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The traditional distribution automation system, demand side management system, and distributed generation access and control
system, respectively, solve the problems of regional distribution network power supply, customer power consumption, and new
energy utilization to varying degrees. Intelligent Park evolved from the concept of intelligent park of State Grid Corporation,
Modern enterprises, or residential areas that can make full use of modern communication, computer, automation, and other
technologies to implement the power supply demand of the park. For the modern intelligent park with user-side temperature
control load and demand response load access, an intelligent park energy management and optimal scheduling method based on
deep reinforcement learning (DRL) algorithm is proposed. Through the interaction between the agent and the energy envi-
ronment of the intelligent park, the control strategy is adaptively learned. This method can realize the continuous action control of
energy management in intelligent park and can realize the optimal scheduling decision of intelligent park in various scenarios.
Firstly, based on the characteristics and types of intelligent park aggregation unit, the environment model of intelligent park
energy management system interacting with agent is established. Secondly, the basic principle of deep deterministic policy
gradient deep algorithm is introduced, and on this basis, the key links of deep reinforcement learning algorithm, such as action
space, state space, reward mechanism, neural network structure, and learning process, are designed. Finally, the effectiveness of

the proposed algorithm is verified by an example of a city intelligent park.

1. Introduction

As a typical Internet of Things [1-6] application, intelligent
park refers to a regional autonomous system composed of
distributed photovoltaic and energy storage units on the user
side and various flexibly adjusted loads, which coordinates
with the distribution network or independently supplies
power to the loads [7-9]. In recent years, intelligent parks
have shown great potential in grid connection and con-
sumption of distributed new energy, aggregation, and reg-
ulation of controllable load on the user side and have
become one of the main strategies for developing distributed
energy and improving energy utilization rate on the user side
in many developed countries [10]. Different from the

traditional microgrid concept, smart parks add flexible and
controllable resources such as air conditioners and electric
vehicles to their aggregation units, which aggravates the
uncertainty and complexity of commercial transactions and
power logistics in smart grids to a certain extent [11].
Therefore, how to understand personal electricity con-
sumption behavior and its impact from a large number of
high-dimensional converged data on the user side and fully
mobilize the flexibility of user-side resources has become an
urgent problem to be solved in microgrid energy manage-
ment [12, 13].

At present, for the energy management and optimal
scheduling of intelligent parks, from the perspective of al-
gorithm, most of them focus on optimization algorithm or
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heuristic intelligent algorithm. Sun et al. in [14] established
an optimal dispatching model of intelligent park considering
photovoltaic, ice storage air conditioning load, and inter-
ruptible load on the user side and established a mixed integer
programming model of intelligent park. On this basis, the
power flow constraint of distribution network is further
considered in [15], and the energy management model of
microgrid is decomposed into a unit commitment problem
and an optimal power flow problem, which avoids solving
the mixed integer nonlinear programming problem directly.
Zhang et al. in [16] further studied the optimal scheduling
problem of microgrid under uncertain photovoltaic output
and proposed a two-stage robust optimization model of
microgrid based on C-CG algorithm. Lei et al. in [17] studied
multi-microgrid complementary scheduling and energy
sharing on the basis of single microgrid operation optimi-
zation, established a master-slave game model between
multi-microgrid and distribution network, and used Kriging
metamodel fitting with less computation to replace the
energy management model of lower microgrid. On this
basis, Zhao and Tao et al. in [18, 19] further study the
distributed optimization of multi-microgrid and realize
distributed computing of multi-microgrid based on alter-
nating direction multiplier method, which protects the
privacy of each microgrid. Askarzadeh in [20] uses a genetic
algorithm based on memory mechanism to directly solve the
minimum operating cost problem of microgrid. In [21],
hybrid particle swarm optimization algorithm is used to
solve the multiobjective optimization problem considering
both distribution network security and microgrid operation
economy.

The research methods of optimizing the operation of
intelligent parks in the above documents can be summarized
as centralized and distributed solutions. Specifically, when
using these traditional methods for optimization, all possible
solutions must be calculated completely or partially, and the
best solution must be selected. However, this kind of cal-
culation leads to the low computational efficiency of the
traditional optimization process, and when the optimization
model is nonlinear, it is easy to fall into the local optimal
solution. Relying on the background of big data, deep re-
inforcement learning (DRL) algorithm provides a new way
to solve this problem. As an artificial intelligence scheme,
DRL algorithm has been widely used in the fields of optics,
communication, geography, and power system scheduling.
She et al. in [22] applied unsupervised deep learning and
deep reinforcement learning to 6G mobile communication,
which verifies the effectiveness of different algorithms. The
deep Q-learning (DQN) algorithm is applied to cooperative
communication technology [23], and DQN is trained
according to interrupt probability and mutual information,
and the optimal relay is selected from multiple relay nodes
without network model or prior data. Cao et al. in [24] used
the deep reinforcement learning algorithm to optimize the
arbitrage strategy of energy storage system and forecasted
the load data by combining convolution neural network and
long-term memory. Li et al. and Qiu et al. in [25, 26] further
applied deep reinforcement learning to the charge and
discharge optimization of electric vehicles.
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As a model-free optimization algorithm, DRL has been
widely used in the fields of demand response optimization,
power market decision optimization, and power system
optimal dispatching. Wang et al. in [27] designed a model-free
deep reinforcement learning method with double DQN
structure to optimize the demand response management
under time-of-use electricity price and variable power con-
sumption mode; the actor-critical algorithm is used to study
the demand response regulation of load aggregation quotient,
and the effectiveness of the proposed algorithm is proved
under the condition of considering various uncertain factors
[28]; Ye et al. in [29] studied the optimization of electricity
market clearing and used deep deterministic policy gradient
(DDPQ) algorithm to solve the bilevel model. Liu et al. in [30]
used A3C algorithm to realize residents’ load participating in
demand side response and made use of CPU multithreading
function to execute multiple actions at the same time through
multiagent. It can be seen that DRL can learn from the
continuous transformation of historical data. This powerful
machine learning model, combined with deep neural net-
work, can quickly extract, control, and optimize the terminal
aggregation units of intelligent park, and can deal with the
high uncertainty under various complex modes. The DRL
algorithm has been applied to various fields of power system
from different angles in the literature mentioned above, but in
general, there are still some shortcomings as follows: (1)
Although the existing DRL algorithm can improve the
convergence by designing the target network, experience
playback, and other mechanisms, its training is slow and
converges. Difficulties, instability, and other problems are still
widespread, and it is difficult to adjust parameters; (2) al-
though some researches have applied DRL algorithm to the
cooptimal scheduling of the park, the park model is simple
and often ignores the user-side demand response resources,
such as temperature-controlled load, transferable/interrupt-
ible load, etc., so it is difficult to reflect the benign interaction
of source-load. Based on the above considerations, this paper
improves the existing DDPG algorithm from the perspectives
of random exploration strategy, environment awareness and
learning ratio, and increasing experience playback pool and
applies the improved DDPG algorithm to the energy man-
agement and optimal scheduling decision of modern intel-
ligent parks. Finally, an example of an actual intelligent park
in a city is given to verify the effectiveness of the proposed
algorithm in different scenarios.

To sum up, the main contributions of this paper are as
follows:

(1) Aggregate modeling of user-side multishape flexible
regulation resources in intelligent park, construct
user-side temperature control load model and price
demand response model, and take user-side regu-
lation into account in the energy management model
of intelligent park.

(2) An energy management model based on improved
depth deterministic gradient strategy is proposed in
this paper. Through such three measures as the
random exploration strategy, the adjustment of
environment perception and learning proportion,
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and the increase of high access experience pool, the
convergence characteristics and computing ability of
the algorithm are improved significantly.

(3) The effectiveness of the proposed algorithm is ver-
ified by an example of an actual intelligent park in a
city, and the improvement of the overall economic
benefit of the park by controlling user-side resources
is verified by a comparative example.

2. Intelligent Park Structure and
Scheduling Framework

The microgrid studied in this paper is a community microgrid
with independent supply and demand infrastructure. The
microgrid is managed by an energy aggregator or a public utility
company. There are wind turbines in the microgrid, which are
connected to the main power grid and can supply internal load
or sell electricity to the superior power grid according to the
market electricity price. The overall architecture of the intelli-
gent park is shown in Figure 1, its architecture can be analyzed
from three angles: physical layer, information layer, and control
layer. The physical layer includes a wind turbine, an electric
energy storage system, a set of temperature-controlled loads,
and a set of price-based demand response loads. The infor-
mation layer is mainly composed of smart meters and com-
munication systems, which can realize real-time monitoring of
power generation and consumption data and bidirectional
transmission of information of various components. The
control layer is mainly an energy management system (EMS)
that sends control signals to the controllable components of the
microgrid through the relevant infrastructure. As can be seen
from Figure 1, the main control variables include (1) switch
control quantity of temperature control load; (2) charge/dis-
charge control of electric energy storage system; (3) interactive
power control with superior power grid. Therefore, when
modeling energy management in this paper, a multiagent
control system can be established according to these control
variables. These control units will be modeled one by one below.

2.1. Modeling of Electric Energy Storage System.
Considering the economic and technical feasibility, this
paper adopts a community shared energy storage system,
which can meet the power demand of intelligent park for at
least two hours. The real-time stored power status of the
energy storage system is expressed as follows:

D
B, =B, +1n.C, - =, (D
Na

where ; € [0, 7] is the electric energy stored by the electric
energy storage system at time ¢, 3** is the maximum capacity
of the electric energy storage system, ¢ and fll, respectively,
represent the charging efficiency and Jischarging efficiency
of the energy storage system, - € [0,2*] and %, € [0, 5*],
respectively, represent the charging power and discharging
power of ESS at time ¢, and 2* and }*, respectively, rep-
resent the maximum charging power and discharging power
of ESS. The storage state of the ESS system can be expressed

by SOC values as

Bt
BSCt = max* (2)
B

2.2. Temperature Control Load Modeling. The temperature
control load in the intelligent park refers to a large number
of air conditioners, water heaters, heat pumps, or refriger-
ators, which can form flexible adjustment resources with a
certain controllable capacity through aggregators and can
participate in the resource scheduling of the intelligent park
as a whole under the coordinated control of agents. Its basic
control structure is shown in Figure 2.

In order to ensure the comfort level of users, a feedback
controller is equipped on each TCL to maintain the tem-
perature of related equipment within an acceptable range.
The feedback controller can receive the switch action in-
formation of the equipment from the aggregator and verify
whether the temperature constraint can be met under the
action. The action control strategy of the feedback controller
is as follows:

0 if T; > Tinax
ulHl = l/li lf Tinax > Tlt > Tinin > (3)
1 lf Tlt < Tinin

where u! is the decision variable of the feedback controller,
indicating the off-state of the equipment; if it is in the open
state, it is set to 1; otherwise it is set to 0; T} represents the
temperature of the i-th temperature control load at time ¢,
and T' . and T _ are the minimum and maximum values
of temperature, respectively. The temperature dynamic
change process of temperature control load satisfies the
second law of thermodynamics [31], which is specifically
expressed as follows:

T;) + L u, +4q.

m,t -

. 1 . 1 ;
T, = g(T? - T}) +C—i(T

(4)
i

myt+1

1, ..
- (T, -T,,),
where Tf; is the measured indoor air temperature, Tin’t is the
unobservable building temperature, TY is the outdoor
temperature, C', and C' are the specific heat capacity of air
and buildings, ; is the internal heat of buildings, and L{ , is
the rated power of temperature control load. Similarly, the
adjustable range of temperature control load can also be
expressed in the form of state of charge, specifically as
follows:

i Tlt - Tinin

SoC; o (5)

max min

2.3.  Price-Based Demand Response Load Modeling.
Price-based demand response load refers to some inter-
ruptible/transferable loads in intelligent parks, which can
participate in the energy scheduling of microgrid on the
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FiGure 2: TCL aggregation control chart.

premise of meeting the minimum demand of users according
to the electricity price. Based on sensitivity coeflicient
B € [0,1] and recovery coeflicient f\, this paper describes the
characteristics of demand response load of different house-
holds. The so-called sensitivity coefficient refers to the load

percentage that response load I can be reduced/increased
under the condition of given electricity price increase/de-
crease; the so-called recovery coefficient refers to how many
times the reduced load can be supplemented. The specific load
size of price demand response load I at time f is
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L' =L,, - SL! + PB..

,. (6)
SLy = Ly, B+ 6y

In the formula, L, tables the basic load size, SL! represents
the actual load transferred at time f, the specific expression is
shown in (6), 6, = {~2,-1,0,1,2} represents the load elec-
tricity price level at time £, §, > 0 at that time, and the electricity
price is higher at that time. EMS reduces the operating cost by
transferring the load, so SLf; > 0 at this time; similarly, 8, < 0 at
that time and SL! <0 at this time. PB! represents the com-
pensation amount of the previously transferred load at time ¢,
and its specific calculation method is as follows:

t-1
PB =) w,;SL', (7)
=0

where w; ; € {0, 1} represents whether load transfer occurs at
time, and this variable is a Boolean variable, which is mainly
affected by electricity price level and recovery coeflicient.
Specifically, when the transfer duration is closer to the
maximum recovery coefficient, the greater probability of
w; ; = 1, and the actual probability of w; ; = 1 at time f can be
carried out in the following way:

i, =1) - clip<_8t sign(SL") R 1>'

" 2 A

1

a if X<a (8)

cip(X,a,b) =1 X ifa<X<b.

b if X>b

The intelligent park is also connected with the superior
power grid through tie lines to balance the internal supply
and demand relationship in real time. That is to say, when
the internal supply and demand relationship cannot be
balanced, the superior power grid can be used as the standby
dispatching resource of the microgrid, and its transaction
price adopts the Finnish electricity market price provided by
[32]. The agent of the main power grid needs to share the
purchase/sale price information with EMS in real time,
which is recorded as (A*,A?). The agent control flow is
shown in Figure 3, and the specific steps are as follows:

(1) According to the electricity price level, determine the
basic electricity consumption strategy of demand
response load and temperature control load.

(2) Determine the relationship between energy supply
and demand according to the demand response, the
actual electricity consumption of temperature-con-
trolled load, and the output of wind turbines.

(3) According to the relationship between energy supply
and demand, priority is given to scheduling energy
storage to reduce power imbalance, and if the supply
is in short supply, energy storage will discharge. If the
supply exceeds the demand, the excess energy will be
used for energy storage and charging.

(4) If the energy balance cannot be realized after (3), the
purchase/sale of electricity from the superior power
grid shall be considered, and the purchase/sale value
shall be recorded as (Pf”y , Pfe”) until the energy
balance is realized.

EMS should fully consider the price response charac-
teristics of various resources and determine the load elec-
tricity price level §, at all times in the intelligent park, and in
order to prevent the actual owner of the park from mali-
ciously raising the electricity price, it is stipulated that the
quotation of EMS should fluctuate around an intermediate
value, and at the same time, the daily average price level
should be close to the retail electricity price provided by
power retailers. See the following formula for the specific
form of EMS quotation:

Py € (Pprker + 90 - CSt)ate{—z,—Lo,l,zy 9

In the formula, in order to reflect a constant of price change
speed, 797kt s the retail price. In the actual operation process,
EMS continuously records the price level for each short time
and accumulates it. When the price level exceeds a certain
threshold, the retail price is used as the actual transaction price.
The final price level calculation formula is as follows:

t
o, if Z d, < threshold
=0
at,eff = ‘ 5 (10)

0 if Z d, < threshold

Jj=0

where threshold is the preset threshold.

3. Reinforcement Learning Framework for
Energy Management in Intelligent Parks

The energy management problem of intelligent park is es-
sentially a sequential decision-making problem, and its
mathematical essence is stochastic dynamic programming.
At present, most of the common methods to solve this kind
of problems are based on fine model, which depend on
various numerical solutions or heuristic intelligent acid and
often require the objective function to be derivative or
differentiable. The reinforcement learning algorithm adop-
ted in this paper is a data-driven model-free algorithm.
Adaptive learning is carried out by means of “trial and error”
of agents. Through continuous interaction with the envi-
ronment, constantly obtain the environmental state and take
corresponding actions to change the environmental state
according to certain updating strategies. In this process, the
agent will get certain rewards or punishments, and the agent
will use the reward value/punishment value as the updating
guidance of model parameters, in order to get the maximum
cumulative rewards in the process of continuous learning.

3.1. Markov Decision Process. The above-mentioned process
of perception-action-evaluation-learning is also called
Markov decision process (MDP). The four basic elements of
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MDP are state space, action space, transition function, and
reward function. Among them, transition function describes
the probability of agent changing from state s€ Sto s’ € S
under a given action:

T: SAS — [0,1] (11)

T(S’a,sl) = p(st+1 = s’|$t = S’a[ = a).

At every moment, the agent selects the corresponding
action in the possible action set A according to the state s,
and the random strategy 7 (the strategy = is a function of
mapping the state s, to the action a). In return, the agent
receives the understood reward value R, of the process and
updates it to the next state variable s, ;. The ultimate goal of
the agent under the policy 7 is to maximize the accumulated
discount reward value, which is expressed as follows:

D=1 j_¢

Pe=2 4V Re (12)

In the formula, y € [0, 1] is the discount factor, which
directly determines the influence degree of rewards in
subsequent steps on the current period. According to the
strategy 7, the expected value of rewards under the current
strategy can be obtained as follows:

Vi(s,) =5 (R, + YV (S44)), VE<D - 1. (13)
The Q value function is the action value function, which
indicates the expected return after selecting the action a,:

Q" (sp-a;) = R, + YV (5,41)- (14)

Starting from the state s;, the agent begins to search for
the best strategy step by step, which maximizes the action
value function:

T, = argmﬁXQﬂ(S, a), (15)

Q™ (s) = Q" (s,a). (16)

From equations (14)-(19), it can be seen that the model-
free reinforcement learning method does not need to know
the specific expression of the state transition probability

function T but only needs to train according to the tran-
sition process of each interaction with the environment, so
that the expected value of the total reward can reach the
highest. The energy management and optimal dispatching
method of power grid is transformed into Markov decision
model. Then the rule-based dynamic energy management
method is selected as the basic strategy, which can reduce
the overall optimization cost, so as to avoid solving the
optimal value function of all states. Then the adaptive
learning control strategy is proposed, which can realize the
continuous action control of energy management in in-
telligent park and the optimal dispatching decision in
various scenarios.

3.2. Reinforcement Learning Framework for Energy
Management in Intelligent Parks. In this paper, the intelli-
gent park system is the agent’s environment. The agent
optimizes the scheduling by adjusting the output and power
generation of related aggregation units in the system. In time
T, the environment provides the observed system state s, € S
to the agent, and the agent generates action DD based on
strategy s, € S and intelligent park system state a, € A.

3.2.1. State Space. The state space is composed of the ref-
erence information of the decision-making of the agent at
each moment, which mainly includes controllable state
variable S© and external state variable S*. Among them, the
controllable state variables are mainly environmental vari-
ables that can be directly/indirectly controlled by agents,
such as the average SOC value of temperature-controlled
load, the maximum SOC value of ESS, and the load elec-
tricity price level §,. External state variables are variables
beyond the control of agents, such as temperature T, and
wind turbine power generation and higher-level market
purchase and sale price &, and P¥, P?. Therefore, the state
space can be described as

s, €5=8s¥
) (17)
S = [SOCNBSCt’Gt’A?’At >Lb,t>t]-
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3.2.2. Action Space. The action space of the agent is mainly
composed of four parts, including temperature control load
action space A, , load price action space Ap, energy storage
charge and discharge action space Ap,, and market purchase
and sale electricity action space Ag, which are specifically
expressed as follows:

a, € A=A xAXApX Ag
i bu sell (18)
a, = [Py u,,,Cp, D, P, P

3.2.3. Reward Function. The reward function is set to
maximize the operational benefits of the intelligent park. The
calculation method is to subtract the power generation cost
from the income from selling electricity to the external
power grid and the cost of purchasing electricity from the
external power grid. The expression of the reward function is
as follows:

R =S,-C,
i i i, ydpsell
Se=P, Y L+ Cypy ) Liguy + AP (19)
loads tels
Costs; = CyenG; + (A’ + Ciyimp ) Py P c. pel
£ Tgen trimp trexptt >

where 1%, \? are lower standby and upper standby electricity
prices, which are the transaction electricity prices between
microgrid and superior power grid. G, is the power gener-
ation of wind turbines, C,,, is the power generation cost, and
Cirimp and ¢ P are the energy transmission cost of purchasing
electricity from or selling electricity to the power grid.

3.3. Energy Management Framework of Intelligent Park Based
on DDPG Algorithm. The traditional reinforcement learning
algorithm based on Q-learning performs well in dealing with
small-scale discrete space problems. However, when dealing
with practical problems with continuous state variables, with
the increase of space dimensions, the discrete state variables
will increase exponentially, which brings serious dimension
disaster and cannot realize efficient learning of agents. In the
energy management of intelligent park in this paper, firstly,
the state variables such as wind turbine output, user load
value, and market trading electricity are all continuous var-
iables. In addition, the market transaction electricity quantity
and energy storage charging and discharging power in the
action space are also continuous variables, so the traditional
reinforcement learning algorithm cannot effectively solve the
energy management problem of intelligent park.

Based on the above considerations, this paper uses deep
neural network (DNN) to approximate reinforcement
learning, so as to solve the energy management problem of
intelligent park with continuous state/action space [33]. The
DDPG algorithm based on the actor-critical framework is
adopted in this paper. It uses two independent networks to
approximate the critical function (%) and the actor func-
tion (HQ) and each network has its own target networks 6’
and 0", for which the target Q value and target strategy are
denoted as Q/ and 7'.

3.3.1. Value Network Training. For value networks, the
network parameters are usually optimized by minimizing
loss function:

L(69) = E(y, - Q(snal6?))’, (20)

where y, is the target Q value; the calculation method is as
follows:

V=1t VQ,(5t+1’7T’<5t+1|6ﬂl>|6Q’>~ (21)

The value network parameters are updated in the gra-
dient direction, and L (69) is calculated as follows about 62
gradient:

Ve L(69) = E(2(y: - Q(51-a/160%))VeQ(spa,)).  (22)
According to the gradient rule, the update formula of the
value network parameters is as follows:

0262 — Ve L(69). (23)

3.3.2. Strategic Network Training. 'The training and updating
of the strategy network are also based on gradient infor-
mation. The gradient information of the strategy network is
recorded as V Q(st,at|9 ), and the sampling strategy gra-
dient is calculated as follows:

Vg = V,Q(s al6?)| YWerrm (s,167) . (24)

s=s,,0=T (st
According to the above deterministic policy gradient, the
policy network parameters can be updated:

0" —0" — Vg, (25)

where y, is the strategic network learning rate.

The target network parameters 6?2 and 6" sampling soft
update technology further improve the stability of the
learning process:

0% 62 - (1 - 1)6°.
, , (26)
O —10" - (1-1)0",

where 7 is the soft renewal coefficient.

3.4. Improved DDPG Algorithm

3.4.1. Improvement of Convergence Mechanism

(1) Random Exploration. In this paper, random noise is
superimposed on the output actions to explore the envi-
ronment; that is, in the process of training, the actions taken
every time are improved as follows:

a, = pa, + (1 - p)n, (27)

where a, is the actual action after updating, and » is the noise
that obeys the truncated normal distribution within the
range of [-1, 1]; p is the proportion of neural network output
action value a,. The larger the value, the lower the



randomness of exploration. In order to avoid any explo-
ration at all, the upper limit of its value is 0.95.

(2). Adjust the Proportion of Environmental Perception
and Learning. In the traditional DDPG algorithm, every time
an agent interacts with the environment, it needs to learn the
model parameters once. In fact, this frequent learning time
greatly increases the training time. Without sufficient in-
teraction and exploration of the environment, frequent
learning can easily make the agent fall into the local optimal
value. In this paper, we adjust this and set the agent to learn
every 30 times when it interacts with the environment.

3.4.2. Adding a Playback Pool for High Access Experience.
Due to the high proportion of superimposed exploration in
the output actions in the early stage of model training, there
are few transfer strategies with higher total return value, and
the model training speed is slow, and the influence of
random exploration is even higher than that of scheduling
sequence itself. In order to improve the convergence speed of
the algorithm, an experience playback pool for storing high-
quality transfer process is added, and its admission condi-
tion is set to be higher than the average value of the total
reward value in each training cycle, so as to accelerate the
convergence speed of the previous algorithm.

In fact, the three measures basically do not change the
complexity of the algorithm from the mathematical model,
only by adjusting the relevant parameters, or some of the
results have been trained to optimize, because the mathe-
matical model does not increase the complexity of the
algorithm.

In summary, the basic framework of solving energy
management problems in intelligent parks based on im-
proved DDPG algorithm is shown in Figure 4. Under this
framework, the input is state variables, including market
electricity price information, wind turbine output, and other
state variables, and the output is action vectors, which
mainly include action variables such as charging and dis-
charging power of electric energy storage system, power
consumed by TCL, demand response load, and market
purchase and sales power.

(3). Example Test and Result Analysis. In this paper, a
toolkit named Gym of Open Al is used to build the sim-
ulation environment of intelligent park. TensorFlow 1.1.4
Toolkit is used to train neural network, and the training data
of wind power and market electricity price are taken
from [34].

In terms of model parameter setting, the charging and
discharging efliciency of ESS is 0.9, the maximum charging
and discharging power is set to 250 kW, the capacity is set to
500kWh, the wind power generation cost is 32/MW, the
upper standby price and the lower standby price are taken
from [35], C,;,,, and (“F are 0.9/MW and 1.3/MW, re-
spectively, and TCL parameters are taken from [36]. The
total quantity is 100, the total period of a day is 24 h, and the
retail electricity price is 5.48 euro/kW. All experimental
results are average by multiple times.

The structure of DDPG network is shown in Appendix in
Figures 5 and 6. Considering the dimensions of state space
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and action space, the number of hidden layer neurons of
actor network is 300/100/100, and the number of hidden
layer Sy, Ay, Hy, H, neurons of critic network is 200, 50, 100,
and 100, respectively. ReLU function is used as the activation
function of hidden layer. The learning rate of actor network
and critic network is 0.001 and 0.0001, respectively, the
learning rate of target network is 0.001, and the capacity of
experience pool is 10°.

3.5. Comparison of Convergence Speed and Learning Effect of
Different Algorithms. In order to show the effectiveness of
the improved DDPG algorithm proposed in this paper, the
following basic comparative examples are set, as shown in
Table 1.

As can be seen from the table, compared with scheme 1
and scheme 2, it can be seen that the reward value is in-
creased by about 19.75% and the training time is reduced by
nearly 2 hours after adopting the random exploration
strategy proposed in this paper. In addition, comparing
scheme 3 and scheme 2, set the ratio of environment
awareness and agent learning to 30: After 1, not only has
the reward value of the agent been greatly increased, but
also the training time has been obviously reduced, which is
mainly due to the improvement of environment perception
and agent learning ratio, and the reduction of a large
number of unnecessary learning times, so the convergence
speed of the algorithm is significantly improved, and the
agent is prevented from falling into local optimal solution.
Finally, compared with scheme 4 and scheme 3, it can be
seen that, after adding experience pool, the algorithm
further improves the convergence speed and reduces the
training time on the premise of ensuring a high reward
value. The reward curves under scenarios 1, 2, 3, and 4 are
shown in Figure 7.

Figure 7 shows the reward curves of the four different
schemes in Table 1, with different scheme configurations
resulting in different curve trends. Under the random ex-
ploration strategy, further refine the final reward value of
agents under different perceptual learning ratios, as shown
in Figure 8. As can be seen from the figure, although the
perceptual learning ratio can greatly reduce the training time
of the model, avoid the model falling into local optimum, but
when the training is carried out to a certain extent, too high
proportion of perceptual exploration will lose more key
information. As a result, the overall reward value is reduced
and the training time is increased. Under the four com-
parison schemes, when the perceptual learning ratio is 30:1,
the training time and the final reward value are optimal.
Therefore, in the process of adjusting the parameters of the
time model, it is necessary to set the perceptual learning ratio
more in line with the model training in combination with
practical problems.

In order to demonstrate the effectiveness of the im-
proved DDPG algorithm compared with the existing one,
the experimental results of the existing algorithms compared
with the DQN algorithm, the actor-critic algorithm, and the
PPO algorithm under different hyperparameters are tested
respectively, as shown in Table 2.
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TaBLE 1: Final reward of each agent in different cases.

Option Random Perceptual learning ratio Experience pools Reward value Training time (h)
1 X 1 1 0.162 21.6
2 N 1 1 0.194 19.54
3 N 30:1 1 0.226 13.65
4 v 30:1 2 0.23 12.16
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TaBLE 2: Experimental results of each algorithm under different
super parameters.

Greedy coeflicient (E) ¢ DQN Actor-critic  PPO  DDPG
1.0-4 0.091 0.052 -0.152  0.191
5.0-5 0.123 0.075 —-0.122  0.245
1.0-5 0.134 0.062 -0.091 0.217
5.0-6 0.139 0.109 -0.074 0.203

As can be seen from the table, under different greedy
coefficients, the final reward values of each algorithm are
also different, showing different trends. The PPO algorithm
has the worst adaptability to the model, and the overall
learning effect is the worst. The DQN algorithm is better
than actor-critic algorithm, but it lags behind the proposed
algorithm. In addition, with the decreasing of the greedy
coeflicient, the learning effect of each algorithm is improved.
Actor-critic algorithm and DDPG algorithm need the
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appropriate greedy coefficient to achieve the optimal
learning effect.

From Table 3, we can see that the algorithms exhibit
different performance with the change of exploring coeffi-
cient in the strategy of random exploration. On the whole,
each algorithm can use the better learning effect between 0.5
and 0.75; the higher the exploring coefficient, the lower the
randomness of the searching algorithm, and it is easy to fall
into the local convergence, leading to insufficient learning,
poor learning effect, and low exploring coefficient, which
will lead to too random and frequent exploration, not only
seriously affecting the convergence time of the algorithm,
but also leading to insufficient key information learning and
poor learning effect.

In terms of training time and complexity of the algo-
rithm, when setting the same hyperparameter, the com-
parison results of the four algorithms are shown in Table 4.

From the point of view of training complexity, the
improved DDPG algorithm has a fast training speed due to
the double-sample pool and reasonable environment per-
ception-learning ratio and can keep good learning effect
under the fast training speed.

3.6. Comparison of Test Results. Fix the trained neural net-
work weights, and select the actual data of a typical day in
winter for testing. See Figures 9-11 for the temperature,
basic load, market electricity price information, and wind
power output value of that day, and set the following
comparative examples.

Case 1: Genetic algorithm is used to test the typical daily
data; Case 2: The traditional DDPG algorithm is used to test
the typical daily data (the algorithm corresponds to scheme 1
in Section 3.1); Case 3: The improved DDPG algorithm
proposed in this paper is used to test the typical day (al-
gorithm comparison, Section 3.1, scheme 4).

In the above examples, the result obtained by Case 1 can
be considered as the optimal control result. The total eco-
nomic benefits of intelligent parks and the calculation time
of algorithms under different examples are shown in Table 5.

As can be seen from Table 5, under three examples, the
total income of the park obtained by genetic algorithm is the
highest, but at the same time, its calculation time is also the
longest. The final benefit values of the two schemes using
deep reinforcement learning algorithm are quite different.
After training based on the traditional DDPG algorithm, the
final test effect is poor, and the total income value is only
339.19, far lower than the genetic algorithm and the im-
proved DDPG algorithm proposed in this paper. In addition,
it is worth noting that deep reinforcement learning is es-
sentially a model-free algorithm. It can learn decision-
making experience from massive historical data and con-
tinuously improve the decision-making ability of agents,
although the final test results are not as good as the tradi-
tional model-based optimization algorithm. However, the
improved DDPG algorithm can greatly reduce the calcu-
lation time and even realize the decision-making ability of
millisecond response, which cannot be realized by the
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TaBLE 3: Experimental results of each algorithm under different
super parameters.

Exploring coefficient P DQN  Actor-critic = PPO  DDPG
0.05 — 0.043 -0.922 0153
0.25 — -0.024 -0.089  0.197
0.5 — 0.075 -0.922  0.245
0.75 — 0.062 -0.922  0.213
0.95 — 0.014 -0.958  0.128

TaBLE 4: Experimental results of each algorithm under different
super parameters.

Attribute DQN Actor-critic PPO DDPG
Reward value 0.134 0.062 —-0.091 0.217
Training time (h) 20.72 18.19 15.37 12.16
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TaBLE 5: Total benefit of the park and the calculation time of the
algorithm in different cases.

Parameter Case 1 Case 2 Case 3
Profit (€) 428.35 339.19 413.26
Computing time (s) 5.89 0.065 0.039

traditional model-based solution algorithm, on the premise
that the calculation results are not much different from the
optimal control algorithm. In order to prove this conclusion,
under the same test environment, the scale of solving the
problem is further expanded. The comparison of computing
time of three algorithms and the other DRL methods is
shown as Table 6.

It can be seen that, with the continuous expansion of the
scheduling cycle, the difference in solution time of the three
algorithms is more obvious. Because of the offline learning
and online decision-making ability of deep reinforcement
learning, the calculation time basically increases linearly
with the scheduling cycle, while the calculation time of
traditional intelligent algorithms increases exponentially
with the expansion of the scheduling cycle. With the in-
creasing number of distributed new energy and controllable
load connected to the intelligent park in the future, the
overall dispatching scale of the park will gradually expand in
the future, and the advantages of deep reinforcement
learning algorithm will be further reflected at this time.

In addition, by comparing the test results of different
algorithms, under different scheduling cycles, the target
function values are shown respectively in Table 7.

As can be seen from the table, the test results of each
algorithm are basically the same as the training results. The
improved DDPG algorithm has the highest profit value in all
the test algorithms because of its good learning effect in the
training stage, and the PPO algorithm also has the lowest
profit value in the test stage because of its poor learning effect.
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TaBLE 6: Calculation time of three algorithms under different
scheduling period.
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TaBLE 8: Test result of three algorithms under different scheduling
period.

Scheduling period (h) Case 1 Case2 Case 3 DQN PPO Scheduling period Case 1 Case2 Case3 Case4
24 5.89 0.065 0.039 0.041 0.038 Profit (€) 413.26  379.27  356.99  298.76
168 216.56  0.536 0.156 0.176 0.164 Trading electricity (kW) 2601.89 2508.66 1887.38 1765.62
720 1967.25  2.68 1.564 1.479 1.625
) ) ) 1400
TABLE 7: Profit result of three algorithms under different scheduling
period.
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168 2301.87  2008.79  1374.43 2668.82 % 800
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FIGURE 12: The results of market trading electricity under different
algorithms.

Figure 12 shows the optimization results of interactive
power consumption between intelligent park and superior
power grid under different examples. It can be seen from the
figure that, under the problem framework of this paper, EMS
system chooses to sell electricity to the superior power grid
in 4-10h when the market electricity price is higher and
purchases electricity from the superior power grid in
16-22 h when the market electricity price is lower, which not
only meets its aggregate load resource electricity demand,
but also maximizes its operating income. In addition, al-
though both the traditional DDPG algorithm and the im-
proved DDPG algorithm can keep the same change level
with the optimal results, the improved DDPG algorithm is
obviously closer to the optimal results in numerical results,
and the control effect is better than the basic DDPG
algorithm.

In addition, in order to reflect the impact of load side
regulation on the overall income of the park, the following
comparative examples are set up, respectively:

Case 4: do not consider any load side resources

Under four scenarios, the results of revenue and total
transactions with the grid under the 24-hour scheduling
cycle are shown in Table 8.

From the results, it can be concluded that considering
user-side resources in the form of demand response can
effectively reduce the operation cost of the park. By
responding positively in the period of higher electricity price
and buying a large amount of electricity in the period of low
electricity price to store energy for temperature-controlled
load, the load curve of the park can be improved greatly
while improving the economic benefit of the park. The
specific equivalent load curve is shown in Figure 13.

4. Conclusion

In this paper, an energy management model of intelligent
park considering the price-based demand response load and
temperature-controlled load on the user side is established,
and a model-free deep reinforcement learning algorithm is
used to solve the problem. After analysis and verification, the
following conclusions are drawn:
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(1) Based on the traditional DDPG algorithm, the
convergence speed of the algorithm and the final
reward value can be improved by random explora-
tion strategy, changing the perceptual learning ratio
and increasing the high admission experience pool to
a certain extent.

(2) Appropriate perceptual learning ratio can not only
greatly reduce the training time of the model, but
also avoid the algorithm falling into local optimal
solution. However, the setting of perceptual learning
ratio should be moderate, and too large or too small
perceptual learning ratio is not conducive to the
improvement of training effect.

(3) The model-free reinforcement learning algorithm
can realize offline learning and online application.
After the model is trained and converged, it can be
applied to the online scheduling decision of intel-
ligent park, and the calculation time is much less
than that of the model-based solution algorithm.
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