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Intending to solve the problems including poor self-adaptive ability and generalization ability of the traditional categorizing
method under big data, a parameter-optimized Convolutional Neural Network (CNN) based on Sparrow Search Algorithm (SSA)
is proposed in this research. Initially, the raw data regarding a series of bearing vibration signals are processed with Fast Fourier
Transform (FFT) and Continuous Wavelet Transform (CWT) to attain groups of time-frequency maps. �en, Locally Linear
Embedding (LLE) and linear normalization are introduced to make these maps proper for the input of CNN. Next, the pre-
processed data sets are utilized as training and testing samples for CNN, and the accuracy rate of the testing is considered as the
�tness of SSA, which is used to search for optimal parameter combinations for CNN by SAA. Meanwhile, the construction of the
CNN is determined by experience and other previous researches. Finally, an NN-based defect diagnosis model for bearings will be
constructed after the SAA has determined the appropriate parameters. �e model’s accuracy rate may reach 99.4 percent after
repeated testing using samples, which is signi�cantly superior to the classic fault detection approach and the fault diagnostic
method based solely on shallow networks. �is experimental result demonstrates that the suggested strategy may signi�cantly
increase the model’s self-adaptive feature extraction capacity and accuracy rate, implying a higher performance in defect diagnosis
in the presence of huge data.

1. Introduction

�e scale of the modern manufacturing industrial system is
becoming larger and larger, which will add uncertainty to the
manufacturing process and makes it more complicated to
control the condition of various production equipment.
In order to ensure the safety and product quality of
manufacturing, fault detectionbasedon largedata has become
one of the hotspots in the �eld of process control in the era of
intelligent manufacturing. For instance, Caggiano et al. [1]
created amachine learning system for online fault recognition
via automatic image processing to quickly identify material
defects caused by process nonconformities in metal powder
Selective Laser Melting (SLM). Liu et al. [2] methodically
summarized MVCMFD-MTs in order to give academics and
engineers with a theoretical foundation and roadmap for
further research or development ofMVCMFD-MTs based on

machined surface texture information. Xu and Yao [3] de-
scribed how a laser line scanning sensor was integrated into a
robot-based laser-aided additive manufacturing (LAAM)
system to allow for part geometry measurement on machine.

Bearings are widely used in various rotating machines
related topower supply, automobile, andmilitary industries as
core components of modern machinery. However, because
these apparatuses are typically used in harsh environments
such as high temperature, high moisture, and overload [4],
bearing failure is unavoidable. �e majority of shaft wear is
di¢cult to detect. It will not be noticed unless themachine has
a large jumping range, irregular noise, or an abnormal tem-
perature.When thesephenomenaarediscovered, themajority
of the rolling shafts have already worn out, resulting in ma-
chine shutdown, which will almost certainly result in eco-
nomic losses and accidents [5, 6]. Bearing condition
monitoring and problem diagnostics can thus be used to
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maintain the equipment, extend its service life, and avoid
potentially dangerousmishaps. It will be easier to obtain some
parameters such as vibration, noise, and temperature using
auxiliary conditionmonitoring and then use appropriate fault
diagnosismethods todiagnose faults.Existingdefectdetection
algorithms fall into twobroad categories: approaches basedon
signal analysis and methods based on machine learning [7].
Duan et al. [8] suggested a time-frequencyKurtosis Spectrum-
based bearing fault detection technique to reliably extract the
characteristic frequency of the rolling bearing damage, which
uses Slice Wavelet Transform to decompose the time-fre-
quency vibration signal to obtain the corresponding ampli-
tude of each frequency component Kurtosis. *e Kurtosis
sequence is used to construct the time-frequency Kurtosis
Spectrum of the signal. *e corresponding frequency bands
are determined according to the corresponding frequencies of
the larger frequency peaks in the time-frequency Kurtosis
Spectrum, and the time-frequency slices are selected in the
time-frequency space. *en, the signal components are sep-
arated by reconstruction, and the envelope of the recon-
structed signals is obtained by Envelope Demodulation. On
this basis, the characteristic frequency of rolling bearing is
determined by the equivalent power spectrumof the envelope
signal. Li [9] developed a technique for diagnosing bearing
faults based on a VMD-based bispectrum. VMD simplifies
complicated nonstationary vibration signals by decomposing
them into a series of Intrinsic Mode Functions (IMF). VMD
detects IMF at the center frequency using the Alternating
Direction Multiplier Method (ADMM). Bispectrum analysis
can be used to determine the presence of phase coupling
effects. Bispectrum is immune to Gaussian and non-Gaussian
noise and is hence ideal for identifying rolling bearing local
problems. When condition monitoring systems are used to
collect real-time data from the device, massive data will be
attained after the long-time operation promoting machinery
healthmonitoring to become big data.*ese kinds of big data
have the features such as large volume, diversity, and high
velocity.*e traditional methods based on signal analysis will
have limitations on efficiency, accuracy, and capability to deal
with these massive data. *erefore, how to extract fault fea-
tures both accurately and efficiently has become a hotspot for
many researchers [10, 11].

A machine learning-based approach that employs
powerful machine learning tools such as Backpropagation
Neural Networks (BPNN), Probabilistic Neural Networks
(PNN), and Extreme Learning Machines (ELM) is attracting
an increasing number of people to apply it to defect diag-
nosis. Deep learning is a hot topic among researchers in the
machine learning and pattern recognition fields. It has had
tremendous success in a wide range of fields, including
speech recognition, computer vision, and natural language
processing [11]. Convolutional Neural Networks (CNN),
Recurrent Neural Networks (RNN), and Deep Belief Net-
works (DBN) are critical components of big data solutions
because they can extract useful knowledge from complex
systems. Deep learning, as opposed to traditional learning
methods, is thought to use a shallow structured learning
architecture. It refers to machine learning approaches that
use supervised or unsupervised schemes to automatically

learn hierarchical expressions in deep classification methods
[12]. *e application of CNN to image classification has
recently achieved great success. CNN is now one of the most
effective methods for detection and identification [13]. Liu
et al. [14] proposed a method based on a time-frequency
diagram obtained by Fourier Transform (FT) for each vi-
bration signal frame and CNN. Time-frequency diagrams
can then be constructed using the Short-Time Fourier
Transform (STFT). As a result, the training signal’s time-
frequency diagram is utilized as the input of the convolution
neural net to train the network. Rolling bearing faults may be
identified after the time-frequency diagram of the test signal
is entered into the network model. Consequently, the fault
recognition rate is at least 97.64%. As some researchers have
demonstrated already, network structure and training pa-
rameters, such as epochs, minibatch, and initial learning
rate, have a considerable impact on test accuracy [15, 16]. In
order to obtain a better recognition rate, this research uses
Sparrow Search Algorithm (SSA) to optimize training pa-
rameters. SSA is a kind of intelligent optimization algorithm
introduced by Xue [33] in 2020, which has more advantages,
including aiming at more general problems and better
preventing falling into local optimum compared with the
traditional optimization algorithm. Wang et al. [17] estab-
lished the possible danger to an aerial target depending on
the commander’s emotional state as determined by the SSA-
BP model. In their research, they suggested a system for
predicting possible threats while taking commander emo-
tion into account (PTP-CE) by combining a Bidirectional
LSTM (BiLSTM) network with a Backpropagation Neural
Network (BP) optimized with the Sparrow Search Algorithm
(SSA). *e results show that the prediction accuracy of the
SSA-BP is higher than that of the Genetic Algorithms-based
Backpropagation Neural Network (GA-BP), the BP, and the
General Regression Neural Network (GRNN), which indi-
cates that the SSA performs more robustly while solving the
global optimal solution issue. Experiments show that the
method proposed in this research can effectively improve
CNN’s identification accuracy and solve the shortcomings of
traditional methods under big data. *is research employs a
unique group optimization technique called SSA, inspired by
the foraging and antipredatory behavior of sparrows, to
maximize theCNN’s parameter combination, demonstrating
the method’s application potential and workability. More-
over, it also established a practical and effective method for
bearing diagnosis considering big data situation, which can
obtain a higher test accuracy rate through a few iterations of
SSA than other traditional or nonoptimized methods.

Involved theories are introduced in Section 2. Section 3
describes the construction of bearing fault diagnosis model
based on parameter-optimized CNN. *e case studied in
this paper is discussed in Section 4. Section 5 makes a
conclusion of the proposed method.

2. Theory

2.1. �eory of Continuous Wavelet Transform (CWT). *e
CWT is a kind of alternative method of transforming the
original signal into a certain domain in order to analyze and
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process [18, 19]. *e foundation of CWT [20, 21] is a family
of functions

ψσ,τ(t) �
1
��
σ

√ ψ
t − τ
σ

 , σ, τ ∈ R, (1)

where ψ is a fixed function, called “mother wavelet,” which is
localized in both time and frequency. *e function ψσ,τ(t) is
produced by dilating (σ-dilation) in the time domain and
translating (τ-translation) in the frequency domain to the
mother wavelet. *e mother wavelet utilized in this research
is the Daubechies wavelet (dbN), which has no explicit
expression (except for N� 1, which is Harr wavelet), but the
square mode of the transformation function h is clear [22].

*e CWT is defined as the inner product of the wavelet
family ψσ,τ(t) and signal f(t).

*at is given by

Fw(σ, τ) �〈f(t),ψσ,τ(t)〉 � 
+∞
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√ ψ
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 dt, (2)

where ψ is the complex conjugate of ψ, Fw(σ, τ) is the time-
scale map, and f(t) satisfies the condition:

f
2

� 
+∞

−∞
|f(t)|

2dt< +∞ . (3)

In order to make sure the existence of the inverse wavelet
transformation, the mother wavelet ψ(t) should satisfy the
admissibility condition:

Cψ � 
+∞

−∞

|ψ(ω)|
2

ω
dω<∞ , (4)

where ψ(ω) is the Fourier Transform of ψ(t) and Cψ is a
constant for wavelet ψ.

*e integrand in equation (6) has an integrable dis-
continuity at ω � 0，which means that ψ(t)dt � 0. *en,
the inverse wavelet transform can be attained by

f(t) �
1

Cψ


+∞

−∞


+∞

−∞
Fw(σ, τ)ψσ,τ(t)

dσdτ
σ2

. (5)

2.2. �eory of Manifold Learning. Manifold learning is a
form of unsupervised learning. Compared to the standard
linear dimensionality reduction approach, manifold learn-
ing successfully uncovers the underlying dimensionality of
nonlinear high-dimensional data, hence facilitating di-
mensionality reduction and data analysis [23, 24]. It may be
classified into linear and nonlinear manifold learning al-
gorithms. Isomap [25], Laplacian Eigenmaps (LE) [26], and
Locally Linear Embedding (LLE) [27] are all examples of
nonlinear manifold learning algorithms. Linear manifold
learning is a linear extension of nonlinear methods such as
Principal Component Analysis (PCA) and Multidimen-
sional Scaling (MDS). *e LLE approach was used in this
study.

*e main idea of the LLE algorithm is to maintain the
local order relationship between the data embedded in space
and essential space. Our goal is to find low dimensional a
dataset (y1, y2, . . . , yN), which exists in the space of Rd,

based on the given data set (x1, x2, . . . , xN) in the high-
dimensional space RD and d≪D.

Firstly, a number of adjacent points xi1, . . . xin of every
point xi in the data set should be found. xi1, . . . xin can be the
data points in the sphere that surrounds xi with ε as the
distance.

Every data point can be expressed by linear combination
of its adjacent points xi1, . . . xin:

xi � 

n

j�1
ωijxij, (6)

where ωi is a n × 1 column vector and ωij is line j of ωi.
*en, it comes to minimizing the following loss function

(9):

argmin
ω



N

i�1
xi

���� − 
k

j�1
ωijxij‖

2
2

⎛⎝ ⎞⎠ . (7)

*e weight coefficient can be obtained by solving the
above formula:

ω � ω1,ω2, . . . ,ωN . (8)

Next, it is considered that, after reducing the original
data from D dimension to d dimension xi(D × 1)

⟶ yi(d × 1), it can still be expressed by linear combi-
nation of its adjacent points yi1, yi2, . . . , yin , and its com-
bination coefficient remains unchanged. Once again,
minimize the loss function:

argmin
Y



N

i�1
yi − 

k

j�1
ωijy

2
ij2

⎛⎝ ⎞⎠ . (9)

Eventually, it is able to get the data in low dimensional
space after dimensionality reduction

Y � y1, y2, . . . , yN . (10)

2.2.1. �eory of Convolutional Neural Network (CNN).
CNNs, which are deep feed-forward artificial neural net-
works well-suited to extracting structural characteristics
from two-dimensional signals, can help with both feature
learning and time-frequency map recognition. For large-
scale picture classification and recognition, it is also the most
commonly employed deep learning model [28, 29]. Figure 1
depicts the general layout of the CNN.

*e input of a convolutional layer is an image of size
a∗ b.*e convolutional layer consists off filters of size r∗ s,

and it has fewer dimensions than the input images. *e
output of that is a series of feature maps with the size of
(a − r + 1)∗ (b − s + 1) with the step size 1. *e filter is
implemented by assigning weights to each pixel in the input
image and calculating it as a weighted sum to extract some
features contained in the image. *en, the weighted sum is
added by the additive deviation, and the pixels in the
convolution map are obtained through the nonlinear
function. Lately, the usage of rectified linear units (ReLU) as
a nonlinear activation function has gotten an amount of
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popularity [30], which is utilized in the convolutional layer
of this research, as shown as follows:

ϕ(x) � max(0, x) . (11)

*e output yl
j of a certain feature map j in the con-

volutional layer l is given as

y
l
j � ϕ b

l
j + 

i∈Zl
j

y
l−1
i ⊗f

l
ij

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠ , (12)

where ϕ is the nonlinear activation function; bl
j is the scalar

bias for the l th layer; Zl
j is the selected feature map i in the

l − 1 th layer, which is added up by the feature map j in the l

th layer; ⊗ indicates the convolutional operator that con-
volutes the activation yl−1

i of the preceding layer; fl
ij is the

filter used to perform the convolutional operation.
*en, this is followed by a pooling layer. Each feature

map is needed to be subjected to region-wise pooling to
retain the main features while reducing parameters and
computation to prevent overfitting. *e pooling process
used here is average pooling. *at is, the average sampling
value of 2× 2 is not overlapped in the output of the pre-
ceding layer. *e output of the pooling layer will lead to a
reduction of dimension. After reducing the dimension of the
feature map d in a layer l, the output pl

d is given as

p
l
d � X d

l
j, N

l
j , (13)

where X is the downsizing function downsized by a factor of
Nl

j and dl
j is a convoluted feature map which is to be

downsized.
*e last layer is a fully connected layer, and its output yp

is given by

yp � ψ bp + Wf , (14)

where bp is the bias for the output layer; W is the weight
matrix between the input and output layers of the fully
connected layers; f is the feature maps of the fully connected
input layer; and ψ is the softmax function [30]. *e training
method applied to this research is stochastic gradient de-
scent (SGD). Every time a datum is read, the stochastic
gradient descent algorithm will immediately calculate the
cost function gradient to update the parameters. *e gra-
dient is calculated using the backpropagation method [31].
All filter weights and deviations are updated according to the
objective function of each input sample until the best

representation of training samples is obtained. *e cost
function J employed here is cross entropy which is defined as

J(θ) � −
1
m



m

i�1
y

iloghθ x
i

  + 1 − y
i

 log 1 − hθ x
i

  ⎡⎣ ⎤⎦ ,

(15)

where m is the number of training samples; hθ(x) is the
value predicted by parameters θ and x; y is the value of the
original training sample, which acts as the standard answer; i
means the i th sample.

2.2.2. �eory of Sparrow Search Algorithm (SSA). *e in-
troduction of SSA in 2020 is primarily motivated by sparrow
foraging and antipredator behavior. *e technique is new
and benefits from fast search and convergence. *e fun-
damental requirements of the algorithm are as follows [32].
When foraging, sparrows are classified as either discoverers
or followers. *e discoverers are in charge of finding food
within the population and establishing foraging areas and
routes for the entire sparrow population, while the partic-
ipants rely on the discoverers for food. Sparrows frequently
use one of two foraging strategies: discoverers or partici-
pants. Individuals in the surveillance group recognize one
another’s behavior, and attackers compete for food resources
with high intake partners to increase their predation rate.
Furthermore, as the sparrow population becomes aware of
the threat, antipredator behavior develops.

In theD-dimensional solution space, the location of each
sparrow is X � (x1, x2, . . . , xD), and the fitness value is
fi � f(x1, x2, . . . , xD). *ere are N sparrows in the group.
In each generation, PN sparrows with the best position in the
population are selected as discoverers, while the remaining
N − PN sparrows are selected as followers.

*e location update formula of each generation of
discoverers is as follows:

x
t+1
i,d �

x
t
i,d ∗ exp

−i

α∗ itermax
 , R2 < ST,

x
t
i,d + Q, R2 ≥ ST,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(16)

where xt
i,d indicates represents the d th dimension position

of the i th individual in the t th generation; α is a uniform
random number in (0, 1]; Q is a standard normal distri-
bution random number; R2 is a uniform random number in

Input Convolution Pooling Convolution Pooling Fully connected

Figure 1: Basic structure of CNN.
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[0, 1]; ST means the alarm value whose value range is
[0.5, 1.0].

Position update formula for followers is given as

x
t+1
i,d �

Q∗ exp
xw

t
i,d − x

t
i,d

i
2 , i>

n

2
,

xb
t
i,b +

1
D



D

d�1
rand −1, 1{ }∗ xb

t
i,d − x

t
i,d


 , i≤

n

2
,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(17)

where xw is the worst position in the current population and
xb is the best position in the current population.

While sparrows are foraging, some of them will be
vigilant. When danger comes near, they will give up the
present food. *e location update formula is as follows:

x
t+1
i,d �

xb
t
i,d + β∗ x

t
i,d − xb

t
i,d , fi ≠fg,

x
t
i,d + K∗

x
t
i,d − xw

t
i,d

fi − fw


 + ε

 , fi � fg,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(18)

where β indicates a random number conforming to the
standard normal distribution; K means a uniform random
number of [−1, 1]; ε is a smaller number that prevents the
denominator from being unique; fw is the fitness value of
the sparrow in the worst position. It can be seen from the
formula (18) that if the sparrow is currently in the best
position, it will escape to a location near itself, depending on
the ratio of the worst food in the worst position to the food
and its location. If the sparrow is not in the best position, it
will escape to the nearest best location.

2.2.3. Proposed Method. *e optimization steps of SSA for
CNN parameters are as follows, which are shown in
Figure 2.

(1) Set parameters for SSA and initialize the population.
(2) Use the CNN to train the test’s accuracy rate as a

fitness function, and the individual fitness value is
evaluated considering the learning rate and batch
size. *en, mark the optimal position.

(3) Calculate whether the current iteration times have
achieved the termination condition; if they have,
terminate the loop and print the result; otherwise,
continue.

(4) Update the position in the current population and
initialize the individuals beyond the upper and lower
limits.

3. The Construction of Bearing Fault Diagnosis
Model Based on Parameter-Optimized CNN

*e proposed bearing diagnosis method, which is based on
parameter-optimized CNN, combines traits derived from
a large data monitoring device with the benefits of deep

learning. It combines unsupervised and supervised
learning to extract fault features and identify the running
state of devices in large amounts of data in an adaptive
manner. Nonetheless, this measure has a limited adaptive
capacity for feature extraction and a shallow network’s
insufficient generalization capability for defect identifi-
cation when compared to traditional approaches. Figure 3
depicts the entire procedure. *e specific steps are as
follows:

(1) *e bearing’s vibration signal is preprocessed using
FFT to get frequency domain data.

(2) A two-dimensional Continuous Wavelet Transform
is used to generate time-frequency maps of the data,
taking both time and frequency domain information
into account.

(3) Reduce the amount of the data acquired using LLE
and standardize it.

(4) Minimize accuracy rate in CNN by searching for the
appropriate mix of CNN parameters and SAA and
then comparing the ideal architecture distribution of
the network.

(5) Input standard samples of the bearing’s various
states into the optimized CNN.

Begin

Initialize the parameters and population

Divide the population to discoverers and 
followers

Update the location of discoverers

Update the location of followers

Randomly select the vigilant and update the 
position

Whether the end conditions are met

YES

No

End

Evaluate the fitness values

Figure 2: *e flowchart of improved CNN based on SAA.
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After developing a model for defect identification, test
samples of the bearing in various states would be diagnosed.

4. Case Study

4.1. Experiment Setup. *e experimental data used in this
study are rolling bearing vibration acceleration data from
Case Western Reserve University’s (CWRU) Bearing Data
Center [33]. Figure 4 depicts the bearing test station. It is

equipped with an induction motor, fan end bearing, drive
end bearing, torque transducer, and dynamometer (load
motor). *ese indications originate from the accelerometer
installed on the driving end of the induction motor’s bearing
box. *e accelerometer is connected with the torque sensor
and the dynamometer, as shown in Figure 5. *e sampling
frequency of the considered data is 48000Hz collected from
the drive end bearing (6205-2RS JEM SKF), and the samples
are collected under four working conditions: (1) normal

Start

Vibration signals from the bearing

Signal preprocessing by FFT and CWT

Downsizing the data by LLE and linear normalizing

Applying SSA to find the optimal parameters for the CNN

End

(a)

Start

Preprocessed data

Testing data Training data

CNN trainingCNN

Fault 
diagnosis

End

(b)

Figure 3: *e flowchart of the proposed method. (a) Data preprocessing. (b) Bearing fault diagnosis.

Fan end bearing Drive and bearing
Troque transducer

The induction motor Aceelerometer position Dynamometer
(Load motor)

Figure 4: *e bearing test station.
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operating conditions; (2) inner race fault; (3) ball fault; (4)
outer race fault. *ere are a total of 10 types of data, in-
cluding one normal type and nine error types of different
injures and fault diameters. Different components of the
bearing are shown in Figure 5. *e details of the data, in-
cluding motor load and motor speed, are illustrated in
Table 1. 2400 samples were collected from each category.
Each sample contained 1000 sampling points, and a total of
24000 samples were collected. Nineteen thousand two
hundred of the samples are selected for training, and the rest
of the 4800 samples for testing (20% of the total). Table 2
illustrates the details of the sample sets from each condition
and their corresponding status labels.

4.2. Fault Diagnosis Using Parameter-Optimized CNN

4.2.1. Data Preprocessing. As previously stated, the vibration
signal of the bearing is preprocessed. Figure 6 depicts the
FFT spectrum under different operating conditions. Each
signal is a superposition of multiple frequency domain
components that can be dissected using frequency domain
analysis. Each batch of data will be processed using FFT to
obtain 1024 points in order to collect enough training
samples and ensure that the model is properly trained.
Because of the spectrum’s symmetry, half of the data points
are used as the eigenvector.

*en, the data will go through CWT to attain a series of
time-frequency maps, and the diagrams of different states
are shown in Figure 7. *e size of each map is 100 × 1000
and reshaped to 1 × 100000. *en, the processed samples of
the same state are gathered to form a data group whose size is
2400 × 100000, and there are a total of ten data groups
corresponding to 10 states.

4.2.2. Data Dimension-Reduction by LLE. *e reprocessed
data sets are linearly normalized to shorten training time and
accelerate convergence to mitigate the effect of noise and
aberrant samples on network training. As the CNN can only
accept input in a specific format, the maps need to be
downsized to an acceptable dimension through LLE (the
number of neighbors is 15). Additionally, each group of

samples of different states is dimension-reduced separately
to maintain the characteristics of each category of infor-
mation. *e dimension-reduced maps (sized 48 × 48) are
presented in Figure 8. For each data group (sized
2400 × 100000), the dimension-reduced size is 2400 × 2304.

4.2.3. Network Setup and Training. Usually, CNN uses im-
ages as the input data. In this research, the dimension-reduced
time-frequency maps derived from CWTand LLE are utilized
as the input for the CNN with the size of 48 × 48. *e input
layer size has corresponded to the image’s input which is
48 × 48. *e network architecture is obtained from repeated
experiments and references to previous kinds of literature.
After inputting the images, the following is a convolutional
layer with eight filters sized 9 × 9 using ReLU as the activation
function and a mean-pooling layer of size 2 × 2. A con-
volutional layer repeats this with 16 filters sized 9 × 9 using
ReLU as the activation function and a mean-pooling layer
sized 2 × 2. *e next section is fully connected layers which
contain 360 neurons in the first layer and 60 neurons in the
second one. ReLU is applied as the activation function for both
of them.*en, the softmax function is used as the classification
function. *e training method of the network is SGD with ten
epochs. *e structure of the CNN is shown in Figure 9.

4.2.4. Determination for Optimal Parameter of CNN with
SSA. *e optimal parameters of learning rate and batch size
in CNN are searched by SSA with a search range of re-
spectively [0, 1] and [0, 100]. *e detailed setting for SSA is
presented in Table 3. It is also quite significant to decide the
fitness of the chosen parameters during the SSA, and the

Drive and bearing

The induction motor Dynamometer
(Load motor)

Figure 5: Sketch map of the structure.

Table 1: Parameters of the test station.

Motor load Motor speed (r/min) Sampling frequency (Hz)
3 PS 1730 48000

Table 2: Details of the sample sets.

Running
state

Fault
diameter

Training
samples

Test
samples Status labels

Normal // 19200 4800 1000000000

Inner race
fault

0.1778mm 19200 4800 0100000000
0.3556mm 19200 4800 0000100000
0.5334mm 19200 4800 0000000100

Ball fault
0.1778mm 19200 4800 0010000000
0.3556mm 19200 4800 0000010000
0.5334mm 19200 4800 0000000010

Outer race
fault

0.1778mm 19200 4800 0001000000
0.3556mm 19200 4800 0000001000
0.5334mm 19200 4800 0000000001
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Figure 6: FFT spectrum of different running states: (a) normal, (b)–(d) inner race fault of different fault diameters, (e)–(g) ball race fault
with different fault diameters, and (h)–(j) outer race fault of different fault diameters (from 0.1778mm to 0.5334mm).
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Figure 7: Continued.

Scientific Programming 11



parameter determination criterion of this research is the
accuracy rate of the testing, which is shown as follows:

accuracyrate�
thenumberof thecorrectlyclassifiedsamples

thetotalnumberof samples
.

(19)

A higher accuracy rate means a better training effect and
parameters fitness. *rough observing the accuracy rate, the
training result of the model can be judged. While increasing
the number of iterations improves the outcome of the defect
diagnosis, it also significantly increases the computation
time. Considering the SSA’s effect and the time necessary,
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Figure 7: Time-frequency maps of different running states: (a) normal, (b)–(d) inner race fault of different fault diameters, (e)–(g) ball race
fault with different fault diameters, and (h)–(j) outer race fault of different fault diameters (from 0.1778mm to 0.5334mm).
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Figure 8: Continued.
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Figure 8: Dimension-reduced maps of different running state: (a) normal, (b–d) inner race fault of different fault diameters, (e–g) ball race
fault with different fault diameters, and (h–j) outer race fault of different fault diameters (from 0.1778mm to 0.5334mm).
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Figure 9: Structure of the CNN.

Table 4: Optimized parameters of CNN.

Learning rate Batch size Momentum value Epoch
0.0073 80 0.95 10

Table 3: Settings of the SSA.

Number of search agents Maximum number of iterations Variable dimension Range of learning rate Range of batch number
5 10 2 [0, 0.01] [1, 100]

SSA curve
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Figure 10: Variation of the accuracy rate.
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the number of iterations is set at 10. Table 4 summarizes the
parameters determined for CNN. Figure 10 illustrates the
variance in accuracy rate of the best optimization coefficient
of each iteration as a function of the number of rounds.
Table 5 shows some details about the variance of optimi-
zation coefficient during this process.

4.2.5. Comparative Analysis of the Results with Other
Methods. To demonstrate the suggested method’s benefit in
defect identification, the accuracy rate of the improved CNN
is compared to the CNN established only by practice
(trained ten times).*e suggested technique has an accuracy
rate of 99.4 percent, indicating that this model has the benefit
of high accuracy, efficiency, and stability for identifying

bearing faults under a variety of conditions. *e accuracy
rate of the CNN using experience-based parameters is 97
percent, somewhat lower than that of the optimized one.
*en, using the same experimental data provided from Case
Western Reserve University’s Bearing Data Center, the
accuracy of DBN is 92 percent [34], BP is 92.5 percent [35],
and SVM is 91.7 percent [36]. Compared to shallow network
models, deep network models are more suited for adaptive
defect identification in huge data sets and complicated
environments. In comparison to the deep network model,
standard fault detection approaches suffer from limitations
in terms of adaptive fault feature extraction, monitoring, and
diagnostic accuracy, as well as generalization performance.
Figure 11 illustrates the comparison figure.

5. Conclusion

*e combination of parameters including epoch, batch size,
and learning rate for CNN has a pronounced influence on
training. To obtain the optimal combination of the afore-
mentioned parameters, SSA using the accuracy rate of
testing as the fitness is proposed for optimizing the pa-
rameters of CNN.*en, the improved method is utilized for
the fault diagnosis, and its effectiveness is well demonstrated.
Eventually, the detailed conclusions can be drawn as follows:

(1) *e excellent correctness of the parameter-opti-
mized CNN demonstrates that the approach can
adaptively extract defect information from the
bearing vibration signal spectrum, reducing the need
for a wide variety of signal processing techniques and
diagnostic experience. It offers significant benefits in
terms of defect diagnostic capability and general-
ization performance.

(2) *is research develops a unique integrated defect
diagnostic model based on FFT, CWT, LLE, and
optimized CNN that outperforms shallow layer
networks and classic character recognition and
pattern recognition techniques. It has practical utility
in a world of huge data.
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