
Research Article
Analysis of the Coupling and Coordination Relationship between
the Evolution of Enterprise Spatial Structure and Economic
Development Based on the Deep Learning Model

Lei Wang,1 Yuan He,2 and Yao Qi 3

1School of Economics and Management, Jiaozuo Normal College, Jiaozuo 454000, China
2Department of Finance and Business, Henan College of Industry & Information Technology, Jiaozuo 454000, China
3School of Business Administration, Henan Polytechnic University, Jiaozuo 454000, China

Correspondence should be addressed to Yao Qi; qiyao@hpu.edu.cn

Received 4 January 2022; Revised 24 January 2022; Accepted 16 February 2022; Published 18 March 2022

Academic Editor: Hangjun Che

Copyright © 2022 Lei Wang et al. +is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

+is study is based on the unsupervised learning-based enterprise spatial structure evolution and economic coupling coordination
relationship situation assessment method. Pattern recognition has high-precision characteristics, but it is necessary to train the
evaluation model for the enterprise spatial structure evolution in advance and then carry out economic coupling coordination
based on the trained model. +e conclusions are as follows: (1) through the RC1, RC2, RC3, RC4, RC5, and RC6 evaluation
indicators to evaluate the situation evaluationmethod based on the unsupervised learning of the evolution of the enterprise spatial
structure and the economic coupling and coordination relationship, it is found that the main component characteristics as a whole
meet the standard. +e optimal RC is RC6: profit� −0.0885, highest� −0.0809, lowest� −0.0932, WR.WR2� 0.0038,
MA.MA3� −0.0782, MTM.MTM� −0.0427, OSC.OSC� −0.0355, ROC.MAROC� 0.0105, SKDJ.D� −0.0268, BIAS-QL.BIAS
� −0.01, WIDTH.WIDTH� 0.2408, CYD.CYDN� −0.0961, FSL.SWL� −0.0868ADTM.ADTM� −0.0379, ATR.ATR� −0.0278,
DMA.DIFMA� −0.0358, DMI.ADX� 0.8516, DMI.ADXR� 0.854, EMV.EMV� −0.0942, VMACD.DIF� 0.3312, and
UOS.MAUOS� −0.0846.2. Based on the deep learningmodel of the coupling and coordination relationship between the evolution
of the spatial structure of the enterprise, the time-dependent matrix comparison experiment is divided into directed + self,
directed, undirected + self, and undirected time for comparison. +e experimental results on directed + self are the best; with
various indicators, the upward improvement is above 10%: CP� 0.8611, CR� 0.9353, C–F1� 0.8967, EP� 0.8865, ER� 0.857,
E–F1� 0.917, OP� 0.856, OR� 0.9845, and O–F1� 0.99.3. +e time cost, profit, and transaction volume data of the company are
collected for a certain period of time, and simulation experiments are conducted to get a small difference between the predicted
result and the actual data. +e January data are closest to the true value: cost� 30.78, profit� 30.11, highest� 30.1, lowest� 29.7,
WR.WR1� 81.21, WR.WR2� 45.62, AMV.AMV2� 32.67, AMV.AMV3� 34.95, andMCST. MCST� 36.08.4. In the model score,
the best performance of LSTM data is CP� 0.3829, CR� 0.3664, C–F1� 0.3744, EP� 0.3726, ER� 0.3004, E–F1� 0.3326,
OP� 0.9155, OR� 0.9316, and O–F1� 0.9234, which is better than the BiLSTM model with CP� 0.3648, CR� 0.3319,
C–F1� 0.3392, EP� 0.4402, ER� 0.391, E–F1� 0.4145, OP� 0.9215, OR� 0.9318, and O–F1� 0.9266.

1. Introduction

Deep learning (DL) network, also known as deep neural
network, derived from the artificial neural network, simu-
lates the human brain to learn and perceive the outside
world, and its core neurons are a new field in machine
learning research. Both deep learning and shallow learning

methods simulate the human brain to perceive the outside
world. +e difference between the two is that the deep
learning model can transform high-dimensional complex
feature data into higher levels and more through deep and
simple linear and nonlinear network structures. Abstract
representation was used to carry out deep learning algo-
rithms such as deep self-encoding networks. It has good
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characterization ability for high-dimensional complex deep
self-encoding network [1–3]. Deep self-encoding networks
can have outstanding advantages in processing large-scale,
nonlinear, and multidimensional data. +e gated recurrent
unit neural network in the rise of deep neural networks has
the function of data security situation assessment and is
suitable for processing deep neural network time series data.
Generative adversarial network (GAN) has a good effect in
the field of intelligent robot data generation under wireless
connection. Based on deep learning, an adaptive feature
quantitative evaluation method of intelligent robot clusters
based on convolutional neural network (CNN) under
wireless connection has emerged.+is method combines the
coupling and coordination relationship of the evolution of
enterprise spatial structure with the characteristics of CNN
and realizes a comprehensive quantitative evaluation of deep
neural networks through self-adaptive deep self-encoding
features such as online learning. Artificial intelligence re-
searchers use neural networks as a way to express complex
problems in a nonlinear way. In recent years, they have been
applied in the field of biological theory and artificial intel-
ligence. +e research of neuron perceptron has received
extensive attention [4–6]. Deep neural networks are derived
from neural networks and are superior to traditional neuron
perceptron networks. Artificial intelligence research using
deep neural networks will be a very promising research
direction. Artificial intelligence researchers have designed
the neuron unit in the artificial neural network in the deep
self-encoding network, also known as the high-dimensional
complex deep self-encoding network perceptron, which
receives the information input of the high-dimensional
complex deep network and after time series data processing
outputs the result. Since the human body’s perception of the
external world is realized by interconnecting deep autoen-
coding networks formed by hundreds of neurons, the ar-
tificial neural network designs perceptrons of high-
dimensional complex deep autoencoding networks to
connect them to each other. According to the high-di-
mensional complex deep self-encoding network signal
processing flow, it is divided into a data security input layer,
a time series hidden layer, and a self-encoding network
output layer. +e perceptron layer that initially senses the
incoming signal is called the input layer [5–9]. +e per-
ceptron layer that processes internal signals and continues to
output internal signals is called the hidden layer, and the
signal that is responsible for the final output of the rela-
tionship between the evolution of the enterprise’s spatial
structure and the economic coupling is called the output
layer. Deep neural network, as an extension of artificial
neural network vector machine and feature gravity search
algorithm, adds more vector machine feature search on its
basis. +e neurons in the data security input layer, the time
series hidden layer, and the output layer of the self-encoding
network are fully connected. As the number of output layers
of the self-encoding network increases, deep neural net-
works have stronger learning output capabilities. In order to
solve the parameter selection problem of deep self-encoding
network and high-dimensional complex deep self-encoding
network in machine learning technology, support vector

machine and feature gravity search algorithm (GSA) can be
combined based on parameter optimization, so that the
neural network security situation assessment system has
better global optimization function. A cyberspace method
based on an improved feature gravity search algorithm can
be optimized using high-dimensional complex deep self-
encoding network learning strategies and simulation
methods, which significantly improves the accuracy of the
feature gravity search algorithm and the computational
efficiency of the cyberspace method. +e neural network
method that optimizes the network space method of the
feature gravity search algorithm can be used to perform an
adaptive mechanism of neural network training efficiency
through the cuckoo neural network algorithm. In this paper,
the method of sequential data processing based on conjugate
gradient is introduced [10–13].

With the development of machine learning technology,
pattern recognition methods such as deep autoencoding
networks, high-dimensional complex deep autoencoding
networks, data security situation assessment functions, and
time series data vector machines have also been widely used
in the coordination of the evolution of enterprise spatial
structure and economic coupling. Based on the character-
istics of deep autoencoder (DAE) and deep neural network
(DNN) [14, 15], a method for analyzing the relationship
between the evolution of enterprise spatial structure and
economic coupling is proposed, which improves the accu-
racy of identifying the evolution of the enterprise’s spatial
structure and the flexibility of the relationship between
economic coupling and coordination. On the basis of the
traditional hierarchical model, unsupervised learning is
performed by using neurons to perceive signal data through
synapses, combined with a variational autoencoder (VAE) to
process new output signals. Finally, a method for evaluating
the situation of the coordination relationship between the
evolution of the spatial structure of the enterprise and the
economic coupling based on unsupervised learning is
formed. Pattern recognition based on unsupervised learn-
ing-based enterprise spatial structure evolution and eco-
nomic coupling coordination relationship situation
assessment method has high-precision characteristics, but it
is necessary to train the evaluation model for the enterprise
spatial structure evolution in advance and then carry out
economic coupling coordination based on the trained
model.

2. Evolution of Enterprise Spatial Structure and
Economic Development

2.1. Deep Learning Model. +e deep learning model is a
network model that is further developed on the basis of deep
neural networks. It can greatly reduce the number of pa-
rameters through weight sharing. At the same time, con-
volutional neural networks can process multidimensional
input data of the evolution of the enterprise’s spatial
structure and the coordination relationship between eco-
nomic coupling and retention. +e original local spatial
information of the input data of the deep self-encoding
network in themachine learning technology has been greatly
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improved, and its feature extraction ability has also been
greatly improved. It is mainly used in the processing of
enterprise spatial structure evolution and economic cou-
pling recognition. +e nodes between the various con-
volutional neural layers of the deep learning model are
connected to each other to make it have the memory
function of the network model. It can obtain the hidden
layer state of the spatial structure evolution and then cal-
culate the output of the hidden layer at the current time
according to the output of the input layer at the current time.
It solves the problem that the fully connected deep neural
network cannot model time series data. It is mainly used to
deal with the evolution of the enterprise spatial structure and
the identification of economic coupling. +e deep learning
model is shown in Figure 1 [16–18].

2.2. Coupling and Coordination Relationship of the Evolution
of Enterprise Spatial Structure Based on the Deep Learning
Model. +e deep learning model-based corporate spatial
structure evolution coupling coordination relationship
model includes corporate structure filtering algorithms, as
well as deep learning model resource recommendation and
resource display algorithms. +erefore, it is necessary to
design the algorithms required for the coupling and coor-
dination relationship model of the evolution of the enter-
prise space structure, and at the same time, through
experiments, adjust the parameters of the deep learning
models designed by different companies, select better pa-
rameters, and finally coordinate the relationship through the
evolution of the enterprise space structure.+e real dataset is
compared with the classic algorithm to verify the feasibility
and rationality of the designed algorithm. +e coupling and
coordination relationship model of the evolution of the
enterprise spatial structure includes the data layer, the
evaluation layer, and the knowledge layer, as shown in
Figure 2. +e evolution of the spatial structure of an en-
terprise cannot be done without the support of big data for
the development of the coupling and coordination rela-
tionship, and big data cannot do it without the deep learning
model technology. +erefore, data processing technology
plays an important role in resource recommendation and
resource display algorithms. Datasets usually need to be
preprocessed [19]. Especially for the dataset in the field of
enterprise spatial structure, preprocessing the dataset can
filter out the impurity information of the evolution of the
silent structure of the enterprise to a certain extent.

2.3. Data Processing Technology. Data processing refers to
the evolution of the enterprise’s spatial structure, coupling
and coordinating relational data acquisition, data cleaning,
data processing, and data visualization. +e significance of
data processing is to transform the company’s messy data
source processing into information useful for deep learning
model resource recommendation and resource display al-
gorithms. +e filtering algorithm deletes outlier data and
duplicate data and normalizes and standardizes the data, so
that we can store, search, analyze, and reuse the outlier data
and duplicate data. Data processing technology is the deep

learning technology to realize the automation of data pro-
cessing. Instead of manual work, it can relatively easily
process the evolution of the enterprise’s spatial structure,
coupling and coordinating relational data, effectively saving
the cost and time of data processing. For large-scale en-
terprise spatial structure evolution, coupling and coordi-
nating relational data processing are quite complicated, and
it is difficult to complete it manually. +erefore, corre-
sponding tools or technical means are needed to complete
data processing tasks.

3. Application of the Deep Learning Model in
Enterprise Economic Development

3.1. LSTM [20–22].

X � x1, x2 . . . xn . (1)

+e deep learning model is defined as follows:

ht � f Uxt + Wht−1( ,

ot � g Vht( .
(2)

+e number of parameters is defined as follows:

ot � g Vf Uxt + Wht−1( ( . (3)

3.1.1. Analysis on the Coordination Relationship between the
Evolution of Enterprise Spatial Structure and Economic
Coupling.

ot � g Vf UXt + Wf Uxt−1 + Wht−2( ( ( ,

zt � σ Wz · ht−1, xt ( ,

rt � σ Wr · ht−1, xt ( .

(4)

Input data are defined as follows:

h′ � tanh W · rt ∗ ht−1, xt ( ,

ht � 1 − zt( ∗ ht−1 + zt ∗ ht
′,

Z
l+1

(i, j) � Z
l ⊗w

l+1
 (i, j) + b.

(5)

3.2. BiLSTM [23].

Z
l+1

(i, j) � 
kl

k�1


f

x�1


f

y�1
[Z

l
k soi + x, soj + y(  + b. (6)

Machine learning technology is defined as follows:

(i, j) ∈ 0, 1, . . . , Ll+1 , Ll+1 �
Ll + 2p − f

so

,

gv � ReLU 
u∈N(v)

hu · WL(u,v)
⎛⎝ ⎞⎠,

E � − 
n

i�0
Xilog P Xi( .

(7)
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Deep autoencoding network is defined as follows:

E � − 
2

i�0
Xilog P Xi( ,

β � argminβ∈Rd ,

β � argminβ∈Rd ‖Y − Xβ‖
2 s.t.,



d

j�1
βj



≤ t, t≥ 0.

(8)

Enterprise spatial structure evolution is defined as
follows:

β � argminβ∈Rd ‖Y − Xβ‖
2

 + λ
d

j�1
βj



,

t0 � 
d

j�1
βj(OLS)



.

(9)

Deep learning model
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Display layer

Interactive data
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Figure 1: Deep learning model.

Data layer

Evaluation layer

Knowledge layer

Evaluation model

Figure 2: Coupling and coordination relationship model for the evolution of enterprise spatial structure.
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3.3. GCN [15, 24–26].

X � X1, X2, X3, . . . , Xp 
T
,

Zij �
xij − xj

sj

.

(10)

3.3.1. Analysis on the Coupling and Coordination Relation-
ship of Enterprise Economy.

i � 1, 2, . . . , n,

j � 1, 2, . . . , p.
(11)

3.3.2. :e Evolution of Enterprise Spatial Structure Based on
the Deep Learning Model.

xj �


n
i−1xij

n
,

s
2
j �


n
i−1 xij − xj 

2

n − 1
.

(12)

Financial analysis is defined as follows:

R � rij 
p
xp �

Z
t
Z

n − 1′
,

Uij � z
T
i b

o
j, j � 1, 2, . . . , m.

(13)

4. Simulation Experiment

4.1. Principal Component Feature Analysis. RC1, RC2, RC3,
RC4, RC5, and RC6 are used to evaluate the situation
evaluationmethod based on the unsupervised learning of the
evolution of the spatial structure of the enterprise and the
economic coupling and coordination relationship, and it is
found that the main component characteristics as a whole
meet the standard. +e optimal RC is RC6: profit� −0.0885,
highest� −0.0809, lowest� −0.0932, WR.WR2� 0.0038,
MA.MA3� −0.0782, MTM.MTM� −0.0427, OSC.OSC
� −0.0355, ROC.MAROC� 0.0105, SKDJ.D� −0.0268,
BIAS-QL.BIAS� −0.01, WIDTH.WIDTH� 0.2408, CYD.
CYDN� −0.0961, FSL.SWL� −0.0868, ADTM.ADTM� −

0.0379, ATR.ATR� −0.0278, DMA.DIFMA� −0.0358,
DMI.ADX� 0.8516, DMI.ADXR� 0.854, EMV.EMV� −

0.0942, VMACD.DIF� 0.3312, and UOS.MAUOS� −

0.0846, as shown in Table 1 and Figure 3.

4.2. Evaluation Indicators for the Coupling and Coordination
Relationship of the Evolution of Enterprise Spatial Structure
Based on the Deep Learning Model. Based on the deep
learning model of the enterprise spatial structure evolution
coupling and coordination relationship model, the principal
component evaluation index algorithm is included. It is
necessary to design the principal component evaluation
indicators of the enterprise spatial structure evolution

coupling coordination relationship model and, at the same
time, through experiments, to design the principal com-
ponents of different companies. +e evaluation index is
adjusted, and finally the principal component evaluation
index is obtained through the coupling and coordination
relationship of the evolution of the enterprise’s spatial
structure. Indicators CP, CR, C–F1, EP, ER, E–F1, OP, OR,
O–F1, PCNT.PCNT, PCNT.MAPCNT, AMO.AMO2,
VRSI.RSI3, AMV.AMV2, AMV.AMV3, and MCST.MCST
are used to evaluate the model. It is found that, in the
coupling and coordination relationship of the evolution of
enterprise spatial structure based on the deep learning
model, when RC� 6, the indicators are optimal:
CP� −0.0184, CR� −0.0933, C–F1� −0.3346, EP� −0.0051,
ER� 0.1221, E–F1� 0.0195, OP� −0.5153, OR� 0.1523,
O–F1� −0.113, PCNT.PCNT� −0.0023, PCNT.MAPCNT
� −0.018, AMO.AMO2� −0.022, VRSI.RSI3� 0.2018,
AMV.AMV2� −0.076, AMV.AMV3� −0.0543, and
MCST.MCST� 0.0148, as shown in Table 2 and Figure 4.

4.3. Time-Dependent Matrix Comparison Experiment.
Based on the deep learning model of enterprise spatial
structure evolution coupling coordination relationship
model, the time-dependent matrix comparison experiment
is divided into directed + self, directed, undirected + self, and
undirected time for comparison. +e experimental result on
directed + self is the most effective. +e indicators are im-
proved by more than 10%: CP� 0.8611, CR� 0.9353,
C–F1� 0.8967, EP� 0.8865, ER� 0.857, E–F1� 0.917,
OP� 0.856, OR� 0.9845, and O–F1� 0.99, as shown in
Table 3 and Figure 5.

4.4. Simulation Experiments in Different Companies. +e
time cost, profit, and transaction volume data of the com-
pany are collected for a certain period of time, and simu-
lation experiments are conducted to get a small difference
between the predicted result and the actual data.+e January
data are closest to the true value: cost� 30.78, profit� 30.11,
highest� 30.1, lowest� 29.7, WR.WR1� 81.21, WR.WR2
� 45.62, AMV.AMV2� 32.67, AMV.AMV3� 34.95, and
MCST. MCST� 36.08, as shown in Table 4 and Figure 6.

+en, different models are compared to predict the
economic development of the company. In the LSTMmodel,
A company� −1.03, B company� −0.9, C company� −0.95,
D company� −0.94, E company� −0.96, F company
� −0.68, G company� −0.67, H company� −0.59, I
company� −0.49, and J company� −0.56. +e LSTM model
is obtained as the optimal model, as shown in Table 5 and
Figure 7.

4.5. Scoring of Different Models. +e scoring standards in-
clude accuracy (P), recall (R), and F1 scoring experiment
results. +e best performance of LSTM data is CP� 0.3829,
CR� 0.3664, C–F1� 0.3744, EP� 0.3726, ER� 0.3004,
E–F1� 0.3326, OP� 0.9155, OR� 0.9316, and O–F1�

0.9234, which is better than the BiLSTM model with
CP� 0.3648, CR� 0.3319, C–F1� 0.3392, EP� 0.4402,
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Table 1: Principal component analysis.

RC1 RC2 RC3 RC4 RC5 RC6
Profit 0.9452 0.195 0.2122 0.0049 −0.0289 −0.0885
Highest 0.9448 0.1982 0.2196 0.058 −0.006 −0.0809
Lowest 0.9413 0.1962 0.2103 0.0511 −0.0609 −0.0932
WR.WR2 −0.001 −0.2737 0.0275 −0.0395 0.0512 0.0038
MA.MA3 0.9734 −0.1121 0.1559 −0.0541 −0.0241 −0.0782
MTM.MTM −0.0032 0.8769 0.1252 0.2854 −0.0061 −0.0427
OSC.OSC −0.0011 0.8331 0.1869 0.4332 −0.0202 −0.0355
ROC.MAROC 0.0338 0.8914 0.3031 −0.0275 0.0344 0.0105
SKDJ.D 0.0389 0.8678 0.0432 0.106 −0.0683 −0.0268
BIAS-QL.BIAS −0.0362 0.3561 0.0002 0.8862 −0.0239 −0.01
WIDTH.WIDTH 0.1058 0.014 0.021 0.0285 0.7291 0.2408
CYD.CYDN 0.1315 0.3727 0.2886 0.3361 −0.5788 −0.0961
FSL.SWL 0.9611 0.1197 0.215 −0.0159 −0.0272 −0.0868
ADTM.ADTM 0.0591 0.5492 0.6507 0.0818 −0.1677 −0.0379
ATR.ATR 0.6541 −0.0014 0.2166 0.0058 0.5668 −0.0278
DMA.DIFMA 0.2072 0.098 0.8759 −0.0667 0.0374 −0.0358
DMI.ADX −0.0985 −0.0335 0.008 −0.0152 0.1862 0.8516
DMI.ADXR −0.1379 −0.0591 0.0294 0.0072 0.2531 0.854
EMV.EMV 0.0275 0.8208 0.2628 0.1308 −0.0963 −0.0942
VMACD.DIF −0.0466 0.6583 0.1273 0.1629 0.113 0.3312
UOS.MAUOS 0.0941 0.8208 0.2045 0.1164 0.027 −0.0846

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

profit

Highest

lowest

WR.WR2

MA.MA3

MTM.MTM

OSC.OSC

Principal component characteristics

RC6
RC5
RC4

RC3
RC2
RC1

Figure 3: Principal component feature analysis.

Table 2: Main component evaluation index.

RC1 RC2 RC3 RC4 RC5 RC6
CP 0.1535 0.3535 0.7474 −0.0868 0.1219 −0.0184
CR 0.2483 0.5096 0.536 0.4017 −0.256 −0.0933
C–F1 0.2981 0.1999 0.689 0.0047 0.2559 −0.3346
EP 0.0071 −0.0265 −0.1641 0.2175 0.0069 −0.0051
ER 0.1411 0.4014 0.6578 0.1225 −0.294 0.1221
E–F1 0.1891 0.0036 0.9024 −0.0307 0.0437 0.0195
OP 0.3858 −0.2712 0.2265 0.0165 0.304 −0.5153
OR 0.129 0.4455 0.7093 −0.0163 −0.0791 0.1523
O–F1 0.3228 0.0114 0.0387 0.011 −0.4751 −0.113
PCNT.PCNT −0.0489 −0.0036 0.042 0.8405 −0.0144 −0.0023
PCNT.MAPCNT −0.0476 0.4017 0.0211 0.8841 −0.0426 −0.018
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Table 2: Continued.

RC1 RC2 RC3 RC4 RC5 RC6
AMO.AMO2 0.4653 0.3189 0.4335 −0.0185 0.577 −0.022
VRSI.RSI3 −0.0397 0.4054 0.0615 0.3812 0.0391 0.2018
AMV.AMV2 0.9664 −0.0094 0.2118 −0.0614 −0.0229 −0.076
AMV.AMV3 0.978 −0.1596 −0.0036 −0.0347 0.0163 −0.0543
MCST.MCST 0.9613 −0.1087 −0.1285 −0.0628 0.0471 0.0148
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Figure 4: Principal component evaluation index.

Table 3: Time-dependent comparative experiment.

Time-dependent matrix type CP CR C–F1 EP ER E–F1 OP OR O–F1
Directed + self 0.8611 0.9353 0.8967 0.8865 0.9506 0.9174 0.9956 0.9845 0.99
Directed 0.8381 0.8922 0.8643 0.8706 0.9468 0.9071 0.9939 0.983 0.9884
Undirected + self 0.6977 0.7759 0.7347 0.7826 0.7529 0.7674 0.991 0.9865 0.9888
Undirected time 0.6395 0.8103 0.7148 0.7309 0.692 0.7109 0.9974 0.9836 0.9904
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Figure 5: Time-dependent comparative experiment.
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Table 4: Enterprise simulation experiment.

Time Cost Profit Highest Lowest WR.WR1 WR.WR2 AMV.AMV2 AMV.AMV3 MCST.MCST
2020.01 30.78 30.11 30.1 29.7 81.21 45.62 32.67 34.95 36.08
2020.02 31.97 30.75 32.08 30.37 60.23 34.44 32.28 34.78 35.95
2020.03 31.56 31.97 32.2 31.4 31.23 24.62 31.96 34.69 35.88
2020.04 31.58 31.43 31.96 31.36 23.85 24.8 31.75 34.62 35.83
2020.05 31.92 31.58 32.56 31.38 21.62 22.38 31.46 34.5 35.73
2020.06 35.18 35.52 35.99 35.16 86.79 74.86 38.62 44.68 43.19
2020.07 35.16 35.84 35.86 35.13 87.09 75.43 38.04 44.61 43.05
2020.08 34.01 34.79 34.79 33.01 81.72 76.13 37.36 44.44 42.82
2020.09 34.1 34.47 34.78 34.07 79.2 73.99 36.86 44.3 42.7
2020.10 34.83 34.1 35.48 34 62 56.56 36.29 44.06 42.5
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Figure 6: Enterprise simulation experiment.

Table 5: Enterprise economic forecast.

LSTM BiLSTM BiLSTM+GCN
(dependency)

BiLSTM
(WordNet) BiLSTM+GAT BLTGM

(noNor)
BLTGM
(nor) BLTGM2 BLTGM3 MCST.MCST

−1.03 −1.1 −1.05 −1.09 −0.26 1.04 −0.17 −0.65 −0.61 −0.74
−0.9 −1.03 −0.95 −1.02 0.043 0.311 −1.59 −0.67 −0.63 −0.755
−0.95 −0.9 −0.94 −0.9 −0.5 −0.69 −0.89 −0.68 −0.64 −0.76
−0.94 −0.96 −0.96 −0.91 −0.79 −0.94 −0.89 −0.68 −0.65 −0.77
−0.96 −0.94 −0.9 −0.9 −0.07 −1.03 −0.97 −0.7 −0.67 −0.78
−0.68 −0.59 −0.66 −0.72 −0.18 1.06 0.87 0.45 0.4 0.17
−0.67 −0.62 −0.66 −0.6 −0.64 0.97 0.8 0.44 0.4 0.15
−0.59 −0.66 −0.59 −0.61 −0.16 0.37 0.2 0.41 0.39 0.13
−0.49 −0.62 −0.55 −0.56 0.21 −0.29 −1.46 0.37 0.39 0.09
−0.56 −0.49 −0.57 −0.52 −0.31 −0.01 −0.78 0.34 0.38 0.07
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Figure 7: Enterprise economic forecast.

Table 6: Scores of different models.

Model CP CR C–F1 EP ER E–F1 OP OR O–F1
LSTM 0.3829 0.3664 0.3744 0.3726 0.3004 0.3326 0.9155 0.9316 0.9234
BiLSTM 0.3648 0.3319 0.3392 0.4402 0.3916 0.4145 0.9215 0.9318 0.9266
BiLSTM+GCN (dependency) 0.3897 0.3578 0.373 0.4889 0.4183 0.4508 0.9247 0.9399 0.9322
BiLSTM (WordNet) 0.474 0.3922 0.4292 0.5 0.5209 0.5102 0.9355 0.9433 0.9394
BiLSTM+GAT 0.6882 0.8276 0.7515 0.7749 0.7985 0.7865 0.9997 0.9839 0.9917
BLTGM (noNor) 0.8375 0.8664 0.8517 0.8863 0.8593 0.8726 0.9853 0.9853 0.9853
BLTGM (Nor) 0.8611 0.9353 0.8967 0.8865 0.9506 0.9174 0.9956 0.9845 0.99
BLTGM2 0.8488 0.944 0.8939 0.9182 0.9392 0.9286 0.9951 0.9859 0.9905
BLTGM3 0.8065 0.9698 0.8806 0.9094 0.9544 0.9314 0.9994 0.9822 0.9907

Table 7: Principal component feature analysis of the LSTM model.

RC1 RC2 RC3 RC4 RC5 RC6
SS loadings 8.63 6.91 5.21 3.84 2.25 2.18
Proportion var 0.23 0.19 14 0.1 0.06 0.06
Cumulative var 0.23 0.42 0.56 0.66 0.73 0.78
Proportion explained 0.3 0.24 0.18 0.13 0.08 0.08
Cumulative proportion 0.3 0.54 0.71 0.85 0.92 1
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ER� 0.391, E–F1� 0.4145, OP� 0.9215, OR� 0.9318, and
O–F1� 0.9266, as shown in Tables 6 and 7 and Figure 8.

Analyzing the principal component characteristics of
LSTM, all data indicators meet the standards, and the best
performance in the cumulative ratio is RC1� 0.3,
RC2� 0.54, RC3� 0.71, RC4� 0.85, RC5� 0.92, and RC6�1.

5. Conclusion

+is study is based on the unsupervised learning-based
enterprise spatial structure evolution and economic cou-
pling coordination relationship situation assessment
method. Pattern recognition has high-precision character-
istics, but it is necessary to train the evaluation model for the
enterprise spatial structure evolution in advance and then
carry out economic coupling coordination based on the
trained model.
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