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Source code comments can improve the e�ciency of software development and maintenance. However, due to the heterogeneity
of natural language and program language, the quality of code comments is not so high. So, this paper proposes a novel method
Code2tree, which is based on the encoder-decoder model to automatically generate Java code comments. Code2tree �rstly
converts Java source code into abstract syntax tree (AST) sequences, and then the ASTsequences are encoded by GRU encoder to
solve the long sequence learning dependency problem. Finally, the attention mechanism is introduced in the decoding stage, and
the quality of the code comment is improved by increasing the weight of the key information. We use the open dataset java-small
to train the model and verify the e�ectiveness of Code2tree based on common-used indicators BLEU and F1-Score.

1. Introduction

For large-scale software systems, software development and
maintenance personnel face the problems of poor code
annotation quality, annotation missing, and mismatching of
annotations and code. So, software developers and main-
tainers spend a lot of time on understanding the program
[1]. Good code comments can help developers and main-
tainers understand the program more accurately and faster,
so as to save a lot of reading time [2]. �e automatic code
comment technique aims to reduce the workload of de-
velopers to write annotations, assist developers to under-
stand the code better, and improve the e�ciency of software
development and maintenance.

With the continuous expansion of the scale of software
code, how to help developers understand and maintain the
code during software developing and maintenance has be-
come an important topic in the �eld of software engineering.
Information retrieval is the earliest technique used in the
research of automatic code comment generation. Based on
information retrieval techniques, review algorithms generally
use related techniques such as vector space model (VSM),
latent semantic indexing (LSI), latent Dirichlet allocation

(LDA), or code clone detection. Bai et al. [3] use a code
cloning detection technique to �nd similar code fragments
and copy the comments in the similar code fragments to the
target code. However, information retrieval implements
similar code comments through annotation migration. �e
quality of the generated annotations depends on the accuracy
of the code similarity measurement and the completeness of
the annotations in the dataset to be retrieved. It will not be
generated good comments due to the inaccurate code sim-
ilarity measurement or the incomplete annotations of the
retrieved data [4].

In recent years, with the development of deep neural
networks in natural language processing, machine translation
[5], question answering [6], and speech processing [7], deep
neural networks have also been introduced in the �eld of
software engineering to solve the problem of code comment.
People introduce the neural machine translation model NMT
(neural machine translation) into the task of code under-
standing. Iyer et al. [8] use the recurrent neural network
(RNN) as the encoder to directly encode the code sequence to
obtain its intermediate vector, and then use the decoder to
translate the intermediate vector into code comments and
introduce an attention mechanism. However, the code is
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different from the general text and it has more structural
information and complex semantic understanding. (e
process of machine translation from the code sequence to the
comment sequence loses toomuch code internal information,
which leads to the inability to accurately understand the
semantic information and generates bad comments. In order
to extract code semantic information, researchers proposed a
code semantic extraction method based on an abstract syntax
tree. Hu et al. [9] use the abstract syntax tree AST (Abstract
Syntax Tree) as code presentation. (e tree structure is
transformed into a linear sequence of nodes, and the Long-
Short Term Memory (LSTM) neural network is used as an
annotation for the code generation method of the encoder
and decoder. Huang et al. [10] use the abstract syntax tree
traversal of code snippets. (en, token sequences are gen-
erated. Finally, the single-layer gated recurrent unit neural
network GRU (Gated Recurrent Unit) is constructed and the
annotation of the code block is generated by the encoder and
decoder. Alon et al. [11] first analyze each Java method in the
corpus and build an abstract syntax tree (AST). (en, they
traverse the AST and extract the syntactic path between the
AST leaves. Finally, they calculate the learning weighted
average of the path vector by attentionmechanism to generate
the code vector.

In this paper, based on the machine translation
framework NMT, we propose a neural network model
code2tree that combines source code structure and se-
mantics, an alternative method of encoding source code
using the grammatical structure of a programming language.
Our model represents code fragments as a set of combined
paths of an abstract syntax tree (AST), and each path is
compressed into a fixed-length vector [12]. We use GRU as
the decoder, and the different weighted averages of the path
vectors are processed by the attention mechanism during the
decoding process to generate each output token. Java is one
of the most popular and major programming languages, so
this paper selects Java language as our research subject which
aims to improve Java code comments.

Code2tree generates reviews verbatim from AST se-
quences. Based on an open dataset on GitHub, we trained
and evaluated the performance of Code2tree. During the
experiment, we generally trained across multiple items and
make predictions for different items. Our experimental
results show that code2tree can generate higher quality code
comments, and the effectiveness is better than the existing
methods.

(e main contributions of this paper are as follows:
Firstly, we convert the automatic generation of code

comments into machine translation problems and construct
the neural network machine translation model (NMT) for
program understanding.

Secondly, we propose a Code2tree method, which ex-
tracts structural information from source code based on a
sequence-to-sequence model to generate annotations for the
java program. In particular, we directly use the path in the
abstract syntax tree (AST) for end-to-end sequence
generation.

(e rest of this paper is organized as follows. Section 2
introduces the language model and background knowledge

of NMT. Section 3 elaborates on the details of Code2tree.
Section 4 presents the experimental setup, results, and
threats to its effectiveness. Section 5 discusses our works.
Section 6 gives the related work. Section 7 summarizes the
paper and points out future directions.

2. Preliminary

2.1. Language Models. (e seq2seq model [13] used in this
paper is a variant of a recurrent neural network, which
includes two parts: encoder and decoder. (e model has
achieved great success in automatic summarization, dia-
logue systems, and machine translation. We apply the model
to the task of automatically generating code comments. (e
model can generate code comments by capturing long-term
dependencies between languages, such as grammatical
structures. As shown in Figure 1, the frame structure of the
seq2seq model is shown in detail.

As a core component of a natural language processing
(NLP) system, language models can provide word repre-
sentations and the maximum likelihood of word sequences.
(e language model describes the probability of words
appearing in the sequence. For a sequence of n natural
languagex � (x1, · · · , xn), the language model is based on
the known sequence(x1, · · · xk−1), and we predict the
probability of the next wordxk as a formula:

p x1, · · · , xn( 􏼁 � 􏽙
n

k�1
p xk ∣ x1, · · · , xk−1( 􏼁. (1)

When modeling language models, in order to reduce the
dimensionality disaster during modeling, Brown et al. [14].
proposed an approximate method of N-gram language
models, that is, the appearance of the predicted k word only
depends on the previous k-1 words as a formula:

p xk ∣ x1, · · · , xk−1( 􏼁 ≈ p xk ∣ xk−n+1, · · · , xk−1( 􏼁. (2)

However, this N-gram method has obvious limitations.
For example, it does not consider the discreteness, combi-
nation, and sparsity of natural language. To solve this
problem, deep neural networks are introduced into the
training of language models, such as recurrent neural net-
works (RNNs), long short-term memory (LSTM), and gated
recurrent unit (GRU).(e languagemodel used in this paper
is based on the deep neural network gated recurrent unit
(GRU).

(1) Recurrent neural networks. (e RNN consists of
three layers. Each input is mapped to the input layer
in the vector. On the cyclic hidden layer, the model
cyclically calculates and updates the hidden state
after reading each input vector. On the output layer,
the model uses the hidden state to calculate the
predicted token probability. During the training
process of RNN, the gradient size of each layer will
increase or decay exponentially on the long se-
quence. (e problem of gradient explosion or dis-
appearance makes it difficult for RNN models to
learn long-distance correlations in sequences.
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To solve these problems, some researchers have
proposed several variants to maintain long-term
dependence. (ese variants include LSTM and gated
recurrent unit (GRU). In this paper, we adopt the
GRU that has been successful on many NLP tasks.

(2) Long short-termmemory. LSTM is an effective chain
loop neural network by introducing a memory unit
that can save the state for a long time, so the problem
of long-term dependence on learning can be effec-
tively solved. LSTM can be divided into single-layer
and multilayer. (e two-layer LSTM in this paper
can input the input sequence from two directions.
(e double feed information input can improve the
long memory ability of LSTM so that the possibility
of forgetting the information is reduced. Because the
information is provided from both sides of the input,
the model reduces the propagation distance of the
information.

(3) Gated recurrent unit. GRU is a variant of LSTM.
GRU combines the forget gate and input gate into a
single update gate. It also mixes the cell state and the
hidden state and adds some other changes. (e GRU
model is simpler than the standard LSTMmodel.(e
GRU model is one less gate than LSTM, so there are
fewer matrix multiplications. In the case of large
training data, GRU can save a lot of time.

2.2. Neural Machine Translation. Neural machine transla-
tion (NMT) is used to translate words from one language to
another. (e model uses neural networks to predict the
possibility of word sequences and it is usually in the form of
entire sentences. Unlike statistical machine translation,
which consumes more memory and time, neural machine
translation trains its parts end-to-end to maximize
performance.

NMT has been widely adopted in multinational orga-
nizations to help them communicate internally and exter-
nally. (e NMTsystem is rapidly developing to the forefront
of machine translation and has recently surpassed the tra-
ditional form of the translation system. (e main advantage
of this method is that a single system can be trained directly
on the source text and the target text, and the pipeline of a
dedicated system for statistical machine learning is no longer
needed.

Previously, machine translation was trapped by the
multilayer perceptual neural network model, which was
limited to fixed-length sequences and the output must have
the same length. Nowadays, the model has updated the
position and added the attention mechanism to learn how to
focus on the input sequence when decoding each word in the

output sequence. So, the model can improve the translation
performance of long word sequences.

Unlike traditional machine translation methods that
involve individually designed components, NMT can work
closely together to maximize its performance. In addition,
NMTalso uses vector representations to describe words and
internal states. During the vector representations stage,
words are transcribed into vectors defined by unique sizes
and directions. Generally, when a number sequence is given,
NMTuses an artificial neural network to predict the number
sequence. NMT encodes each word into a sequence of
numbers, which represents the target sentence for transla-
tion. NMT also uses a two-way recurrent neural network
(encoder) to process the source sentence into a vector of a
second recurrent neural network (decoder). (is process is
better in terms of speed and accuracy.

3. Proposed Approach

One of the key factors in generating high-quality code
annotations is constructing accurate mapping relationships
between source code and natural language. (e direct
method is to convert the problem into a machine translation
problem, in which the source sentence is the token sequence
of the code, and the target sentence is the corresponding
comment sequence. Iyer et al. [8] proposed an LSTM-based
annotation generation model CodeNN, which uses LSTM
with an attention mechanism to generate annotations for C#
and SQL. CodeNN directly aligns the words in the com-
ments with the relevant code tokens by adding an attention
mechanism. Allamanis et al. [15] used convolutional neural
networks (CNNs) and attention mechanisms to generate a
summary of the source code. (is method uses the con-
volution attention module to extract features from the input
source code and determine the important tokens that should
be paid attention to in the sequence. In addition, some
papers model the source code as a series of tokens [16] and
characters [17]. (ese tasks have achieved very good per-
formance in generating code comments and documentation.
(ere are also some methods that take into account the
structural information of the source code. Liang and Zhu
[18] proposed an AST encoder Code-RNN based on RNN.
Chen and Wan [19] proposed a tree sequence model
Tree2Seq for code comment generation. Tree2Seq uses an
AST-based encoder instead of the RNN encoder.

(ere are some existing tools generating code comments
with transformer models. (e DeepCom plugin generates
code comments based on AST techniques, but generated
comments can cause OOV problems. Tools based on the
transformer model are great for generating comments for
long code sequences.

Compared with the NMT model that only translates
natural language, the NMTmodel in this paper is a language
model constructed based on Java source code and its cor-
responding source code comments. (e words in the
comments are consistent with the hidden state of the RNN
involving the semantics of code markup. Code2tree extracts
code semantic information (such as key sentences, symbols,
and keywords) from a large Java corpus, separates the
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Figure 1: (e sequence generating process.
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identifiers and symbols in the code and automatically
generates code comments after multiple model training.
However, due to the difference between programming
language and natural language, the migration of neural
network models from natural language processing to an-
notation generation still faces a series of difficulties as
follows:

(1) A large number of low-frequency code vocabulary
easily generate low-quality of code comments. In the
neural machine translation model NMT, the vo-
cabulary is usually limited to 30,000 to 50,000 words,
and words beyond the vocabulary will be treated as
unknown words-usually marked as UNK. (is is
very effective in the general natural language
translationmodel. In the code corpus, the vocabulary
is usually composed of keywords, operators, and
identifiers. Developers often define various new
identifiers. A large number of low-frequency vo-
cabulary will be generated, resulting in low-quality of
automatically generated code comments.

(2) (e semantics of program language is different from
that of natural language.(e behavior represented by
the code has nothing to do with the words of the code
but is determined by the keywords and structure.(e
structuring of programming language is also re-
flected in language rules, semantic expression, and
contextual information. In addition, many NMT
models are based on sequence-to-sequence (seq2seq)
models, which have certain difficulties in analyzing
the semantic information of programming languages.

For vocabulary issues, Code2tree transforms Java methods
into abstract syntax trees (ASTs). For each abstract syntax tree
(AST), we use depth-first search to traverse it. Specifically,
during ASTextraction, we did not describe each variable using
common symbols but directly abstracted the actual name of
the variable. Based on this, we reduced the impact of a large
number of unknown words to a certain extent.

To solve the problem of programming language struc-
ture, Code2tree uses a sequence-based model to parse the
abstract syntax tree (AST) to obtain the structure infor-
mation of the Java method. For each abstract syntax tree
(AST), we use the depth-first search method to abstract the
code information. Finally. Java source code is converted into
serialized data for neural network learning using Code2tree.

(e overall framework of Code2tree is shown in Fig-
ure 2. (e Code2tree method mainly includes three stages,
namely: data preprocessing, model training, and online
testing. We parse and process the Java-small data set
downloaded fromGitHub into a parallel Java method corpus
and its corresponding annotations. Before the Javamethod is
input to the model, in order to learn the structural infor-
mation of the Java method, we convert the Java method into
an AST sequence through an abstract syntax tree. Based on
the generated AST sequence and the parallel corpus of
comments, we build and train generative neural models
based on the idea of NMT. (ere are two challenges in the
training process as follows:

(1) How to use AST to store the structure information of
Java methods?

(2) How to deal with extraword tags in the source code?

In the following paragraphs, we will introduce the details
of the model and the methods we propose to solve the above
challenges.

3.1. Sequence-to-Sequence Model. In this paper, we use a
sequence-to-sequence (Seq2Seq) model to learn source code
information and generate annotations. (e sequence-to-
sequence (Seq2Seq) model has achieved great success in
machine translation, speech recognition, and text sum-
marization. (e model consists of three components,
namely, an encoder, a decoder, and an attention compo-
nent. Among them, the encoder and decoder are mainly
based on GRU.(eGRUmodel is simpler than the standard
LSTM model. (e GRU model is one less gate than LSTM,
so there are fewer matrix multiplications. In the case of large
training data, one less gate can save a lot of time and solve
the problem of gradient disappearance. GRU encoder maps
input sequence tokens x � (x1, · · · , xn) to a sequence of
continuous representations s � (s1, · · · , sn).Given s,the
GRU decoder then generates a series of output tokens
y � (y1, · · · , yt), generating one token at a time and
modeling the conditional probability p(y1, · · · , yt|x1,

· · · , xn).
At each decoding step, the probability of the next target

token depends on the previously generated token, so it can
be decomposed as formula

p y1, . . . ,yt ∣ x1, . . . ,xn( 􏼁 � 􏽙
t

j�1
p yj ∣y<j, s1, . . . , sn􏼐 􏼑. (3)

3.2. AST Encoder. Abstract syntax tree (AST) is used to
represent Java source code fragments. (e leaves of the tree
are called terminals, which usually represent user-defined
values. Nonleaf nodes are called nonterminal symbols,
which represent a set of restricted structures in the program,
such as loop statements and expressions. Given a set of AST
paths x1, · · · , xk􏼈 􏼉, for each set of AST paths xi, create a
vector zi to represent each ASTpath consisting of nodes and
their subindexes, which come from a limited vocabulary of
up to 364 symbols. On the embedding layer, the shape
(batch_size, vocab_size, embd_dim) is output, where
batch_size is the batch size, vocab_size is the vocabulary size,
and embd_dim is the embedding dimension, that is, the
vector of the word embedding dimension corresponding to
each word. By embedding each feature of each word, a
vectorized representation of each feature can be obtained.
(en the GRU unit is used for AST coding. (e GRU maps
the input (zi, · · · , zn) of this layer to the hidden state
(h1, · · · , hn). At time step t, the hidden state ht is recursively
updated according to the current input zt and the state ht−1
of the previously hidden layer as formula:

ht � fGRU ht−1, zt( 􏼁. (4)
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Figure 3 is a simple example of a Java method. Figure 4 is
the abstract syntax tree of the Java method in Figure 3. Each
node is a statement, and the edge is the relationship between
the nodes. For the name of the variable, we directly extract
the name in the java method, and do not use common
symbols. After the AST is generated, the AST is encoded.

3.3. Attention. (e attention mechanism has an important
effect on sequence learning tasks. In our framework of the
Code2tree, we introduced the attention mechanism to the
encoder and decoder. (e source data sequence is weighted
and transformed.

When the input sequence is very long, it is difficult for the
model to learn a reasonable vector to represent the sequence
input. As the sequences continue to grow, the original per-
formance based on the time step is getting worse and worse.
All contextual input information is limited to a fixed length,
and the capabilities of the entire model are also limited.

(e attention mechanism retains the intermediate
output results of the GRU encoder on the input sequence,
and then trains a model to selectively learn these inputs and
associate the output sequence with it when the model
outputs. (e weighted change of the target data can effec-
tively improve the system performance in the natural way of
sequence to sequence.

Our goal is to help the decoder introduce different word
weights during word generation. In the training stage, the
information in the decoder is defined as a query. (e en-
coder contains all possible words, which we regard as a
dictionary, and the key of the dictionary is the sequence
information of all encoders.

In this paper, the attention mechanism selects important
parts for each target word from the input sequence, and
dynamically selects the distribution represented by these k

combinations during decoding. (e weight of the attention
mechanism is calculated as formula

aij �
exp score hj, h

∗
i−1􏼐 􏼑􏼐 􏼑

􏽐
n
j�1exp score hj, h

∗
i−1􏼐 􏼑􏼐 􏼑

, (5)

where n is the number of tokens, hj is the jthhidden state in
the encoder, h∗i−1 is the i − 1thhidden state in the decoder,
and the score function is to score the matching degree

between the hidden state h∗i−1 of the decoder and the hidden
state hj of the encoder.

3.4. Decoder. (e decoder does not use a fixed context
vector, but combines the attention information collected
from the encoder. Context vector ci is defined for predicting
each target word yi. Context vector ci is the weighted sum of
all hidden states A in the encoder and calculated as formula:

ci � 􏽘
m

j�1
αijhj. (6)

(en, the decoder generates the target sequence y by
sequentially predicting the probability of the word yi con-
ditioned on the context vector ci and the previously gen-
erated word y1, · · · , yi−1.

p yi|y1, · · · , yi−1, x( 􏼁 � g yi−1, hi, ci( 􏼁, (7)

where g is used to estimate the probability of the word yi

4. Experiments

4.1. Datasets. (e experiment uses the Java-small dataset
from GitHub, which contains 11 relatively large Java proj-
ects. In the past, the dataset was not divided according to the
project, which would cause almost the same code of the same
project to appear in the training set and the test set at the
same time, which made the model severely overfit the
training data, making the BLEU score falsely high. By di-
viding the data set by project, we perform cross-project

Figure 3: A simple example of a java method.

Java-med
Data set

Encode_token

AST Sequence

Fully
connected Attention Target sequences

Data 
Processing GRU Decoder

GRU Encoder

Comments
Generation

Figure 2: (e framework of Code2tree.
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training and prediction tasks on different projects to obtain
more realistic prediction results. (e dataset is divided into
three groups. It contains eleven top-level java projects. Nine
projects are used as training projects, one project is used as a
verification project, and one project is used as a test project.
In total, the dataset contains approximately 700K examples
(Table 1).

4.2. Evaluation. In order to evaluate the quality of source
code comment generation, this paper uses automatic eval-
uation indicators BLEU and F1-Score to evaluate the an-
notation generation quality. Among them, BLEU (bilingual
evaluation understudy) is a machine translation automatic
evaluation method based on N-gram proposed by IBM in
2002 [13]. (e score is calculated as follows:

BLEU � BP · exp 􏽘
N

n�1
wnlogPn

⎛⎝ ⎞⎠, (8)

where pn is the ratio of candidate length n subsequences. In
this paper, we use the default BLEU-4. BP is the concise
penalty.

BP �
1, ifc> r,

e
1− r/c

, ifc≤ r,
􏼨 (9)

where c is the candidate translation length, and r is the
effective reference sequence length.

(e calculation formula of F1-Score is as follows:

F1 �
2∗P∗R

P + R
. (10)

Precision represents the proportion of examples classi-
fied as positive examples that are actually positive examples.
(e calculation formula of precision is as follows:

P �
TP

TP + FP
, (11)

where TP is to predict the positive class as the number of
positive classes, FP is to predict the negative class as positive
class number false positive.

(e recall is a measure of coverage. (e measure has
multiple positive cases and is classified as positive cases. (e
formula for calculating the Recall rate is as follows:

R �
TP

TP + FN
, (12)

where TP is to predict the positive class as the number of
positive classes, FN is to predict the positive class as a
negative class number.

In this paper, these indicators are introduced to evaluate
the similarity between automatically generated annotations
and manual annotations and to measure the quality of the
annotation generation of the model.

4.3. Experimental Design. Code2tree is based on the Ten-
sorFlow framework. For each GRU that encodes the AST
path, there are 256 units, and the decoder GRU has 640
units. During the training process, we used Adam to op-
timize the model. Regarding the hyperparameters of the
model, we optimized the cross-entropy loss with the
Nesterov momentum of 0.95. (e learning rate is set to
0.01, each epoch attenuation is 0.05, and the embedding
size is 128. In the choice of k value, we tried different k
values, that is, the number of sampling paths for each Java
method example. After continuous experiments, we set the
k value to 200. We used the above hyperparameters to train
the model for 1000 epochs. If we did not find any im-
provement after multiple epochs, we will manually stop the
model training.

4.4.Results. In this section, we evaluate different methods by
measuring the accuracy of the generated Java comments.
Specifically, we mainly focus on the following research
questions.

RQ1: compared with state-of-the-art baseline methods,
how does Code2tree perform?

Table 1: Java-small detailed information.

Java-small
Training—projects 10
Validation—projects 1
Test—projects 1
Training—examples 665115
Validation—examples 23505
Test—examples 56165

Method
Declaration

f Parameter Parameter BlockStmt

Set<String>

boolean

set String value ForeachStmt ReturnStmt

BlockStmtsetVariable 
Declarat

Figure 4: (e abstract syntax tree of the java method is in Figure 3.
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We compare Code2tree with Code2vec [11], which is an
advanced code summarization method based on deep
learning. Code2vec presents code fragments as fixed con-
tinuously distributed vectors to generate code comments.

We also compare the Code2tree method with the
Seq2Seq model and the attention-based Seq2Seq model. (e
Seq2Seq model and the attention-based Seq2Seq model take
source code as input. (e purpose is to evaluate the effec-
tiveness of neural machine translation (NMT) methods in
comment generation.

In this paper, nondeep learning-based methods are not
selected. Compared with the deep learning-based methods,
the evaluation indicators that automatically generate an-
notations cannot be unified.

We evaluate the model through the popular evaluation
indicators of machine translation, BLEU, and F1-Score. As
shown in Table 2, compared with Code2vec, the improve-
ment of Code2tree we proposed is great, and the scores of
machine translation indicators are both ahead of the
Code2vec model.

Compared with Code2vec, the F1-Score score of
Code2tree improves by about 17%, and the BLEU-4 score of
Code2tree improves by about 15%. (e experimental results
show that structured information is of great significance for
translating text in structured language into unstructured
language.

RQ2: how about the quality of comments by Code2tree
for Java methods with different lengths?

We further analyzed the accuracy of Java methods and
annotation predictions of different lengths.(e performance
of each model changes with the growth of the scale of the test
method. All models have better annotation effects on short
code fragments. As the input code size increases, the per-
formance of all models shows different declines.

As shown in Figure 5, this paper chooses a Javamethodwith
a code length between 1–30 lines to verify the F1 score of the
model in order to obtain the intuitive performance of the code
length on themodel performance.We comparedCode2tree and
Code2vec [11] and computed F1 scores based on different code
lengths. From the figure, the F1 scores of the two methods of
Code2tree and Code2vec will decrease as the code length in-
creases. However, in the case of the same code length, the
performance of Code2tree is always better than Code2vec.

(e generated code comments can be described through
the scores of code sequences of different lengths, which can
well indicate that the code comments score tends to be stable
with the increase of code sequence length. (e scores will
remain almost unchanged when the code length is more
than 15.

RQ3: compared with the state-of-the-art baseline
method, how about the quality of comments generated by
Code2tree?

(is paper considers the structure information and se-
quence information of the source code to better generate
code comments. Table 3 and Table 4 compare the quality of
comments generated by Code2tree and Code2vec [11] based
on the same Java method example. It can be concluded from
Table 3 that when the code length of the Java method is
relatively short, the comments generated by the twomethods

are not much different. It can be concluded from Table 4 that
when the code length of the Java method is relatively long,
the comments generated by Code2vec will lose some key
information in the Java method, and the quality is relatively
poor. (e comments generated by Code2tree can describe
the Java method well.

4.5. 0reats to Validity. In our research and experiment,
there are some threats to validity as follows:

Firstly, there may be some deviation based on other
dataset. We used the Java-small dataset for model training.
Although the dataset is an open source data set and contains
approximately 700K examples, we cannot conclude that
similar experimental results will be obtained on other data
sets. In the future, we will do more experiments on other
datasets.

Secondly, our experiments are only based on Java
programs. We did not experiment with other programming
languages. Although our method Code2tree has proved our
technique’s effectiveness on Java, we still need to verify its

Table 2: Comparison of scores of different models.

Model F1 BLEU-4
Code2vec 26.19 19.45
Seq2Seq 30.90 20.45
Seq2Seq + attention 35.25 23.78
Code2tree 43.02 34.82

0
5

10
15
20
25
30
35
40
45
50
55
60
65

252015 305 100

Code2tree
Code2vec

Code Length
F1

Figure 5: Comparison between Code2tree and Code2vec.

Table 3: An example of comments generated by Code2vec and
Code2tree.

Java method Public boolean is empty (){return
name� �null; }

Code2vec
comment Returns true if the tree is.

Code2tree
comment Returns true if the symbol is empty.
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validity based on other programming languages because of
different program features.

(irdly, we only used machine translation indicators
BLEU and F1-Score to evaluate the gap between automat-
ically generated comments and manually written comments.
(ese indicators are widely used in machine translation
problems, which can reduce the subjective influence of
manual evaluation [13]. In the future, we will introduce
other indicators to comprehensively evaluate the effective-
ness of our technique.

5. Discussion

In the first experiment, we compared our technique with the
Code2vec [11] model. During the data preprocessing, we
extracted the variable names from AST. We computed
scores of BLEU and F1-Score and our technique performs
better than Code2vec. In our model, we use more specific
words to replace common words in Java methods to make
comments more accurate.

By analyzing the generated comments and source code,
the performance of Code2tree is better than that of manually
written comments. However, Code2tree is not good at
learning methods or identifying names in comments. De-
velopers have defined various names during programming,
and these names usually appear rarely in the comments.
During the training process, we replace all unknown
identifiers in the AST sequence with their types, and these
identifiers are represented by tags<UNK>.

In addition, for the Java-small data set we use, we can deal
with some Java methods that have too short comments or too
long lines of code, which is beneficial to the comments gen-
erated by Code2tree. Because the comment is too short or the
number of lines of code is too long, it will cause the absence of
Java comments. We compressed the AST sequences and
converted each Java method into a fixed-length vector.

In future work, we will extend the Code2tree to other
programming languages (such as python). In the process of
dataset construction and preprocessing, we will adopt more
advanced ways to build the common model.

6. Related Work

(e research work on automatic code comment generation
can be traced back to the research work of Haiduc et al. [20].
(ey first used an information retrieval technique to try to
automatically generate text summaries for the code. In the
early research phase of the problem, researchers focused
more on template-based generation. (e generation method
based on information retrieval use heuristic rules to extract
key information from the code and synthesize comments
based on natural language description. With the rapid

development of deep learning techniques, deep learning-
based methods have effectively improved the quality of
automatically generating code comments, and become the
main research method for this problem. Among them, based
on the sequence-to-sequence model in deep learning, Iyer
et al. [8] proposed the CODE-NNmethod. Ahamd et al. [21]
used the transformer model to generate code comments.(e
transformer model is a sequence-to-sequence model based
on multihead self-attention, which can effectively capture
long-range dependencies.

In this paper, we combined the deep learning method
and the structural characteristics of the source code to
generate code comments. Code2tree presents the process of
code comments from the perspective of machine translation.

7. Conclusion

(e automatic generation of source code comments can
assist developers in better understanding the code and
improving the efficiency of software development and
maintenance. (is paper proposes a Seq2Seq-based method
Code2tree, which can generate high-quality annotations for
Java methods. Code2tree converts the AST sequence into a
vector as input, which can better maintain the structural
information of the source code. (is technique is superior to
the state-of-the-art methods of code comments. It can
achieve better performance based on common-used indi-
cators BLEU and F1-Score.

In the future, we will apply our proposed method to
other software engineering tasks and improve our method in
practice.
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