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There are certain vulnerabilities at the beginning of multiple domain cyberspace configuration. How to discover these potential
vulnerabilities has been a hot topic. This paper proposes to find these cyberspace vulnerabilities by discovering the shortest attack
path in multiple domain cyberspace. In order to discover more and shorter attack paths, we train an agent as an attacker to
discover multiple domain cyberspace attack paths. We formulate the discovering attack paths as a reinforcement learning (RL)
problem. With this technique, we added a multiple domain action select module to RL that can pick an executable action in a state.
By using the proposed method, we can discover more hidden attack paths and shorter attack paths to analyze the potential
vulnerabilities to cyberspace. Finally, we created a simulated cyberspace experimental environment to test our proposed method.
The experimental results show that the proposed method can discover more hidden multiple domain attack paths and shorter

attack paths than the existing methods.

1. Introduction

Amazing improvements in computer hardware and software
have permitted the rapid advancement of artificial intelli-
gence (Al), yet it is not frequently employed to defend cy-
berspace security [1]. However, a significant issue with the
existing cyberspace security defense is the intellectualization
of that system. Cyberspace should truly be viewed in terms of
a place made up of physical, digital, network, and social
domains when it comes to managing its security. Its security
should also be managed as a whole [2]. This procedure
primarily entails the intelligent deployment of security de-
vices and the intelligent discovering of hidden attack paths
[3], intelligent monitoring of network traffic, and intelligent
awareness of security situation and other parts [4], which
comprehensively constitute the cyberspace security protec-
tion system. We believe that it is Al itself that will provide the
means to constitute the cyberspace security protection sys-
tem, creating a symbiotic relationship between cyberspace
security and Al with each fueling advances in the other.

Here, we proposed a learning-based method for dis-
covering hidden attack paths in multiple domain cyberspace.
In order to effectively fix cyberspace flaws and increase the
security of the multiple domain cyberspace, our goal is to
identify the shortest hidden attack path. We define the
weakest vulnerability in multiple domain cyberspace as the
shortest hidden attack path. Even if this issue has been
researched, it still depends on specialists to determine and
assess the security dangers present in the current cyberspace,
which is not very intelligent and requires a lot of human
resources. Additionally, only network domain may be taken
into account in the current research since the problem
complexity results from the interplay of numerous domains
in cyberspace. Physical, social, network, and digital domains
should all be present in the multiple domain cyberspace, in
general. Space and physical objects are included in the
physical realm. City, campus, building, and room are all
examples of space domain. Physical domains include switch,
router, computer, and other terminal and network equip-
ment. Social relationships are referred to as the social
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domain. For instance, if an attacker is friends with the
network administrator, it will be simpler for them to get
greater network rights than other attackers. The typical
network area is referred to as the network domain. Infor-
mation entities used to represent digital information, such as
user names, passwords, secret keys, communications, are
known as digital domains. This results in the great com-
plexity of discovering hidden attack paths due to the in-
terplay of multiple domains in cyberspace. As a result,
discovering the shortest attack path cannot be done ex-
haustively. The state space is still so huge that the problem
cannot be solved using conventional techniques even after it
has been divided into smaller problems.

According to our knowledge, the following issues must
be resolved in order to achieve the goal.

The first is the issue of multiple domains that can interact
with one another and how to adjust the current analysis of
cyberspace security risks to emphasize numerous cyberspace
domains and enforce the pertinence and relevance of
business level.

The second is the issue of alternative actions in various
states being unique. The number of actions an agent may
choose from in classical reinforcement learning (RL) is
constant throughout all states. However, the agent has a
variety of possible actions in a variety of states. Different
approaches must be used to this problem’s solution in order
to make the alternative actions in various states.

To address this challenge, we treat discovering the
hidden attack paths across multiple domains as an RL
problem and train an agent to discover the hidden shortest
attack path over multiple domain cyberspace. The RL agent
successively discovers the attack paths throughout each
training cycle. A quick yet approximate reward directs
training so that each RL agent may learn the attack paths. In
addition, we proposed an enhanced Deep Deterministic
Policy Gradient (DDPG) method to enable the agent to
choose various actions in various states.

We think our method opens up new opportunities for
network administrators since it can grow over time and learn
from experience. The experimental results demonstrate that
the proposed method is capable of outperforming baseline
methods in a simulated cyberspace. Additionally, our pro-
posed method can discover shorter attack paths at the same
time as other baseline methods. Our proposed method is
extensively applicable to many genuine cyberspaces, even if
we assess largely on a simulated cyberspace.

The following are this paper’s key contributions.

We suggest using RL to the management and upkeep of
cyberspace in order to discover hidden attack paths across
multiple domain cyberspace. Our experimental results
demonstrated that cyberspace is less safe when the hidden
attack path is shorter. We may identify cyberspace weak-
nesses using the way we have suggested, which will help
administrators by serving as a guide and enhancing the
ability of cyberspace security to operate and be maintained.

We proposed an enhanced DDPG algorithm to handle
the issue of diverse alternative actions in various states. We
can determine if an action can be executed in a state and
acquire an execution action in a state by providing a multiple
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domain action selection module. Through this method, we
may realize the choice of actions in various states.

This paper is organized as follows: introduction is in
Section 1. We talk about the related works in Section 2. Our
proposed method, which includes the enhanced DDPG
algorithm and model for discovering hidden attack paths, is
presented in Section 3. Our experiment and an analysis of
the experimental results are presented in Section 4. The
conclusion is in Section 5.

2. Related Works

2.1. Intelligent Security Protection. The primary focus of
intelligent security protection is user’s behavior and network
monitoring guidelines. The traffic will often alter as a
cyberattack manifests, and we may use the attack mode type
to our advantage to find abnormalities in the cyberspace [5].
We may gather the original message of the data in the
cyberspace and extract it, take the destination address and
other information, construct the typical traffic model, and
then apply discrete wavelet transform technology to analyze
and identify the data traffic in order to find abnormalities in
cyberspace [6].

Today’s cyberspace user action-based intelligent security
protection method mostly depends on online data mining,
user abnormal activity detection, and technique based on
neural networks to discriminate. In this study, such covert
attack paths are referred to as zero-day attack paths, and a
prototype system called Patrol is proposed to detect them in
real time [7]. But because this method is dependent on rules,
it is less effective because it requires professionals to establish
the rules. Many current methods have the drawback of not
scaling well to medium-sized networks with hundreds or
thousands of hosts; therefore, this study introduced graph
reduction techniques to make the effort of locating and
removing the best attacker pathways simpler [8]. Addi-
tionally, it offered a way to prioritize both individual vul-
nerability and attack vectors in another study [9]. From a
different angle, a software protection meta-model is sug-
gested that may be used to create a formal knowledge base
that has just that information. Real-time analysis of cy-
berspace security warnings can be provided using this
method [10].

Users will remember a lot of action information
throughout operation, and making efficient use of this
knowledge is the foundation and key to realizing the de-
termination of abnormal action. To assist the choice of user
access action, multiple layer log collecting is built. Using this
method, we may identify attacker’s activity. The methods
above can determine whether a user’s behavior is abnormal
or not by using a multilevel user access log, integrating web
front, user click action, and URL access logic, extracting the
user’s access action characteristics, and then computing
average user behavior baseline characteristics, using an ef-
fective monitoring abnormal access action scoring algo-
rithm, and tracing the action of the abnormal IP [11].

The neural network method has been effectively used in
the domains of pattern recognition and probability density
estimation as a crucial technique for dealing with nonlinear
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systems. The aberrant behavior analysis approach based on
neural network can better describe the nonlinear relation-
ship between one variable and another when compared to
the statistical analysis theory. The capacity of the behavior
analysis system to examine a large number of network
packets is necessary for the changing of aberrant network
behavior. Furthermore, several attackers may coordinate a
number of common attacks, necessitating the need for an
intelligent security defense system with the capacity to
handle a sizable volume of nonlinear data. The neural
network-based method offers a high degree of flexibility for
the study of intelligent security protection because of its
quick reaction time, particularly for the processing of noisy
and incomplete data [12].

Intelligent security protection has recently become pop-
ular due to the development of machine learning. SVM
[13, 14], K-nearest neighbors [15], Naive Bayes [16], random
forests [17], neural networks [18], deep learning, and other
novel methods are only a few of the recent attempts. Due to
their superior performance, deep learning-based techniques
have entered the mainstream in the industry. Gao proposed a
deep belief network model that employs a supervisor-based
back-propagation network with a multilayer unsupervised
learning network [19]. In order to learn network traffic
characteristics unsupervised, Shone employed asymmetric
depth self-encoders, which not only produced good results on
big data sets but also cut down on training time [20]. Recurrent
Neural Network (RNN) was the model that Yin proposed,
compared to the nondepth model’s efficacy, and successfully
executed [21]. Long Short-Term Memory (LSTM) and a
gradient descent approach were used in Kim’s model [22]. The
outcomes of the trial demonstrated that the LSTM can per-
form better. Sheraz did a thorough investigation into the deep
learning model and showed that it can be applied not just in
this area but also to provide superior results [23].

2.2. Reinforcement Learning and Cyberspace Simulation.
Reinforcement learning is commonly considered as a gen-
eral machine learning model. It mainly studies how agent
can learn certain policy by interacting with the environment,
to maximize long-term reward. RL is based on the Markov
Decision Process (MDP) [24]. A MDP is a tuple
(S, A, T,R,y), in which S is the set of states and A is the set of
actions. T(s,-lsj, (a)): T x A — R is the reward after exe-
cuting action a at stage s;, and y is the discounting factor. We
used 7 to denote a stochastic policy, n(s,a): T x A — [0,1]
is the probability of executing action a at state s and
Y aean(s,a) = 1 for any s. The goal of RL is to find a policy 7
that maximizes the expected long-term reward. Besides, the
state action value function is

Q" (s,a) = E[Z Y'R(sna,)lsg = s,a, ~ 7(s,) |, (1)
=0

where p € (0, 1] measure the importance of future reward to
current decisions.

They indicate the potential for multiple actions to be
chosen in the same state for various policies 7, and they also

correlate to various rewards. In the same state, a superior
policy can choose better action to reap more rewards.

Traditional RL uses methods like Dynamic Program-
ming, the Monte Carlo Method, and Temporal-Difference
Learning to interactively compute the action value function,
which finally converges to provide the best policy. Following
the proposal of deep learning, the deep reinforcement
learning approach created by merging RL is currently the
most used method.

We present the popular RL algorithms A2C and DDPG
in the sections that follow.

Advantage Actor Critic (A2C): A2C is similar to
Asynchronous Advantage Actor Critic (A3C) [25] but has
no asynchronous part. The advantage function, which may
be used to assess the quality of the selected action values and
the averages of all actions, is employed by A2C in place of the
critic network’s raw results. Algorithms are being learned by
A2C and A3C exploiting the advantage. The following
equation represents the benefit: A(s,a) = Q(s,a) - V(s). The
advantage is denoted as A(s,a). We denote the state of the
agent as s and the action as a. V (s) represents the pure value
of the state s ; therefore, A (s, a) represents the pure value of
action a. Previous research has shown that the advantage can
solidify learning. A2C performs better than A3C while
lacking the asynchronous component. Thus, in order to
maintain and enhance the learning process, we adopt A2C as
a baseline in our research.

Deep Deterministic Policy Gradient (DDPG): DDPG
[26] is a learning method that integrates deep learning
neural network into Deterministic Policy Gradient (DPG)
[27]. Compared with DPG, the improvement is using neural
network as policy network and Q-network and then used
deep learning to train the above neural network. DDPG
consists of four networks: actor current network, actor target
network, critic current network, and critic target network. In
addition to the four networks, DDPG also uses experience
playback, which is used to calculate the target Q-value. In
Deep Q-Network (DQN), we copy the parameters of the
current Q-network directly to the target Q-network, that is,

Q= 62, but DDPG uses the following update:
0% —76? + (1- T)HQ’,
, , (2)
¢ —1¢" + (1 -1)8",

where 7 is the update coeficient, which is usually set as a
small value, such as 0.1 or 0.01. And this is the loss function:

Mz
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RL has several uses in a variety of contexts, particularly in
engineering. A multiagent safe RL method is used to take
into account the system’s security management as well as the
mutual effects of numerous agents [28]. A bilevel RL model
for security management of the system is created [29], which
can also adaptively learn from prior performance and en-
hance it over time. DDPG and A2C share many similarities,
but they utilize the critic network in different ways. Using
solely critic is merely an alternative to increase stability in



A2C since we utilize critique as a baseline from an expe-
rience trajectory. This is so that we can avoid back-propa-
gation in A2C when the policy is stochastic. Because the
deterministic nature of its policy allows us to calculate the
gradient from the Q-value, critique is utilized differently in
DDPG. The critic network, which in turn employs the ac-
tions produced by the actor network, provides the Q-value.
Because DDPG is a deterministic policy RL algorithm, we
choose to employ it in our work and develop it. Its benefit is
that efficiency has improved. In order to determine the
precise value of action at each step, we also need to sample
the probability distribution of the best course of action, but
in A2C, action is often a high-dimensional vector with
between 25 and 50 dimensions. Undoubtedly, frequent
sampling in the high-dimensional action space uses up
computer resources. Furthermore, because agents in this
cyberspace environment might take varied actions
depending on their state, DDPG is not only more effective
but also better suited to it. Finally, to show the superiority of
the proposed method, A2C and DDPG were compared to it
in our trials.

In parallel, a game is being mimicked online. Two agents,
an attacker and a defender, compete in an adversarial se-
quential decision-making game. Cyberspace simulation is
represented as a graph network made up of nodes where
attackers and defenders can move [30]. The node where an
attacker or defender is located determines their condition.
The exploit is successful when the attack value of each action
taken by the attacker is greater than the defensive value of
the defender. This method’s drawback is that the two agents
used RL against one another and tested how well they
performed against opponents who were learning. This study
demonstrated that we can model an environment to repli-
cate cyberspace.

However, there are not many environments like the one
from the prior job. In this situation, both the attacker and the
defender will adjust and interact in real time. However, after
the attackers succeeded in 62 out of their assault objectives,
their attacks were discovered [31]. As a result, real-time
competition between attackers and defenders is uncommon.
In this research, we train the attack agents in the absence of
the defensive agents in cyberspace settings.

3. Proposed Method

The problem definition: an overview of how the problem is
formulated as an RL problem and a full explanation of the
reward function, action, state, policy, and policy updates are
all covered in this part. Finally, we presented our enhanced
DDPG method to address this issue.

3.1. Overview. The proposed method, that is, the elements of
the reinforcement learning agents’ training, is described in
this section. We start by defining the agent’s state s. Second,
we provide the course of action a that the agent chose to take
in the cyberspace (how to select from the action lists). Third,
we determine rewards r based on the outcome of the action
a. Finally, we proposed our method for enhancing DDPG
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algorithm in this multiple domain cyberspace. The agent
continues learning by accumulating the set of s, a, and r seen
from the learning environment. An overview of our model is
shown in Figure 1.

3.2. Problem Definition. The goal of this study is to identify
the shortest hidden attack paths in multiple domain cy-
berspace in order for the administrators to identify the
cyberspace’s vulnerabilities and take action to strengthen
cyberspace security. This is how the issue is described:
Figure 1 illustrates how we saved the security information in
S2 given a cyberspace environment. The attacker cannot
access the S2 and obtain the security information under the
current cyberspace setup. Our goal is to use RL to train an
attacker agent to get access to the S2 and obtain security
information. If an attacker is able to access S2 and obtain the
security information, the assault was successful.

We treat the problem as a MDP, that is, M = (S, A,
P, R,y), where s € S is the current state of the cyberspace,
a € A is an attack action that is currently available, P is the
probability of transitions between states, R is the reward
value after taking an action to reach the next state, and y is
the discount factor. For the transfer probability, it can be
expressed as p(Sls,a) = p(S;,; =3IS; =s, A, = a). For the
reward function, it can be formally expressed as R(s,a)
= E[R,,,ls, al.

An RL agent acting as an attacker and a configured
cyberspace are present in our settings at the starting state s,,.
The final state s, reflects whether an attacker launched a
limited-step assault successfully or not. The RL agent will
execute an action to finish an attack step at each stage. As a
result, T is the quantity of attack steps in total. The agent
starts off in state s,, takes action a,, moves to state s,,, and
receives a reward from the cyberspace environment r, at
each step t.

We define s, as a concatenation of characteristics that
describe the state at time ¢, such as the agent’s location, the
computer they are using, and the services they have access to.
In Section 3.4, we will go into more depth about it.

The following state, s,,;, has an updated representation
with details about the attacker’s location at the time of the
attack or how they acquired the new service information.

The agent will do any legitimate actions in the state s,
that are in the action space. The agent’s state space, or a,, is s,
that the agent selected. In Section 3.5, we will go into more
detail about it.

The shortest attack path will be discovered in this study,
subject to restrictions on cyberspace security setup or se-
curity equipment. A fixed value divided by the total number
of attack steps represents our final reward. We shall discuss it
in full in Section 3.6.

3.3. Definition of Multiple Domain Cyberspace. More and
more academics are realizing that diverse domain behaviors
have an impact on cyberspace as their understanding of
cyberspace. Cyberspace should be understood as being in-
tegrated into multiple domains, including the physical, in-
formation, network, and social ones. It should also use an
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3.space: P1, terminal: T1, port: T1_EO, R_E5;
dominant: FW1; ...;get information:S2.

P: room E: port

T: user terminal computer S: server

R: router SW: switch
D: defense intrusion system equipment FW :firewall

FIGUre 1: The overview of proposed model.

interconnected information technology infrastructure net-
work as a platform, transmit data via radio and cable
channels, and regulate the actions of entities, with a focus on
its multiple domains. The social domain attribute of multiple
domain cyberspace is not explored in this study since it
primarily concerns the social interaction between the net-
work administrator and the attacker. We define cyberspace
in this paper as having multiple domains, including the
physical, information, and network domains. The equip-
ment’s spatial information is primarily described by the
physical domain. The interface, route, and action involved in
network transmission are primarily described by the net-
work domain. The majority of the digital information in
cyberspace is referred to as the information domain.
Additionally, there are some security regulations in this
cyberspace, such as laws for the protection of the physical
domain, the network domain, and the information domain.
Physical domain security protection rules primarily outline
the ways to prevent unauthorized employees from entering a
certain area and unauthorized access to the physical domain.
The rules for network domain security protection primarily
outline the ways to stop unauthorized access in the network
domain. Network isolation may generally be achieved
through the use of Access Control Lists (ACLs), static
routing, VLAN partitioning, and other techniques. ACLs are
stated as permitting data to flow through a port at a source
address, a port at a destination address, and a service at a
destination address. The techniques to stop unauthorized
access in the information domain are mostly covered by the
regulations for protecting the security of that domain. The
fundamental technique is to encrypt the data before it is
stored or sent. A secret key is required to decrypt the file

regarding whether it was encrypted using public key or
symmetric cryptography.

We address the challenge of discovering hidden attack
paths using a deep RL algorithm, using an RL agent to
discover attack paths across multiple domain cyberspace.
When the RL agent successfully attacks the service, we will
reward them positively. The ultimate reward is equal to the
award divided by the number of attack sequence steps. We
will give the RL agent a negative reward if they fail to attack
the service or use more attack steps than allowed. RL issues
may be expressed as MDPs, which have three essential
components: states, actions, and rewards. We define each of
the items listed below.

3.4. Definition of Agent’s State. States: the location of the RL
agent, the device he is using, and the device permissions he
possesses are all included in the collection of potential states
of the multiple domain cyberspace. The key component of
cyberspace states is the attacker’s permissions, which he
might acquire through a sequence of activities. In this paper,
we go through nine different sorts of attacker permissions,
including Space-Enter, Object-Use, Object-Dominate, Port-
Use, Port-Dominate, Service-Reach, Service-Dominate, File-
Dominate, and Information-Know. A physical domain’s
permissions are Space-Enter, Object-Use, and Object-
Dominate. Space-Enter means an attacker enters a physical
space, Object-Use means an attacker is permitted to use a
device, terminal, or piece of equipment, and Object-Dom-
inate means an attacker controls an object. Attackers can
control a piece of property by using an object. The dis-
tinction between Object-Use and Object-Dominate is that



the former can only utilize the equipment in its present
condition, whilst the latter can modify the equipment. The
network domain’s permissions are Port-Use, Port-Domi-
nate, and Service-Reach. When a port is used, the attacker
can access the network. Attackers who have control over a
port can alter its status or configuration. Service-Reach
denotes the information flow necessary to fulfill a service
request but prevents a user from accessing the service. Via
using the secure authentication service, the attacker can
access the service by File-Dominating. The digital domain’s
permissions are File-Dominate and Information-Know.
Attacker who controls a file can read, delete, and alter it,
among other things. Information-Knowledge refers to how
an attacker learned about security, for example, adminis-
trator user name, administrator password, and adminis-
trator key.

In this study, the RL states are used to control the at-
tacker’s access to cyberspace. We established a state list that
covered the attacker’s device permissions. For instance, if an
attacker is in a space, the following values are set for the
attacker’s state: Room A Space-Enter =0, Room B Space-
Enter =0, Terminal A Object-Use =0, Terminal A Object-
Dominate=0, Port B Port-Use=0, Port B Port-Domi-
nate = 0. The attacker then takes the following action: enters
Room A. This causes Room A Space-Enter to be set to 1 and
all other states to be set to 0. When an attacker takes action,
the states change as a result of the attacker’s action.

3.5. Definition of Agent’s Action. Actions refer to the col-
lection of steps an agent can take to alter the states of the
cyberspace environment (e.g., enter a room, operate or
control a computer, and access a service by a port).

The attacker’s options are constrained in this cyberspace
environment because the action space is so vast. This is
distinct from typical RL algorithm, for instance, if the at-
tacker is in outer space and has only two options: “enter
room” or “remain motionless.” He is not given the option to
“operate a computer,” “manage a computer,” or perform any
other operations. As a result, we will impose certain re-
strictions on the states when an attacker chooses an action.
We will go into more depth about this in Section 3.7.

3.6. Definition of Agent’s Reward. Reward is the incentive for
an agent to behave in a state.

The reward setting is described in this section. The
agent’s objective in our tests for Section 4 is to retrieve the
security information from S2 and the key to decode the data.
First, the attacker must figure out how to use and dominate
S2 objects in order to gain the password needed to decrypt
the security information. If the attacker is able to obtain the
Information-Know permission to access the security in-
formation, the attack is successful. Due to the multiple
domain cyberspace security rules, the attacker cannot access
server S2 directly. Instead, the attacker must access FW2 to
change the ACLs, allowing him to access servers S1 and S2. If
the attacker is successful in obtaining the security infor-
mation, he can then access server S2 and change the ACLs
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once more to return to the previous state. As a result, the
setting for reward r is as follows:

(i) »=5000000/¢t if the attacker obtains the Informa-
tion-Know of security information in S2, and the ¢
is the attacker’s successful sequences steps.

(ii) » =10 if the attacker obtains the File-Dominate of
the security information in S2.

(iiif) r =5 if the attacker obtains the Object-Dominate
and Service-Dominate of S2.

(iv) =5 if the attacker obtains the Object-Dominate
and Service-Dominate of S1.

(v) r=1 if the attacker obtains the Port-Use of S1.
(vi) r=1 if the attacker obtains the Port-Use of S2.

(vii) r=-0.1 if the attacker has an action but obtains no
permissions.

Reward r=-0.1 represents the agent’s penalty. Maxi-
mizing the reward is the agent’s goal. As a result, the agent
will attempt to attain the objective as fast as feasible if
r=-0.1 is specified for each action. This relates to an attack
scenario where the attacker completes the objective as
quickly as feasible to reduce the number of attack sequence
steps. Additionally, the episode is over once the attack se-
quences reach 10,000 steps.

3.7. Improved DDPG Algorithm. Our model’s primary
purpose is to identify an RL agent’s hidden attack path in the
context of a certain cyberspace setting.

The model uses the DDPG method, and the attacker is
represented as an agent. The agent chooses an action in
current state, which has the potential to alter both the en-
vironment and the agent’s state, as the initial step in de-
termining the shortest hidden attack path. Agents will
simultaneously get positive or negative rewards. Addition-
ally, the agent’s state has changed, allowing it to take ad-
ditional activities to earn greater rewards. As a result, the
agent learns by trial and error the hidden attack path in this
cyberspace environment. In Figure 2, the model is displayed.

Discovering the appropriate policy mapping function
R(s) — A is another phase in the process of finding the
shortest attack steps in order to choose the action a that
would maximize the agent’s long-term reward given the
present state s of the cyberspace. The policy in this process
may be separated into two categories: deterministic policy
and stochastic policy. Deterministic policy is for the state
and the belief that the output will be commensurate (action).
The efficiency of deterministic policy algorithms is often
great, but they cannot be explored or improved. Instead of
using a deterministic policy, a stochastic policy joins a
matching random value, giving it a certain capacity for
exploration. In our solution, a deterministic policy is se-
lected to assure superior performance because the action
value range in actual applications is typically not big.

Itis an ordinary RL model. The agent will behave and get
areward as a result of the study of environmental awareness.
The agent’s objective is to maximize rewards, which leads to
additional agent training. In this research, we will enhance
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FIGURE 3: The overview of improved DDPG algorithm.

the DDPG algorithm, whose primary design is depicted in
Figure 3.

Additionally, there are four networks and one experience
replay memory in the conventional DDPG method. With
regard to these, the experience replay memory is primarily in
charge of storing the state transfer process of {s,a,r,s').
Using small batch sampling, the corresponding transferred
samples are extracted and used to train the corresponding
neural network in order to prevent a high degree of cor-
relation between samples. The four networks are the online
policy network, the target policy network, the online Q-
network, and the target Q-network. There are two policy

networks (Actor) and two Q-networks (Critic) among the
four networks. The deep neural network used by the policy
network, which uses the current state as input and produces
the appropriate action as the output, is primarily used to
replicate the attacker’s policy. The basic purpose of the Q-
network is to calculate the expectation of the final reward
value that would be acquired if the policy were to be con-
tinually carried out after the present action had been carried
out in a certain condition. Current state and action are the
inputs, and the Q-value is the output. The learning process is
unstable when a single neural network is employed to
replicate a policy or Q-value. Since the target network is used



to calculate the training goal in the DDPG algorithm, policy
network and Q-value network create copies of two networks,
referred to as the online network and the target network,
respectively. After a short while, the model of the online
networks’ parameter updates to the target networks, making
the training process stable and simple to converge.

The standard DDPG algorithm has been enhanced, and
it differs from the standard DDPG algorithm in two ways.

We included the multiple domain action selection
module in the enhanced DDPG algorithm.

The major difference from the normal DDPG algorithm
is the addition of the multiple domain action selection
module. The activities that an agent can select in each state
are the same in a standard DDPG. However, in this setting,
the attacker has a variety of possible actions in each con-
dition when choosing the attack paths in cyberspace. For
instance, if the attacker is in outer space, his only available
actions are “enter room” and “remain motionless,” but in the
standard DDPG algorithm, he has access to all available
actions. It follows that an attacker in outer space cannot
choose the action “control terminal.” It joined the multiple
domain action selection module to enable the DDPG al-
gorithm to pick various activities in various states. The
output of the online policy network is the input for this
module. We named this the theory action a,. Next, we
performed the real action a,, which was then executed into
multiple domain action execution modules and received the
relevant reward r,. In the end, online policy network receives
the corresponding actual execution of the action a, and the
corresponding reward ;. This method makes it possible to
realize the rational action selection in many states.

Second, experience playback memory input differs from
other input.

The input of the experience playback memory is in-
creased to store the sequence (s;,a,,7,,s;,;), which is the
execution of the action g, in the state s,, acquisition of the
reward r,, and conversion to the next state s,,,, in order to
ensure that the multiple domain action selection complies
with the constraints of the actions on the state. Furthermore,
it is prevented that the policy network selects an action that
is impractical in the state since the corresponding rela-
tionship between state and action must be taken into ac-
count while choosing the action. Therefore, it is not sufficient
for the multiple domain action selection module to simply
apply a linear transformation to change an inoperable action
a, into a viable action a; when the policy network picks it in
the state s,. In order to prevent relevant actions from being
chosen during the policy network training process, relevant
action sequences (s, d;, —00,s,,;) must be taken to show
that actions a, are executed in the state s,, the subsequent
state obtained is still 5;, and the reward at this time is a huge
negative value.

Two policy networks share the same network design,
with the state of the network as the input and the action to be
chosen as the output. A RNN hidden node is introduced
structurally between the hidden layer and the original DDPG
input layer. The restructured policy network is composed of
five levels. The input layer is the first layer. The RNN hidden
layer, which has 32 GRU nodes, is the second layer. 48 fully

Scientific Programming

FIGURE 4: Experiment environment topology.

linked nodes are included in the third and fourth levels,
which are fully connected layers. The output layer, which is
the fifth layer, uses the sigmoid function as the activation
function. In the end, it outputs a multidimensional vector
that represents the action that has to be taken across multiple
domain cyberspace.

The two Q-networks then have another design, whose
output is a scalar and whose input comprises both the
network’s state and a multidimensional vector that repre-
sents the matching multiple domain actions. There are four
tiers in the network. The input layer is the first layer. There
are 48 completely linked nodes in the second layer and 36 in
the third layer, respectively. The ReLu function is utilized by
the activation function. The output layer, which outputs a
scalar and makes use of the linear function as the activation
function, represents the Q-value of the appropriate state and
action. It is the fourth layer.

4. Experiments

4.1. Experiment Environment. To test the efficacy of our
method, we used a model of the cyberspace environment as
our experiment data. There are a total of five places in this
experiment setting. The entire physical universe, which
represents an area, makes up the outermost space. P1 is the
location of the terminal, P2 is where the VPN equipment is,
P3 is where the communication team is, and P4 is where the
communication hub is. There are 5 different types of
equipment: computer (T1 and T2, respectively, stored in P1
and P3), firewall (FW1 and FW2, respectively, stored in P3
and P4), sensor (D1, stored in P2), router (R, stored in P4),
switch (SW, stored in P4), and server (S1 and S2, stored in
P4). Figure 4 depicts the equipment connection relationship.
S2 houses the security information. An attack is successful if
the attacker can access S2 to retrieve the security file and its
“Information-Known” permission. Additionally, we want to
make sure that the attack sequence has the fewest steps
possible as well as success.

Due to the necessity for remote control of the firewall
FW1 equipment in this environment, the FW1_password is
still stored in FW1. At the same time, because T2 maintains
FW2 and S1, T2 also stores the FW2_password and
S1_web_password. The network domain security protection
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TaBLE 1: Network services in the experiment environment.

Web service Web service’s role

Service support equipment

Service dependent port Service password

T2_manager
FW1_manager
FW2_manager
S1_web
S2_web

Remote management equipment

Remote management equipment

Remote management equipment
Web services in server S1
Web services in server S2

T2 T2_EO None
FwW1 FW1_E2 FW1_password
FW2 FW2_E2 FW2_password
S1 S1_E0 S1_web_password
S2 S2_E0 S2_web_password

rules only let T1 access server S1 to block other traffic in this
cyberspace, while the physical domain security protection
rules prohibit users from entering rooms P2 and P4. The
security information is kept in S2 and must be decrypted by
the user using a password. Since the password is also stored
in S2, the user must have “Information-Know” access to the
password in order to use it. The attacker can only access S1 in
this setup of cyberspace, and they are unable to view S2’s
security information. Table 1 lists the network services used
in the experiment’s cyberspace environment.

But we do know that an attacker might use a multiple
domain joint attack to access the security information kept on
server S2 and decrypt it. A possible attack path is as follows.

Attacker first enters space P2 and obtains the firewall
FW1_password management service password.

Second, the attacker adds an access control list that
allows T1 or D1 to access the management service of T2,
which is T2, by using device T1 or D1 to access the man-
agement service of FW1_manager.

Third, get the password FW2_password of firewall FW2
stored on T2 and the password S1_web_password of service
S1_web through T2_manager.

Fourth, use T2_S1 port, access firewall FW2_manager,
add access control list: allow T1 or D1 access service S1_web
and S2_web.

Fifth, use T1 or D1 to access the service S1_web and get
the password S2_web_password of S2_web.

Finally, the attacker can access the service S2_web using
Tl or D1 in order to obtain the security file using
S2_web_password. The attacker now completes all of his
attack procedures.

This is only one of numerous combined multiple domain
attack paths in this cyberspace experiment environment,
demonstrating the setup vulnerability of the cyberspace
environment. In this work, we propose to detect the weakest
point in cyberspace and the shortest hidden attack path,
which may serve as a guide for the administrator to correct
the weakest in the cyberspace.

4.2. Experiment Method. An agent (attacker) is added
throughout the experiment and is first placed in the cy-
berspace environment depicted in Figure 4.

The attack path sequence steps exceeding 10000 steps is
the requirement for each episode’s termination. We also
train 500 episodes. If an attacker makes a successful attack,
the attack sequence steps n will be recorded, and he will
return to the outermost space and continue searching for the
attack sequences until the episode has more than 10,000
attack path sequence steps.

We define the related state, action, and reward. In ac-
cordance with the RL model and enhanced DDPG algo-
rithm, the following settings are pertinent.

In constructing a state vector, we set a length of 106
vectors on the set of states to represent a state of various
positions on the value of the attacker, depending on the
spaces, ports, services, or information. For instance, the
value for a certain space is set to 1 if the attacker is in it, and
to 0 otherwise. Put the value for the port to 1 if the attacker
may use it; else, set it to 0. Put the value corresponding to the
service to 1 if the attacker is connected to a service; oth-
erwise, set it to 0. We set the value corresponding to that
information to 1 if the attacker successfully obtains security
information, else to 0.

Attackers have different actions in different states. The
introduction is found in Section 3.5. For instance, the at-
tacker can add the necessary access control list for the
firewall FW1 in the present state if he has authority over the
management service FW1_manage. He is unable to add the
FW1 access control list otherwise.

Different rewards are established for the attacker
depending on how much of the attack path has been suc-
cessfully completed. The reward for one of them is deter-
mined in Section 3.6 of the program.

4.3. Baselines. We provide three comparative RL methods to
test the advantageous of our proposed method. The three RL
methods are the following.

DQN method: DQN is an RL standard algorithm that
predicts Q-value using a neural network and iteratively
updates the neural network to discover the shortest attack
path. In DQN, there are two neural networks. The target
network, which is comparatively fixed, is used to determine
the value of Q-target, and the evaluate-network is used to
determine the value of Q-evaluate.

A2C method: as we explained in Section 2, A2C is an RL
standard algorithm. Although there is no asynchronous
component, this approach is comparable to A3C.

DDPG method: in 2, we presented DDPG, another RL
standard algorithm.

The method proposed in this paper is the “improved
DDPG method” (IDDPG).

4.4. Results and Discussions. Learn 500 episodes under the
aforementioned circumstances, and we noted the following
findings.

Result A: in order to compare the average successfully
executed attack sequences steps, we added certain security
criteria. To do this, we totaled up all of the executed attack
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TaBLE 2: Attack sequences steps in different security rules.
Methods 3 4 5 6
DQN 3533 4323 7231 8313
A2C 3222 4213 7332 8812
DDPG 2434 4765 7240 8551
IDDPG 995 3322 6321 7233
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FiGure 5: Different methods reward results: (a) IDDPG method, (b) DDPG method, (¢) A2C method, and (d) DQN method.

sequences steps and divided by the total number of suc-
cessfully executed attacks.

We added security rules from Table 2; there are now 3, 4,
5, and 6 security rules in total. In general, the longer the
attack sequences are, even when the attacker cannot attack
effectively, the more security rules there are. Additionally,
Table 2 in Result A supports the opinion. As we can see, the
attack sequence steps lengthen across all approaches as the
number of security rules rises. Therefore, it is clear that the
absence of security regulations in cyberspace makes it easier
for attackers to capture their target, demonstrating the
significance of the configuration of the cyberspace. The
attack sequence steps may be used to gauge the degree of
cyberspace security, as demonstrated by Result A. That is, ifan
assault succeeds more frequently, there is a lack of cyberspace
security, which shows that the setup of the cyberspace is poor.

On the other hand, a longer attack sequence step indicates a
better setup of the cyberspace. As a result, in our experiment,
we can describe cyberspace security using the attack’s se-
quence steps.

Following the experiment, we increased the number of
security rules to 3 in order to confirm the effectiveness and
value of our proposed method.

The reward received by the attacker is Result B.

The Results B are shown in Figure 5. First of all, as the
quantity of training increases, R shows a gradual ascending
trend until ultimately tending to converge. It is in the RL
learning process, demonstrating that the proposed model
complied with the RL features of discovering shorter hidden
attack paths in cyberspace.

Second, Figure 5 shows four ways to get the award. We
can see that, among the other methods, our proposed
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TaBLE 3: Attack successfully number and minimum steps results.

Successfully number Minimum steps

DQN 1203 1800
A2C 2533 2400
DDPG 3711 2100
IDDPG 6705 750

method, IDDPG, has the largest reward. This might explain
the fact that our proposed method has shorter attack se-
quence steps and more effective attacks.

The attacker successfully attacking in an experiment is
how we define the attack successfully number. The Mini-
mum Steps is an episode’s smallest successful attack se-
quence steps.

Result C is the attack successfully number.

Result D refers to the minimum steps.

Results C and D are recorded in Table 3.

Thirdly, we can see from Table 3 that our proposed
method has the fewest attack sequence steps. It is also
demonstrated that our proposed method is capable of dis-
covering the attack sequences with the fewest steps under the
same circumstances. The number of successful attacks is
likewise at its greatest in the interim. Our proposed method
is preferable to existing methods.

We may utilize the attack sequence steps as a gauge of the
cyberspace security based on the experimental findings,
which first establish that the configuration of the cyberspace
can impact its security. Second, we employ a different
method inside the same setting. Then we compare the re-
ward, the attack successfully number, the minimum steps,
and the attack successfully number using various methods in
the same cyberspace environment. The experiment’s highest
reward went to our proposed method, which also had the
most successful attacks and required the fewest steps. Our
proposed method may attack more successfully and earn
more rewards in an episode, according to the trial findings.
As a consequence, the attacker will do the fewest steps,
identify the cyberspace attack sequences that take the fewest
steps. In conclusion, our proposed method is better than
current methods.

5. Conclusion

We proposed a learning-based method to identify the cy-
berspace’s vulnerability by locating the hidden attack path.
In the meanwhile, we discovered the cyberspace vulnera-
bility metrics, which are the steps an attacker successfully
follows to launch an assault, and we ultimately conducted an
experimental verification. This method has a great practical
value because it can take into account the mutual effect of the
multiple domain setup in cyberspace and use an intelligent
way to analyze its weaknesses.

The RL method, which has shown improved results, is
used in this research to analyze a typical cyberspace envi-
ronment and discover hidden attack paths in configured
cyberspace. The virtual environment in this work is con-
strained, though. We intend to use the RL to better manage
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the operation and maintenance of additional cyberspace
systems in the upcoming phase.
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