation accuracy obtained by
Adam optimizer and SGD optimizer.

Scientific Programming 15



average validation accuracy of 99.13%. In the future, this
model can be implemented for word recognition for other
scripts also.

Data Availability

)e data will be available from the author upon request
(sandhya.sharma@chitkara.edu.in).

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

References

[1] P. Zhang, Q. Zhao, J. Gao, W. Li, and J. Lu, “Urban street
cleanliness assessment usingmobile edge computing and deep
learning,” IEEE Access, vol. 7, pp. 63550–63563, 2019b.

[2] S. Dargan, M. Kumar, M. R. Ayyagari, and G. Kumar, “A
survey of deep learning and its applications: a new paradigm
to machine learning,” Archives of Computational Methods in
Engineering, vol. 27, no. 4, pp. 1071–1092, 2020.

[3] L.-p. Huang, M. Hong, C. Luo, S. Mahajan, and L. Chen, “A
vector mosquitoes classification system based on edge com-
puting and deep learning,” in Proceedings of the 2018 Con-
ference on Technologies and Applications of Artificial
Intelligence, pp. 24–27, TAAI, Taichung, Taiwan, December
2018.

[4] C. Liu, Y. Cao, Y. Luo, G. Chen, V. Vokkarane, and
M. Yunsheng, “A new deep learning-based food recognition
system for dietary assessment on an edge computing service
infrastructure,” IEEE Transactions on Services Computing,
vol. 11, no. 2, pp. 249–261, 2018.

[5] I. Azimi, J. Takalo-mattila, A. Anzanpour, and M. Rahmani,
“Empowering healthcare iot systems with hierarchical edge-
based deep learning,” in Proceedings of the International
Conference on Connected Health: Applications, Systems and
Engineering Technologies, pp. 63–68, IEEE/ACM, Wash-
ington, DC, USA, September 2018.

[6] M. S. Hossain, G. Muhammad, and S. Umar, “Improving
consumer satisfaction, in smart cities using edge computing
and caching: a case study of: date fruits classification im-
proving consumer satisfaction in smart cities, using edge
computing and caching: a case study of date fruits classifi-
cation,” Future Generation Computer Systems, vol. 88,
pp. 333–341, 2018.

[7] U. Pal, R. K. Roy, and F. Kimura, “Multi-lingual city name
recognition for Indian postal automation,” in Proceedings of
the International Conference on Frontiers in Handwriting
Recognition, Bari, pp. 169–173, Bari, Italy, September 2012.

[8] S. )adchanamoorthy, N. D. Kodikara, H. L. Premaretne,
U. Pal, and F. Kimura, “Tamil handwritten city name database
development and recognition for postal automation,” in
Proceedings of the 12th International Conference on Document
Analysis and Recognition, pp. 793–797, IEEE, Washington,
DC, USA, August 2013.

[9] S. Vajda, K. Roy, U. Pal, B. B. Chaudhuri, and A. Belaid,
“Automation of Indian postal documents written in Bangla
and English,” International Journal of Pattern Recognition and
Artificial Intelligence, vol. 23, no. 8, pp. 1599–1632, 2009.

[10] S. Sahoo, S. K. Nandi, S. Barua, S. Malakar, and R. Sarkar,
“Handwritten Bangla city name recognition using the shape-
context feature,” in Intelligent Engineering Informatics,
pp. 451–460, Springer, Singapore, 2018.

[11] S. Y. Manchala, J. Kinthali, K. Kotha, K. S. Kumar, and
J. Jayalaxmi, “Handwritten text recognition using deep
learning with TensorFlow,” International Journal of Engi-
neering Research & Technology, vol. 9, no. 5, pp. 594–600,
2020.

[12] S. Bhowmik, S. Malakar, R. Sarkar, S. Basu, M. Kundu, and
M. Nasipuri, “Off-line Bangla handwritten word recognition:
a holistic approach,” Neural Computing & Applications,
vol. 31, no. 10, pp. 5783–5798, 2019.

[13] T. M. Wahbi and M. E. Musa, “Holistic approach for Arabic
word recognition,” International Journal of Computer Ap-
plications Technology and Research, vol. 5, no. 3, pp. 141–146,
2016.

[14] N. Sharma, A. Sengupta, R. Sharma, U. Pal, and
M. Blumenstein, “Pincode detection using deep CNN for
postal automation,” in Proceedings of the International
Conference on Image and Vision Computing New Zealand
(IVCNZ), pp. 1–6, IEEE, Christchurch, New Zealand, De-
cember 2017.

[15] J. Dasgupta, K. Bhattacharya, and B. Chanda, “A holistic
approach for Off-line handwritten cursive word recognition
using directional feature based on Arnold transform,” Pattern
Recognition Letters, vol. 79, pp. 73–79, 2016.

[16] U. Jindal, S. Gupta, V. Jain, and M. Paprzycki, “Offline
handwritten gurumukhi character recognition system using
deep learning,” in Advances in Bioinformatics, Multimedia,
and Electronics Circuits and Signals, pp. 121–133, Springer,
Singapore, 2020.

[17] S. Bansal, M. Kumar, and M.. Garg, “A New approach for
Handwritten city name recognition,” in Proceedings of the
International Conference on Advances in Engineering and
Technology(ICAET), pp. 106–109, Roorkee, India, May
2014.

[18] U. Pal, R. K. Roy, and F. Kimura, “Handwritten street name
recognition for Indian postal automation,” in Proceedings of
the 2011 International Conference on Document Analysis and
Recognition, pp. 483–487, IEEE, Beijing, China, September
2011.

[19] I. Kandel and M. Castelli, “)e effect of batch size on the
generalizability of the convolutional neural networks on a
histopathology dataset,” ICTexpress, vol. 6, no. 4, pp. 312–315,
2020.

[20] Q. Abbas, M. E. Ibrahim, and M. A. Jaffar, “A comprehensive
review of recent advances on deep vision systems,” Artificial
Intelligence Review, vol. 52, no. 1, pp. 39–76, 2019.

[21] Y. Wen, Y. Lu, and P. Shi, “Handwritten Bangla numeral
recognition system and its application to postal automation,”
Pattern Recognition, vol. 40, no. 1, pp. 99–107, 2007.

[22] K. Roy, S. Vajda, U. Pal, and B. B. Chaudhuri, “A system
towards Indian postal automation,” in Proceedings of the
Ninth International Workshop on Frontiers in Handwriting
Recognition, pp. 580–585, IEEE, Kokubunji, Japan, October
2004.

[23] S. Juneja, M. Gahlan, G. Dhiman, and S. Kautish, “Fu-
turistic cyber-twin architecture for 6G technology to
support internet of everything,” Scientific Programming,
vol. 20217 pages, 2021.

[24] S. Sharma, S. Gupta, and N. Kumar, “Holistic approach
employing different optimizers fortheRecognition ofDistrict
names using CNN model,” Annals of RSCB, vol. 25, no. 3,
pp. 3294–3306, 2021.

[25] S. Juneja, S. Jain, A. Suneja et al., “Gender and age classifi-
cation enabled blockschain security mechanism for assisting
mobile application,” IETE Journal of Research, pp. 1–13, 2021.

16 Scientific Programming

mailto:sandhya.sharma@chitkara.edu.in

