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In order to improve the completeness of the computer-aided diagnosis system for the segmentation of large-sized lung tumors and
the segmentation accuracy of small-sized lung tumors, a dual-attention 3D-UNet lung tumor segmentation network model was
constructed. �e upsampling operation in the traditional 3D-UNet network is replaced with the DUpsampling structure. By
minimizing the loss between the pixels of the feature map and the compressed label image, a more expressive feature map is
obtained, thereby improving the network convergence speed. On this basis, the spatial attentionmodule and the channel attention
module are integrated so that similar features in single channel and multichannel are related to each other, and the global
correlation of feature maps is increased to improve the accuracy of segmentation results. �e experimental results show that
compared with methods such as 3D-UNet, the model e�ectively improves the accuracy of lung tumor cell segmentation, and the
MIoU score on the public dataset LIDC-IDRI reaches 89.4%. �e segmentation method will be closer to the facts and in line with
the safety and health of human life.

1. Overview

As an important basis for the early diagnosis of lung cancer,
the accurate segmentation of lung tumors is particularly
important. With the exponential growth of computed to-
mography data, radiologists are faced with increasingly
onerous tasks of reviewing CT images [1], even if physicians
can quickly and accurately mark the location and boundaries
of lung tumor cells, However, in the long-term high-in-
tensity work process, misdiagnosis and missed diagnosis will
inevitably occur. �erefore, there is an urgent need for an
emerging technology to assist doctors in diagnosis, and the
emergence of computer-aided diagnosis brings hope to
imaging. �e maturation of auxiliary diagnostic technology
can not only reduce the workload of doctors but also im-
prove the accuracy and e�ciency of labeling lung tumor
cells. However, due to the obvious di�erences in the size,
shape, and other clinical characteristics of lung tumor cells
[2] in lung CT images, some current segmentation [3]
methods have low detection rates of lung tumor cells and are

time-consuming. �erefore, it is di�cult to construct an
e�cient lung tumor segmentation model.

In this paper, a deep neural network-based lung tumor
segmentation model is constructed to improve the detection
rate of lung tumors and reduce the detection time of lung
tumors. At the same time, the dual-attention module is inte-
grated into the deep neural network to optimize small-sized
lung tumors, thereby improving multitype lung tumors as well
as improving the segmentation accuracy of lung tumor cells.

2. Related Work

In recent years, the widespread use of deep learning [4] has
led researchers to use neural networks to extract deep
features of lung tumor cells for automatic diagnosis of lung
tumor cells, instead of traditional lung tumor cell seg-
mentation methods using hand-crafted features and de-
scriptors. Reference [5] adjusted the contrast to enhance the
part of lung tumor cells in CT images, then preprocessed the
image by setting threshold and morphological parameters

Hindawi
Scientific Programming
Volume 2022, Article ID 6357123, 8 pages
https://doi.org/10.1155/2022/6357123

mailto:jdsunjun@163.com
https://orcid.org/0000-0001-6052-9406
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6357123


based on experience, and finally used a simple region
growing algorithm to segment lung tumor cells. Reference
[6] first uses 2D deep neural network to roughly segment
lung CT images and then uses a Markov model to optimize
the rough segmentation results to obtain accurate seg-
mentation results. Reference [7] proposed a multiview 2.5D
convolutional neural network for the segmentation of lung
tumor cells. (e network consists of three CNN branches,
respectively, from a set of axial, coronal, and sagittal views of
lung tumor cells. Sensitivity features are captured in, and
each branch consists of 7 stacked layers and takes multiscale
lung tumor cell plaques as input. (ree CNN branches are
connected with a fully connected layer to predict whether the
plaque center voxels belong to lung tumor cells. Reference
[8] used the size of lung tumor cells as the main diagnostic
criterion and usedMask R-CNN to segment lung tumor cells
to obtain contour information. Reference [9] proposed to
use the FCM algorithm as the basis, applied a wavelet
transform to decompose the CT image, then used the
decomposed low-frequency image pixels as the basic points
of the FCM algorithm, and finally used the Mahalanobis
distance to further correct the segmentation results. How-
ever, the above methods all have the following problems:

(1) Lung tumor cells have complex shapes and highly
variable textures, and 2D low-level descriptors
cannot capture discriminative features. Features
extracted using only 2D convolutional neural net-
works cannot be mapped into high-quality seg-
mentation feature maps, thus affecting the efficiency
of network training. CT images are essentially three-
dimensional data. (erefore, linking spatial context
information plays an important role in lung tumor
cell segmentation. References [6, 7] use 2D and 2.5D
neural networks to segment lung tumor cells, re-
spectively, but a single 2D lung CT image does not
have the ability to effectively distinguish between
small lung tumor cells and blood vessel profiles and
neither makes full use of lung tumors. (e spatial
characteristics of cells lead to lower segmentation
accuracy. Reference [8] used the size of lung tumor
cells as the main feature to segment lung tumor cells,
but ignored the texture features and shape features of
lung tumor cell variability, and thus could not
completely segment singular lung tumor cells.

(2) In the segmentation problem of relatively small
objects, establishing the correlation between local
features and global features helps to improve the
feature representation, thereby improving the ac-
curacy of segmentation. Although the probabilistic
graphical model is used in the backend of the seg-
mentation network to improve the segmentation
accuracy, the literature [6] can only calculate the
posterior probability more accurately to optimize the
first-stage segmentation when the probabilistic
graphical model obtains a better prior probability
function. As a result, the method cannot adaptively
segment the lung tumor cells according to the spatial
features. References [5, 9] used the traditional region

growing algorithm and the FCM algorithm as the
main frame of the segmentation method, respec-
tively, but they did not fully consider the correlation
and dependence between the local and global fea-
tures of lung tumor cells so that the irregular shape
features of lung tumor cells cause
undersegmentation.

In response to the above problems, this paper proposes a
lung tumor cell segmentationmethod based on the 3D-UNet
network [10] with a dual-attention mechanism [11]. (e
UNet network has excellent performance in the field of
medical image segmentation. In order to adapt to the seg-
mentation of lung tumor cells, this paper extends the
original 2D-UNet network to a 3D network to capture the
spatial information of lung tumor cells and introduces a
dual-attentionmechanism tomake the network focus on key
feature regions to improve segmentation accuracy for small-
sized lung tumor cells.

3. 3D-UNet Method

(e 3D-UNet network structure proposed in this paper is
shown in Figure 1. First, in the main framework of the 3D-
UNet network, this paper uses the newly proposed
DUpsampling [12] structure to replace the traditional
upsampling method in the decoding layer path to restore the
features of lung tumor cells in the encoding path and im-
prove the quality of lung tumor cell feature maps, to speed
up network convergence. Second, a dual-attention module,
namely the spatial attention module [13] and the channel
attention module [14], is applied to the feature map of the
penultimate layer of the 3D-UNet network to capture the
correlation between local features and global features and
dependency relationship, focus the network attention to the
lesion area, and then improve the segmentation accuracy.

3.1.DUpsamplingStructure. (eDUpsampling structure is a
new upsampling structure based on data correlation pro-
posed in 2019.(e upsampling structure is usually present in
the decoding layer of the segmentation network, and its role
is to restore the feature map to the size of the original image.
Although the upsampling operation based on bilinear in-
terpolation [15] and nearest neighbor interpolation [16] can
capture and restore the features extracted by the convolu-
tional layer to a certain extent, its process does not consider
the difference between each predicted pixel. Correlation,
such as weak data-dependent convolutional decoders [17],
cannot produce relatively high-quality feature maps. In this
paper, the DUpsampling structure based on data correlation
is added to the features extracted by the 3D-UNet network
reconstruction encoding path so that the obtained feature
map has better expressive ability. In the process of
upsampling, the most “correct” output is obtained by
minimizing the loss between the pixels of the feature map
and the compressed label image, which has a strong re-
construction ability.(e structure of DUpsampling is shown
in Figure 2.
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In Figure 2, F ∈ Rh×w×c represents the feature map
output by the CT image after encoding, h, w, and c represent
the height, width, and number of channels of the feature
map, respectively, and R represents the double upsampling
of the DUpsampling structure. After the feature map ob-
tained, W is a matrix that linearly compresses pixel vectors
in the DUpsampling structure. Let each pixel of x ∈ R1×c the
feature map F be a vector, and then let the vector x and
W ∈ Rc×n multiply the matrix to get a vector v ∈ R1×n and
then multiply the vector v reorganized as 2× 2×N/4; after
rearranging, it is equivalent to 2 for each pixel of the original
times the upsampling:

v � x × W,

x � v × P.
(1)

Among them, the matrix P is the inverse transformation
of the matrix W, and x ͂ is the vector obtained by the PCA
method of dimension reduction of the manually labeled lung
tumor cell segmentation area. (e neural network uses the
stochastic gradient descent method as the optimizer to
minimize x on the training set. (e reconstruction error
between∼ and x to find the optimal feature map recon-
struction matrices P and W is shown as follows:

P
+
, W

+
� argmin

P,W


v

‖x − x‖
ρ
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P,W


v

‖x − xWP‖
2
.

(2)

(e traditional segmentation network only calculates the
loss between the prediction result and the label image in the
last Softmax layer [18] and then updates the weights through
back-propagation to optimize the network. However, the
DUpsampling structure calculates the loss between the
feature map and the compressed label in advance in the

upsampling part and then integrates the low-resolution
feature map in the decoding layer into the high-level se-
mantic features through the back-propagation of the net-
work as a whole, thereby improving the features. (e quality
of the graph allows the dual-attention module to mine
spatial information and channel information.

3.2. Dual-Attention Module. In the dual-attention module,
this paper first uses the dilated convolution [19] operation
with different expansion rates to capture the feature map
information of different scales, fuses the resulting feature
maps containing multiple scales, and uses the spatial at-
tention module for the fusion results. (e spatial attention
module selectively aggregates the features of each location
according to the weighted sum of all location features so that
similar features are correlated with each other. Meanwhile,
the channel attention module selectively emphasizes the
interdependent channel feature maps by integrating the
associated features among all channel maps. Finally, the
outputs of the two attention modules are summed to further
improve the feature representation, which in turn helps to
improve the segmentation accuracy of small-sized lung
tumor cells. (e dual-attention module is shown in Figure 3.

3.2.1. Multiscale Feature Fusion. Extracting multiscale in-
formation of feature maps can improve the segmentation
accuracy of small target objects. (e usual method is to
perform multiple maximum pooling [20] operations on the
feature map to obtain output result maps of different res-
olutions and then extract features through the convolutional
layer, but after multiple pooling operations, the detailed
information or even all information of small target objects
will be lost. Lung tumor cells account for a small proportion
of lung CT images and belong to relatively small target-type
segmentation. (erefore, this paper introduces atrous
convolution with different expansion rates to extract feature
maps. Atrous convolution can increase or decrease the re-
ceptive field by adjusting the expansion rate without
shrinking the feature map and capture multiscale feature
map information. Atrous convolution is defined as follows
when given an input feature map F ∈ Rh×w×c:

Input
Image

Dual Attention
Module

Output
Segmented

Image
SA-Map CA-Map

Concat
Conv (+BN)+RELU
So�Max

Max Pool
DUpsampling
Sumfusion

Figure 1: (e overall framework of the network.
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Figure 2: DUpsampling structure.
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y(x) � 
d

(x + r d) · W(x), (3)

where x is the position of the current pixel, W is the con-
volution kernel weight, r is the dilation rate, and d is the pixel
value in the current convolution process. (e standard form
of atrous convolution is defined as Dconvr (F), where
Dconvr represents the atrous convolution operation on the
feature map F when the dilation rate is r. As shown in
Figure 3, the feature map of the penultimate layer of the 3D-
UNet network is used as an input in the dual-attention
module, and then a cascade hole convolution operation is
performed on the feature map, which is defined as follows:

O C
l

  � Dconvr1
(F); Dconvr2

(F)Dconvr3
(F); M(F) , (4)

where M represents the output feature map obtained by
1× 1 convolution of the input image, where the 1 × 1
convolution operation is to ensure that the channels be-
tween the result maps after different dilated convolutions
remain consistent to fuse different scales characteristics of
lung tumor cells. After the cascade hole convolution op-
eration, a feature map fused with multiple scale features is
finally obtained, which will be used as the input of the dual-
attention module.

3.2.2. Spatial Attention Module. Location features play an
important role in segmentation tasks, which are obtained by
capturing contextual information between pixels. Local
features generated by traditional feature extraction networks
that do not consider the influence of neighboring pixels may
lead to erroneous segmentations. (erefore, to build rich
interpixel positional relationships on local features, a spatial
attention module is introduced in this paper, as shown in
Figure 4. (is module enhances feature map representation
by encoding a wider range of contextual information into
local features and highlighting the locations of key features.

As shown in Figure 4, the input feature mapA is the lung
tumor cell feature map fused with the dilated convolution
results of different expansion rates, which is first copied into
5 new feature maps. Now the feature map number of pixels
are A1, A2, A3, and A1, A2, A3  ∈ Rc×h×w and reshape its
dimensions to Rc×n, n � h × w be the number of pixels.
(en, perform matrix multiplication with the transposed

matrix of matrix A1 and matrix A2 and then apply the
Softmax layer to calculate the spatial attention map S ∈ Rn×n:

Sji �
exp A

1
i · A

2
j 


N
i�1 exp A

1
i · A

2
j 

, (5)

where Sji represents the influence of i pixel position to j pixel
location features. (e more similar the feature representa-
tions of two locations, the greater the correlation between
them and vice versa. (en, reshape the reshaped matrix A3
and matrix S. (e transpose of does matrix multiplication
and reshapes the result is Rc×h×w. Finally, multiply the result
of the matrix operation by a scaling parameter α and with
feature map A. Perform an element-wise sum operation to
obtain the final output E as follows:

Ej � α
C

i�1
sjiA

3
i  + Aj, (6)

where α is initialized to 0 and gradually assigns more weights
during training. From the above formula, the resulting
feature Ej at each position in the spatial attention map is the
weighted sum of the features at all positions and the original
features. (erefore, it has contextual information and se-
lectively aggregates contexts according to spatial attention
maps, highlighting key feature regions and improving
segmentation accuracy.

3.2.3. Channel Attention Module. Each feature map channel
of high-level features can be viewed as the response of a
specific segmentation result, and different semantic re-
sponses are correlated with each other. By mining the in-
terdependencies between the channel graphs, the
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Figure 3: Dual-attention module.
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Figure 4: Spatial attention module.
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dependencies of the feature graphs can be expressed, and the
feature representation of specific semantics can be im-
proved. (erefore, this paper constructs a channel attention
module to explicitly establish the dependencies between
channels, as shown in Figure 5.

Different from the spatial attention module, the channel
attention module first reshapes the feature map A as Rc×n,
then performs matrix multiplication with the transposed
matrix of A and A, and finally still uses a Softmax layer to
obtain the channel attention map x ∈ Rc×c:

xji �
exp Ai · Aj 


C
i�1 exp Ai · Aj 

, (7)

where xji measure the first i channel pair j influence of a
channel. Also, take the matrix multiplication of x and the
transpose of matrix A and reshape the result to Rc×h×w,
multiply the result of the matrix operation by a scale pa-
rameter β, and perform an element-wise sum operation
with the feature map A, to obtain the final output
E ∈ Rc×h×w:

Ej � β
c

i�1
xjiAi  + Aj, (8)

where β is initialized to 0 and gradually assigns more weights
during training. (e final feature of each channel is the
weighted sum of all channel features and the original fea-
tures, thus establishing a long-term semantic dependency
model between feature maps, which helps to improve the
distinguishability of features and thus the completeness of
segmentation results.

4. Experimental Results and Analysis

4.1. Lab Environment. (e experimental data involved in
this paper come from LIDC (Lung Imaging Database
Consortium), excluding slice thicknesses greater than 2.5 CT
of mm. Scan the images and use the remaining 888 cases of
lung images as a dataset. (ese 888 cases of CT images
contain a total of 1 186 lung tumor cells with a diameter
range of 3.170–27.442mm. CT image acquisition parameters
are 15 0mA, 140 kV, average layer thickness is 1.3mm, and
the image resolution is 512 pixel× 512 pixel. (e training
data and test data are 800 and 88 cases, respectively.

During training, in DA 3D-UNet taking the pre-
processed 10 consecutive CT images as a set of input data,
the weights are randomly initialized using the MSRA
method. In the standard back-propagation update, the
learning rate is initialized as 0.1, every 1 Epoch completed
Decay 5%, set batch size to 64 and momentum to 0.9. A 10-
fold cross-validation strategy is used to evaluate the per-
formance of the method, maintaining a similar data dis-
tribution in the training and testing datasets to avoid over-
and undersegmentation due to data imbalance.

(e environment built by the DA 3D- UNet network is
Python3.7, TensorFlow Frame, CentOS 7.4, NVIDIA
GeForce1080TiGPU, Processor Intel®Xeon™CPU E5-2630
v4 @ 2.20GHz.

4.2. Data Preparation and Evaluation Criteria

4.2.1. Data Preprocessing. In this paper, the mask map of the
left and right lung lobes is extracted as the model input,
ignoring the thoracic cavity and other noise parts. (e ex-
traction process is shown in Figure 6.

Extraction process of lung parenchyma is as follows: (1)
binarize CT image and find the threshold that can distin-
guish lung area and nonlung area by the clustering method;
(2) Kmeans clustering, distinguish lung area as one type, and
nonlung area as another type; (3) corrosion operation is
performed on the highlighted part of the image to remove
tiny granular noise; (4) dilation operation is performed to
engulf blood vessels into lung tissue and remove black noise,
especially black lungs caused by opaque rays; and (5) per-
form the numerical model and operation of process (4) with
the original image and crop it to the same size to obtain the
lung parenchyma area.

4.2.2. Data Augmentation. Each CTnormalized scan was set
to have a mean of −600 and a standard deviation of 300
before data augmentation. Data augmentation strategies are
as follows. (1) Cropping: for each 512-pixel× 512-pixel CT
image, we crop every 2 pixels into smaller slices of 500× 500,
so the amount of data per candidate region increases by 36
times. (2) Flip: for each CT image, flipping was performed
from 3 orthogonal dimensions (coronal, sagittal, and axial
positions), thus ultimately increasing the amount of data by
a factor of 8 × 36� 288 per CT image. (3) Repeat: to balance
the number of positive and negative sample slices in the
training set, the positive sample slices are replicated 8 times.

4.2.3. Evaluation Standard. (is article uses pixel accuracy
(PA), mean pixel accuracy (MPA), and mean intersection
over union (MIoU). (ree international semantic segmen-
tation metrics are used to evaluate the segmentation results.
(e calculation formulas are shown in formulas (9) to (11),
respectively.

Pixel accuracy:

PA �


k
i�0 pii


k
0 

k
j�0 pij

. (9)

Average pixel accuracy:

MPA �
1

k + 1
pii


k
j�0 pij

⎛⎝ ⎞⎠. (10)

×

c × c

c × h × wc × h × w

A E

Reshape&Trdsnport

So�maxReshape

Reshape Reshape
× ×

Figure 5: Channel attention module.
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Average intersection ratio:

MIoU �
1

k + 1


k

i�1

pii


k
j�0 pij + 

k
j�0 pji − pii 

⎛⎝ ⎞⎠. (11)

(e segmentation of lung tumor cells only needs to obtain
one class of semantic segmentation results, including lung
tumor cells and background, so k� 1 here. pij means that this
belongs to i class and is predicted to be j number of pixels for
the class. Similarly, pii and pji, respectively, represent that this
belongs to class i and is predicted to be i number of pixels in
the class and the number of pixels that belong to class j but is
predicted to be i, the number of pixels for the class.

4.3. Experimental Results. Table 1 is the experimental
comparison results of various experimental methods on 88
test data. Table 2 shows the experimental comparison results
of 35 cases of small-sized lung tumor cells with diameters
ranging from 3.170mm to 7.5mm extracted from 88 test
datasets by various experimental methods. Table 3 shows the
number of iterations and loss of the neural network, from
Table 3. It can be seen that the loss value of the method in
this paper has reached a relatively low level when the
Bestepoch is 124 and keeps a small fluctuation. (e loss
values of the other methods are higher than those of the
method in this paper.

Figure 7 shows the segmentation results of various types
of lung tumor cells, in which the first and second columns
are relatively common solitary lung tumor cells, the third
and fourth columns are vascular adhesion lung tumor cells,
the fifth and sixth columns are the pleural traction type lung
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Figure 6: Lung parenchyma extraction process.

Table 1: Comparison of experimental results of different methods.

Method PA MPA MIoU
Literature [1] method 0.801 0.742 0.711
Literature [2] method 0.871 0.855 0.845
Literature [3] method 0.893 0.862 0.853
Literature [4] method 0.912 0.890 0.876
Literature [5] method 0.884 0.864 0.849
3D-UNet method 0.903 0.882 0.870
(e method of this paper 0.921 0.907 0.894

Table 2: Comparison of segmentation results of small-sized lung
tumor cells.

Method PA MPA MIoU
Literature [1] method 0.594 0.559 0.527
Literature [2] method 0.786 0.761 0.747
Literature [3] method 0.819 0.804 0.792
Literature [4] method 0.840 0.838 0.814
Literature [5] method 0.800 0.791 0.782
3D-UNet method 0.823 0.812 0.810
(e method of this paper 0.859 0.840 0.822

Table 3: Optimal number of iterations and loss.

Method Bestepoch Loss
Literature [2] method 208 0.2504
Literature [3] method 221 0.3494
Literature [4] method 157 0.3125
3D-UNet method 186 0.2811
(e method of this paper 124 0.1025
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tumor cells, the seventh column is the rare ground glass type
lung tumor cells, and the second, third, and sixth columns
are all small-sized lung tumor cells with a diameter of less
than 7.5mm. (e method proposed in this paper enables a
complete segmentation of large-sized lung tumor cells, in-
cluding columns 1, 5, and 7, and small-sized lung tumor
cells, including columns 2, 3, and 6. For more accurate
segmentation, the remaining comparison methods will be
more or less over- and undersegmented. (e experimental
results show that the segmentation network proposed in this
paper is superior, and the MIoU value of lung tumor cell
segmentation reaches 89.4% under the LIDC standard [21]
lung tumor cell dataset. In Figure 7, the 1st to 9th rows are
CT image, physician annotated image, literature [5] method,
literature [6] method, literature [7] method, literature [8]
method, literature [9] method, 3D-UNet method, and our
method.

5. Concluding Remarks

Aiming at the problems of low segmentation accuracy and
long time-consuming in the current segmentation network,
this paper constructs an attention mechanism 3D-UNet
network structure. (e DUpsampling structure is integrated
into the 3D-UNet network to improve the quality of the
feature map generated by the upsampling operation during
the network training process so that the feature map after
each upsampling is closer to the label data, and at the same
time, the convergence speed of the network is accelerated.
On this basis, a spatial attention module and a channel
attention module are proposed to capture the global de-
pendencies in the spatial and channel dimensions,

respectively. (e experimental results show that the network
structure can effectively integrate long-range context in-
formation, and improve the segmentation integrity of large-
sized lung tumor cells and the segmentation accuracy of
small-sized lung tumor cells. (e next step will be to analyze
the characteristics of various types of lung tumor cells to
achieve accurate localization and tracking of all types of lung
tumor cells. (e future segmentation of lung cancer will
move toward real-time segmentation methods.
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