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With the rapid development of information technology, industry and service industries have achieved rapid development in
recent years. ,en, looking at the development of agriculture, the popularity of informatization lags far behind industry and
service industries, directly hindering the digital development of agriculture. Starting from the current agricultural machinery
driving operation scene, this paper carried out a simplified research on the traditional agricultural machinery driving operation
method through the agricultural machinery kinematics model, and based on the related theory of deep reinforcement learning to
study the agricultural machinery path tracking in the agricultural operation scene, it carried out the controller design, built the
agricultural machinery autonomous path tracking framework operating mechanism under deep reinforcement learning, and
further researched through experimental design and found that the agricultural machinery autonomous path tracking control can
achieve better automatic control after empirical learning. I-DQN algorithm enables agricultural robots to adapt to the envi-
ronment faster when performing path tracking, which improves the performance of path tracking. It has important guiding
significance for further promoting the automatic navigation and control of agricultural machinery to realize the efficient operation
of agricultural mechanization.

1. Introduction

Automatic navigation control of agricultural machinery is a
key technology to support precision agriculture. ,is
technology can improve the working accuracy and efficiency
of agricultural machinery, so that the driver can get rid of
long-time tired and repetitive driving work and have enough
time to monitor and operate agricultural machinery.
,erefore, the automatic navigation control of agricultural
machinery has broad development prospects.

,e path tracking methods that are at the core of the
automatic navigation control of agricultural machinery
mainly include model-based control methods and model-
independent control methods. In terms of model-based
control methods, related scholars have separately studied the
path following control methods based on the kinematics
model and dynamics model of agricultural machinery [1–9].
However, among these methods, the method based on the

kinematics model is mainly to approximate the model with a
small angle linearization and design the controller under the
assumption of constant speed. ,is introduces not only
linearization error, but also the controller’s performance
when the speed changes. Robustness also deteriorates; while
the control method based on the dynamic model can fully
consider the dynamic characteristics of agricultural ma-
chinery, the dynamic model parameters are difficult to
obtain online and in real time. In terms of model-inde-
pendent control methods [10–15], the online adaptive de-
termination of the forward-looking distance in the pure
tracking method has not been well solved although the
intelligent method has some human-like intelligence and
incomparable traditional control methods. It has linear
mapping ability, but its design requires certain experience
knowledge and complex learning and training process.
Aiming at the outstanding advantages of intelligent methods
in agricultural machinery path control, this paper proposes
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an agricultural machinery path tracking method based on
deep reinforcement learning. ,e research of this method
has certain practical significance for the development of
efficient agricultural operation methods.

2. Related Theories

,e research in this paper will use the deep combination of
reinforcement learning and deep learning and make full use
of the decision-making advantages of reinforcement
learning and the perceptual advantages of deep learning
[13, 16, 17] to carry out research. In deep reinforcement
learning, reinforcement learning is used to define problems
and optimization goals, deep learning is used to solve
strategy functions or value functions, and backpropagation
algorithms are used to optimize the objective function. To a
certain extent, deep reinforcement learning has general
intelligence to solve complex problems.

2.1.DeepLearning. Deep learning is derived from the idea of
artificial neural network, which combines low-level features
to form higher-level features and attribute categories. ,e
most basic unit of artificial neural network is neuron, also
known as perceptron. A deep neural network is called a
multilayer perceptron. ,e difference from a single-layer
perceptron is that it adds multiple hidden layers and can
have multiple outputs. In the hidden layer, more complex
feature information can be learned and multiple values can
be output. It also enables the neural network model to solve
more types of problems, such as classification, regression,
dimensionality reduction, and clustering. At the same time,
combining deep neural networks with different activation
functions can further enhance the expressive ability of the
model [13, 16, 17].

,e deep neural networkmodel is shown in Figure 1.,e
structure can be divided into input layer, hidden layer, and
output layer. ,e input layer refers to information obtained
through sensors or from the environment, such as radar data
of agricultural intelligent harvesting vehicles. Each hidden
layer is a feature level, in which each neuron represents a
feature attribute. ,e output of the output layer is the re-
quired variables, such as the angular velocity and linear
velocity of agricultural intelligent harvesting vehicles.

In DNN, each layer of neural network is fully connected;
that is, the neurons in each i+1 layer are connected by the
second layer of neurons. Assume that there arem neurons in
the l − 1 layer network, and Wij represents the weight be-
tween the jth neuron in layer 1 and the kth neuron in l − 1
layer, bl

j is the bias of the kth neuron in the lth layer, and σ(z)
is the activation function. ,en, for the output al

j of the jth
neuron of the lth layer, there are
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,e above process is the forward propagation of the
neural network, but to optimize the parameters of the neural

network, backpropagation is required. In order to calculate
the error between the model output and the real training
sample output, the neural network needs to first define the
loss function for training, as defined in

J(W, b, x, y) �
1
2
a

L
− y

2
2. (2)

Finally, the error is used to update the weight of each
neuron, and finally a better model is obtained. ,is is the
process of backpropagation of the deep neural network.

2.2. Reinforcement Learning. Different from deep learning
that focuses on perception and expression, reinforcement
learning focuses on finding problem-solving strategies
[18, 19]. Reinforcement learning is mainly composed of
agent and environment. Since the interaction between the
agent and the environment is similar to the interaction
between the organism and the environment, it can be
considered that reinforcement learning is a general learning
framework, which represents the future development trend
of general artificial intelligence algorithms [20, 21].

,e basic framework of reinforcement learning is shown
in Figure 2. Agents interact with the environment through
states, actions, and rewards. Suppose that the state of the
environment at time t in Figure 2 is denoted as st, and the
agent performs a certain action at in the environment. At
this time, the action at changes the original state of the
environment and makes the agent reach a new state st+1 at
time t+1. In the new state, the environment generates a
feedback reward rt to the agent. ,e agent performs a new
action at+1 based on the new state st+1 and the feedback
reward rt+1 and iteratively interacts with the environment
through feedback signals [22].

,e ultimate goal of the above process is to maximize the
cumulative reward for the agent. Equation (3) is the cal-
culation process of the cumulative reward G.

G � r1 + r2 + · · · + rn. (3)

In the above process, the rule of selecting actions
according to the state s and the reward r is called the strategy

Input layer Hidden layer Output layer

Figure 1: Deep neural network model.
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π, where the value function v is the expectation of the cu-
mulative reward.

Reinforcement learning is to continuously perform trial-
and-error learning according to the feedback information of
the environment and then adjust and optimize its own state
information. ,e purpose is to find the optimal strategy or
the maximum reward.

,ere are two types of environments in which an agent is
located [23]: one is that the environment is known, which is
called model-based; the other is that the environment is
unknown, which is called model-free.

,e relationship between model-based tasks and model-
free tasks is shown in Figure 3. ,e line following agricultural
robot shown in Figure 3(a) controls its walking by sensing the
black course on the ground through sensors. Since the black
route on the ground is planned in advance and the sur-
rounding environment is also controllable and known, it can
be regarded as a model-based task. Figure 3(b) is the autopilot
system of a car. In the real traffic environment, many things
cannot be estimated in advance, such as the behavior of
passers-by, the trajectory of passing vehicles, and other
emergencies, so it can be regarded as a model-free task.

2.3. Deep Q-Learning (DQN) Algorithm. ,e DQN algo-
rithm is a famous work of the Google DeepMind team.,ey
used reinforcement learning to propose a deep learning
network model for solving control strategy problems,
opening a new era of deep reinforcement learning [24–27].

,e Q-learning algorithm stores Q values in the form of
Q tables, as shown in Figure 4. ,is method of storing the Q
value can handle maze problems when the state space and
action space are very small, but when the problem has a large
action or state space, the method of applying the Q table will
cause a very large amount of data. ,e DQN algorithm
combines Q-learning and deep learning algorithms, using
deep convolutional nerves as shown in Figure 5.

,e DQN algorithm has made the following improve-
ments on the basis of the reinforcement learning algorithm:

(1) DQN uses a deep neural network to simulate the Q
value function. ,e value function here corresponds
to the weight θ of each layer in the convolutional
neural network, that is, Q(s, a; θ) ≈ Qπ(s, a). In this
way, the update process of the Q value function is
essentially an update of the weight θ of the neural

network. When the parameter θ of the neural net-
work is determined, the value function Q is also
determined.

(2) Use experience playback technology to train neural
networks.,e deep neural network used by DQN is a
supervised neural network model. ,e input data
needs to be independent of each other and meet the
same distribution. Since the data collected by the
agent in the environment is continuous, there is a
correlation between adjacent data. When the algo-
rithm uses a set of continuous data for training, the
direction of gradient descent will become the same.
Calculating the gradient under the same training step
size may cause the result to not converge. ,e ex-
perience playback mechanism puts the data collected
by the agent into a memory bank, then uniformly
randomly samples from the memory bank, and
extracts the data from it for neural network training.
By using experience replay, the behavior distribution
can be averaged in its many previous states, thus
smoothing the learning process and avoiding fluc-
tuations or divergence of parameters. At the same
time, assign priority to each conversion in the ex-
perience replay memory, which can greatly improve
the learning efficiency compared with the uniform
sampling from the experience replay memory.

(3) ,e Q target network is set up to calculate the TD
error. When using the convolutional neural network
to approximate theQ value network, the parameter θ
is processed by the gradient descent method, and the
update process is

θi+1 � θi + αr + cmax
a′

Q s′, a′; θ( 

− Q(s, a; θ)∇Q(s, a; θ).

(4)

In (4), r + cmaxa′Q(s′, a′; θ) is called the TD target, and
the network used in calculating the TD target is called the
target network. ,e neural network used to approximate
the Q value function is called the estimation network. From
the above formula, it can be seen that the parameters used
by the target network are the same as the parameters of the
estimated Q network, so that the results obtained by the
calculation will have relevance. ,e training results of
reinforcement learning are unstable. To solve this problem,
the DQN algorithm expresses the parameters of the target
network as θ− . In the update of the neural network, the
parameter θ of the estimated network is updated in real
time, and the parameter θ− of the target network is ob-
tained by assigning the parameters of the estimated net-
work to the target network after N rounds of iterations, so
(4) changes to

θi+1 � θi + αr + cmax
a′

Q s′, a′; θ−
(  − Q(s, a; θ)∇Q(s, a; θ).

(5)

In the update of the neural network, the loss function is
defined by the mean square error:

Agent  
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Figure 2: ,e basic framework of reinforcement learning.
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L(θ) � E r + max
a′

Q s′, a′; θ−
(  − Q(s, a; θ) 

2
⎡⎣ ⎤⎦. (6)

Error function gradient:

∇L(θ) � E r + max
a′

Q s′, a′; θ−
(  − Q(s, a; θ) ∇Q(s, a; θ) .

(7)

After updating the network of (7) and obtaining the
value of Q(s, a; θ), you can use ∇Q(s, a; θ) to obtain the
optimal Q value for the nerve of (5).

3. Agricultural Machinery Kinematics Model

3.1.BehavioralLearning8eory. Considering the application
of agricultural machinery in actual agricultural land, agri-
cultural machinery should have high flexibility and stability
in complex environments. ,erefore, this paper adopts a
four-wheel agricultural machinery movement model, which
provides power for the agricultural machinery movement
through two rear wheels. ,e two front wheels adopt dif-
ferent steering angles to ensure the smooth steering of the
mobile agricultural machinery. ,e movement model is
shown in Figure 6.

When the agricultural machinery system is turning, its
turning process can be simplified into a bicycle model as
shown in Figure 7.

(a) (b)

Figure 3: Specific examples of model-based and model-free. (a) Line patrol agricultural machinery robot. (b) Autopilot system.

s1

a1

Q (1, 1)

Q (2, 1)

Q (3, 1)

Q (4, 1)

Q (1, 2)

Q (2, 2)

Q (3, 2)

Q (4, 2)

Q (1, 3)

Q (2, 3)

Q (3, 3)

Q (4, 3)

Q (1, 4)

Q (2, 4)

Q (3, 4)

Q (4, 4)

a2 a3 a4

s2

s3

s4

Figure 4: Q table of Q-learning algorithm.
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In the map coordinate system, (xr, yr) and (xf, yf),
respectively, represent the coordinates of the center position
of the two rear wheels of the agricultural machine and the
coordinates of the center position of the two front wheels,
and vr and vf, respectively, represent the center position of
the front wheel and the center of the rear wheel of the
agricultural machine. ,e speed of the position, φ, is the
heading angle of the agricultural machine in the map co-
ordinate system, δf is the deflection angle of the front wheel
of the agricultural machine, and l is the distance between the
center position of the front wheel and the center position of
the rear wheel. P is the instantaneous turning center of the
rear wheel center position of the agricultural machinery
during the turning process; R is the turning radius of the
center point of the rear wheel of the agricultural machinery,
assuming that the deflection angle of the center of mass of
the moving agricultural machinery does not change during
the turning process; that is, the instantaneous turning radius
and the radius of curvature of the path are the same. ,en
the speed of the rear wheel center (xr, yr) of the agricultural
machinery is vr:

vr � _xr cos φ + _yr sin φ. (8)

I also know the kinematic constraints of the center of the
front and rear wheels of agricultural machinery:

_xr cos φ − _yr sin φ � 0,

_xf sin φ + δf  − _yf cos φ + δf  � 0.

⎧⎨

⎩ (9)

Combining (8) and (9) can get

_xr � vr cos φ,

_yr � vr sin φ.
 (10)

According to the relationship between the center co-
ordinates of the rear and front wheels (xr, yr) and (xf, yf):

xf � xr + l cos φ,

yf � yf + l sin φ.

⎧⎨

⎩ (11)

Incorporating (10) into (11) can reach the angular ve-
locity ω when the agricultural machinery turns:

ω �
vr

l
tan δf. (12)

ω is the angular velocity at which the agricultural ma-
chinery rotates around the instantaneous rotation center
P. And the moving speed of the agricultural machinery vr

can get the turning radius R and the front wheel deflection
angle δf:

R �
vr

ω
,

δf � tan− 1 l

R
 .

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(13)

Finally, the kinematics model of mobile agricultural
machinery can be obtained as
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vr. (14)

4. Design of the Control Strategy for the
Agricultural Machinery Path following Deep
Reinforcement Learning

4.1. Design of the Autonomous Path Tracking Framework for
Agricultural Machinery. When agricultural machinery uses
reinforcement learning to achieve autonomous path
tracking and obstacle avoidance tasks in unknown envi-
ronments, it must first meet the MDP model. When using
MDP, it is necessary to define the state space, action space,
and reward and punishment functions. When the agricul-
tural machinery first interacts with the environment, it
cannot distinguish between obstacles and targets. It can only
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Figure 6: Schematic diagram of agricultural machinery steering.
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Figure 7: Model of the agricultural machinery steering bicycle.
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adjust its own strategy according to the reward and penalty
values feedback from the environment in the process of
exploring the environment and finally realize the task of path
tracking. ,e framework of the path tracking algorithm is
shown in Figure 8. ,e Autolabor four-wheeled vehicle is
used to simulate the operation of agricultural machinery in
the design of the path tracking framework.

In the above framework, the agricultural machinery
obtains external information through the Lidar sensor and
executes action a, tries different states St, and at the same
time obtains the corresponding reward value r according to
the set reward and punishment function. When exploring
the environment, OU noise is added to increase the ex-
ploration degree of the action space, and the experience
explored in the environment is stored in the form of tuples
and placed in the experience playback pool. When training
the network, the priority playback mechanism is used to
sample and learn the important experience samples first,
reducing the training time of the mobile agricultural ma-
chine, and finally the mobile agricultural machine learns to
track autonomously in the environment. ,e following will
design the state space, action space, and reward and pun-
ishment functions in the algorithm framework.

4.1.1. Agent State and Space Design. In order to simplify the
path tracking model, it is assumed that the agricultural
machine is moving at a fixed speed; that is, the agricultural
machine has a fixedmoving distance in each time step, so the
steering angle φ of the machine is taken as the action space,
and the dimension is 1.

In deep reinforcement learning training, the purpose of
agricultural machinery is to move to the target path while
avoiding obstacles. ,erefore, the state space of agricultural
machinery needs to include its own positional relationship
with obstacles and target paths. ,is article defines the state
space of agricultural machinery as follows:

S �

(x, y)

k
,

θ
2π

,

dobj

k
,

x − xobj , y − yobj  

k
,

daim

k
,

x − xaim( , y − yaim( ( 

k
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

Among them, (x, y) and θ represent the position and
orientation of the agricultural machine in the current map,
and k is the standardized coefficient; dobj and daim represent
the distance between the agricultural machine and the

nearest obstacle and the target path; (x − xobj), (y − yobj)

and (x − xaim), (y − yaim), respectively, represent the dis-
tance information of the agricultural machinery from the
nearest obstacle and the target path.

In actual movement, the real-time pose of the agricul-
tural machine in the environment can be obtained through
SLAM technology, and the distance between the agricultural
machine robot and the obstacle is obtained through sensors.

4.1.2. Reward Function Design. ,e reward and punishment
value is the feedback signal given to the agent by the en-
vironment, which reflects the pros and cons of the actions
performed by the agent during the task learning process.
When the agricultural machinery obtains a higher reward
value from the environment, it indicates that the current
behavior of the agricultural machinery is more conducive to
the path tracking task; on the contrary, if the mobile agri-
cultural machinery receives a large penalty value in the
environment, it means that the behavior performed by the
mobile agricultural machinery is not good for the path
tracking task and should be avoided as much as possible.
Finally, the mobile farming opportunity adjusts its strategy
according to the rewards and punishments in the envi-
ronment. During the training of mobile agricultural ma-
chinery, when the agricultural robot reaches the target point
or touches obstacles and walls, the agricultural robot is given
a fixed reward. When the agricultural robot has not reached
the target or touched an obstacle, the reward value contains
two parts: one is the negative reward value of the distance
information between the agricultural machine and the
nearest obstacle; the second is the positive reward value of
the distance information between the agricultural robot and
the target path. ,e sum of the two parts of the reward value
is used as the final reward value obtained by the agricultural
robot after each action, set as follows:

reward � rewardatt + rewardrep �
1

2daim/k
−

1
2dobj/k

. (16)

,erefore, the reward function of agricultural machinery
action is

200 daim <dobj,

1
2daim/k

−
1

2dobj/k
daim <d<dobj,

−200 daim >dobj.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(17)

,e rewards in the above reward and punishment
function are divided into continuous rewards and instant
rewards. Continuous rewards are rewards that are generated
every time the agricultural robot takes an action; that is,
rewards are rewards that are given immediately under
certain circumstances.

4.1.3. Design of Autonomous Path Tracking Control for
Agricultural Machinery. ,e path tracking process design of
mobile agricultural machinery under the deep
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reinforcement learning algorithm is shown in Figure 9. ,e
agricultural machinery first obtains environmental infor-
mation through sensors and calculates the orientation and
distance of obstacles and targets and selects the corre-
sponding action value according to the exploration noise
and exploration attenuation rate. At the same time, it is
judged whether it is the end state or the target state. If it is the
end state, reset the environment and restart; otherwise
continue to learn in the environment; if it is the target state,
continue to judge whether the algorithm has converged; if it
converged, the program ends; otherwise continue to gen-
erate target endpoints and interact with the environment
until the end.

4.2. Deep Neural Network Structure Design. ,e deep neural
network of agricultural machinery is based on the Actor-
Critic framework. In the current state, the mobile agricul-
tural machinery obtains and executes actions through the
Actor network and interacts with the environment to reach
the next state and obtain reward values. At this time, the
Critic network takes the actions and state values output in
the Actor network as input and outputs the evaluation of the
current action value. ,is evaluation indicates the pros and
cons of the action value of the mobile agricultural machine
in the current state. ,e structure design of the network is
shown in Figure 10.

In the Actor network, the input is the state S of the
agricultural machinery robot. ,e number of neurons in the
hidden layer is 400 and 300, the activation function is Relu,
and the output layer is the linear velocity v and angular
velocity v of the mobile agricultural machinery. Since the

retreat of agricultural machinery is not considered, the linear
velocity w has only positive values, and the angular veloc-
itywis a vector, and the positive and negative values indicate
the direction, so the Sigmoid and Tanh activation functions
are used to output the action values in the continuous action
space. In the Critic network, the hidden layer uses the same
number of neurons and activation function as the Actor
network. ,e Q value of the output layer does not require an
activation function to perform a nonlinear transformation
and directly performs a linear transformation. Finally, the
smallest Q value is selected from two Critic networks of the
same structure to avoid overestimation of the deviation.
According to the set reward and punishment mechanism,
network parameters will be continuously optimized, so that
the Actor network can get a higher reward value after
performing actions. In the Critic network, the value cal-
culated in the Actor network is scored, and the score result is
sent back to the Actor network. ,e Actor network will
update according to the score result. ,e combination of the
two networks can improve the efficiency of algorithm
update.

5. Experimental Design and Results

5.1. Simulation Environment Settings. ,is chapter will
adopt themobile agricultural machinerymodel. Autolabor is
a ROS-based mobile four-wheeled vehicle instead of agri-
cultural machinery. It has programmable, SLAM mapping
navigation, and motion control functions. At the same time,
Autolabor software is also provided in open source form. In
RVIZ, the models of agricultural machinery robots are
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Figure 8: Agricultural machinery path tracking framework based on Autolabor.
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commonly described in URDF and XARCO files, and their
essence is in XML format. Autolabor’s model files are shown
in Figure 11.

After the model is built, start the model for testing. Create
the file display.launch in the launch folder Figure 12. ,e first
input parameter model is the path to the urdf file to be
launched. ,e two input parameters gui specify whether to

enable the joint rotation control panel window. Two param-
eters indicate describing themodel description file to be started
(urdf) and the joint to the control window (gui, corresponding
to each joint), respectively. ,ree nodes are used to send joint
information, robot control information, and rviz start.

Among them, Link and Joint can be compared to human
skeletons and joints, which are the basis for describing the

Next state s′, reward rReset environment

Regenerate the
target point

Algorithm
convergence?

Algorithm convergence?
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target point?

End state?

Perform actions
a = (, )

Sensors get information
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Figure 9: Design of autonomous path tracking control for agricultural machinery.
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Figure 10: Actor-Critic network structure design.
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structure of agricultural machinery and agricultural ma-
chinery robots and are constructed in a tree structure. ,e
main body, wheels, and joints of the agricultural machinery
and agricultural machinery robot are defined in the link, and
some attributes are given: <visual> defines the appearance
attributes of the link; <geometry> defines the shape of the
structure; <inertial> and <collision> specify, respectively,
inertial properties and collision properties. ,e final
Autolabor model in RVIZ is shown in Figure 13.

Next, create a topographic map of agricultural land
based on the topographic characteristics of agricultural land,
as shown in Figure 14.

5.2. Training Process and Experimental Parameter Settings

5.2.1. Pretest Results and Analysis of Physical Fitness.
When the mobile agricultural machinery is undergoing
training experiments, it is essentially a process in which the
agricultural robot explores the environment and adjusts its
action strategy according to the feedback of the environment
and finally realizes the path tracking and obstacle avoidance
of the agricultural robot. During the training of agricultural
robots, the starting point is the starting point, and the target
end point is randomly generated in the set simulation

environment. ,e same coordinate range as the obstacle
collision area cannot be set as the target end point. When the
agricultural machinery robot reaches the target, it means
that it has successfully completed a path tracking task and
uses this point as the starting point to continue to the next
randomly generated target end position. When an agri-
cultural robot fails to track the path, it is regarded as a
terminal state. ,e terminal state includes that the

Figure 11: Autolabor model file.

Figure 12: Model startup file.

Figure 13: Autolabor model.
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agricultural robot encounters an obstacle, a wall, or reaches
the upper limit of the planned number of steps. At this time,
the agricultural robot will start the next training from the
planned starting point. Finally, the training is completed
after reaching the set maximum number of training rounds.
,e training process is shown in Figure 15.

5.2.2. Experimental Parameter Settings. In order to improve
the reliability of the experimental data, the experiments in
this chapter are all completed under the environment
ubuntu 6.04+cuda9.0+pytorch0.4.1, and the experimental
hardware conditions are i7-8750H+GeForce
GTX1060 + 16G. ,e specific settings of the experimental
parameters are shown in Table 1.

5.3. Experiment and Result Analysis. In this section, ex-
periments will be conducted on static obstacle scenes and
dynamic obstacle scenes, respectively. In each scene, the path
tracking results of the DQN algorithm and the agricultural
robot proposed in this paper will be tested, and the results
will be analyzed.

5.3.1. Static Obstacle Experiment. ,e reward value of the
first 1000 training rounds is plotted as a reward curve, as
shown in Figure 16. In the initial stage of training, since the
agricultural robot has just started to interact with the en-
vironment, it will often drive away from the target and finally
collide with obstacles or walls, so the penalty value is high,
and the initial reward is basically around -500 to -400. In the

200 rounds before training, because the DQN algorithm
cannot distinguish the importance of experience, it can only
continue to explore and try to learn, and the curve fluctuates
greatly. ,e agricultural machinery algorithm uses a priority
playback mechanism, which will give priority to learning
some important experiences. Compared with the DQN al-
gorithm, it reduces the volatility of the curve, and the I-DQN
algorithm starts to accelerate the convergence in about 100
rounds; however, the DQN algorithm does not start to
increase the rewards until 250 rounds. As the training time
increases, the I-DQN algorithm basically converges after 300
rounds, and the DQN algorithm gradually converges around
450 rounds.,erefore, in scenario 1 under the same training
conditions, the I-DQN algorithm has better convergence
and stability.

Figure 17 shows the path tracking success rate in the
1000 rounds before the training of the agricultural robot.,e
trend line of the success rate and the reward value curve are
roughly the same. ,e I-DQN algorithm starts around 100
rounds, and the success rate is greatly improved, reaching
70% in 200 rounds. In about 300 rounds, the success rate of
the I-DQN algorithm basically reached 90%; in contrast, the
DQN algorithm had fewer successes in the early stage and
lacked stability. In 200 rounds of training, there was only a
50% success rate until after 450 rounds. ,e success rate has
gradually reached 90%.,erefore, the importance area of the
experience samples in the experience pool can make the
agricultural machinery robot better learn path tracking
planning tasks and finally learn to use experience to avoid
obstacles and reach the end.

Figure 14: Topographic map of simulated agricultural land.
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5.3.2. Dynamic Obstacle Experiment. In order to test the
path tracking ability of the agricultural robot in the DQN
and I-DQN algorithms under different types of obstacles, a
dynamic obstacle path tracking test was performed in sce-
nario 2. After the agricultural robot enters the termination
state, the dynamic obstacle also returns to the original point.
,e agricultural machinery robot restarts path tracking.
Analyze the reward value and success rate during training
under the dynamic obstacle scene, and test the path length
and planning time.

Figure 18 shows the reward value curve of the two-al-
gorithm training under scenario 2. Similar to scenario 1, the

agricultural robot is trying to learn how to avoid obstacles
under the two algorithms in the early stage, because the
dynamic obstacle avoidance process is more complicated,
and the agricultural robot is more likely to collide with
obstacles at first, and it takes longer to learn. After 150
rounds, the volatility of the I-DQN algorithm began to
decrease, and the reward value increased rapidly in the
subsequent 200 rounds, and finally the algorithm gradually
converged around 400 rounds. ,e DQN algorithm fluc-
tuated greatly in the first 200 rounds. ,e 250 rounds began
to rise gradually and did not begin to converge until 550
rounds.
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Figure 15: Experimental training process.
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,e path tracking success rate results under scenario 2
are shown in Figure 19. It can be seen that the two al-
gorithms have low success rates in the first 150 rounds,
but the success rate of the I-DQN algorithm is greater
than the DQN algorithm in the subsequent 200 rounds.
,e success rate of 350 rounds reaches 75%, which is
about 30% higher than the success rate of the DQN al-
gorithm. In 400 rounds, the success rate of I-DQN al-
gorithm basically reached 90%, while DQN had the same
success rate in 550 rounds, which proves that I-DQN is
better than DQN in path tracking under dynamic obstacle
scenarios.

After the training, the dynamic obstacle avoidance
process of the mobile agricultural machine in the Gazebo
environment is shown in Figure 20. ,e agricultural robot
has been able to continuously reach different target paths
while avoiding dynamic obstacles.

Table 1: Experimental parameter setting table of the mobile ag-
ricultural machinery robot.

Parameter name Parameter assignment
Reward discount rate c 0.9
Actor network learning rate 0.001
Critic network learning rate 0.001
Priority parameter α 0.6
Correction error parameter β 0.4
Target network delay update TAU 0.001
OU explores noise σ � 0.2, c � 0.15
Experience playback pool capacity 200000
BATCH_SIZE 256
Optimizer Adam
Maximum travel distance per round 3m
Total rounds 15000
Experience pool capacity 50000
Batch capacity 32
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Because obstacle avoidance is more complicated in
dynamic obstacle scenarios, the requirements for obstacle
avoidance and path tracking of mobile agricultural ma-
chinery are higher. ,erefore, in order to better test the
algorithm, the path length and movement time of the path
tracking in scene 2 are tested. Before the test starts, ten
coordinate points are randomly generated as the target end
point. In order to increase the reliability of the experiment,
the coordinate range is set outside the obstacle bypass area,
so that the agricultural robot must pass through the obstacle
area and will not appear when tracking the path. ,e target
path is very close to the agricultural robot. After the end
point is set, perform ten experiments on the I-DQN and
DQN algorithms in scenario 2, starting from the origin each
time, and use ten randomly generated end points as the
target path to perform path tracking, respectively. According
to the target path, the straight-line distance length of the
starting point is sorted, and the final moving results are
shown in Table 2.

Comparing Tables 2 and 3, under the same target end
point, the average path length and planning time of the
I-DQN algorithm are shorter than those of the DQN al-
gorithm, and the gap gradually increases as the target path
distance increases, which proves that the agricultural ma-
chinery algorithm tends to make the agricultural
machinery robot learn to take a shorter path in a dynamic
obstacle scene, and the time is shorter, which improves the
performance of path tracking. ,e average results of the ten
times of I-DQN and DQN path tracking are shown in
Table 4.

Based on the analysis of the above experimental results,
the DQN algorithm realizes the autonomous path tracking
of mobile agricultural machinery in an unknown environ-
ment. At the same time, whether in static or dynamic ob-
stacle scenarios, the I-DQN algorithm has a faster
convergence speed, allowing agricultural robots to learn to
avoid obstacles and reach the target destination faster, and
the stability and path tracking performance are improved.

6. Conclusion

With the rapid development of information technology and
the realization of smart agriculture, digital agriculture has
become an inevitable trend in agricultural development now
and in the future. Based on this background, this paper
studies the automatic navigation control of agricultural
machinery, adopts deep reinforcement learning theory,
designs an autonomous path tracking control strategy for
agricultural machinery, and conducts experimental simu-
lations through two operating scenarios. ,e DQN and
I-DQN algorithms are applied. In the path tracking task, a
number of experiments were designed to verify and analyze

Figure 20: Continuous dynamic obstacle avoidance process of mobile agricultural machinery.

Table 2: I-DQN algorithm path tracking results.

Target end Path length (m) Moving time (s)
1 (−1.13, 0.67) 1.41 7.73
2 (0.84, 1.04) 1.44 7.96
3 (−0.27, 0.34) 1.46 8.27
4 (−1.17, −0.96) 1.62 8.58
5 (0.86, 1.36) 1.69 9.10
6 (0.05, 1.66) 1.73 9.57
7 (−0.91, 1.41) 1.75 9.97
8 (−1.18, 1.33) 1.86 10.11
9 (−1.29, 1.50) 2.11 11.22
10 (1.44, 1.98) — —

Table 3: DQN algorithm path tracking results.

Target end Path length (m) Moving time (s)
1 (−1.13, 0.67) 1.49 8.19
2 (0.84, 1.04) 1.49 8.21
3 (−0.27, 0.34) 1.61 8.78
4 (−1.17, −0.96) 1.73 9.16
5 (0.86, 1.36) 1.85 9.43
6 (0.05, 1.66) 1.89 9.90
7 (−0.91, 1.41) 1.95 10.60
8 (−1.18, 1.33) 1.86 10.83
9 (−1.29, 1.50) 2.17 11.56
10 (1.44, 1.98) — —

Table 4: Comparison table of path tracking movement results.

Path length
(m) Moving time (s) Success rate

I-DQN
algorithm 1.67 9.17 90

DQN algorithm 1.76 9.63 90
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the results. ,e analysis of experimental results shows that
the DQN algorithm realizes the autonomous path tracking
of mobile agricultural machinery in unknown environ-
ments. At the same time, the I-DQN algorithm has a fast
convergence speed. Whether in static or dynamic obstacle
scenarios, it can make the agricultural machinery robot learn
to avoid obstacles and reach the destination faster, so as to
improve the stability and path tracking performance. ,is
research simplifies themotionmodel and, to a certain extent,
does not achieve the true restoration of the actual scene. It
has certain limitations for practical applications, but the
ideas provided have laid a theoretical foundation for sub-
sequent practical application research.
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[19] M. Volodymyr, P. B. Adrià, M. Mirza et al., “Asynchronous
methods for deep reinforcement learning,” in Proceedings of
the International Conference on Machine Learning, 2016.

[20] W. Meng, Q. Zheng, Y. Shi, and G. Pan, “An off-policy trust
region policy optimization method with monotonic im-
provement guarantee for deep reinforcement learning,” in
IEEE Transactions on Neural Networks and Learning Systems.

[21] A. Kendall, J. Hawke, D. Janz et al., “Learning to drive in a
day,” in Proceedings of the IEEE International Conference on
Robotics and Automation, pp. 8248–8254, IEEE, Montreal,
QC, Canada, May 2019.

[22] R. S. Sutton and A. G. Barto, Introduction to Reinforcement
Learning, MIT press, Cambridge, England, 1998.

[23] Q. Cai and B. Zhang, “A reinforcement learning model and
application research based on agent team,” Computer Re-
search and Development, vol. 37, no. 9, pp. 1087–1093, 2000.

[24] V.Mnih, K. Kavukcuoglu, D. Silver et al., “Playing atari with deep
reinforcement learning,” 2013, https://arxiv.org/abs/1312.5602.

[25] J. Li, Y. Chen, X. N. Zhao, and J. Huang, “An improved DQN
path planning algorithm,” 8e Journal of Supercomputing,
vol. 78, pp. 1–24, 2021.

[26] Y. Wang, L. Chen, H. Zhou et al., “Flexible transmission
network expansion planning based on DQN algorithm,”
Energies, pp. 488–491, 2021.

[27] Y. Liu and Y. Xu, “Free gait planning of hexapod robot based
on improved DQN algorithm,” in Proceedings of the IEEE 2nd
International Conference on Civil Aviation Safety and Infor-
mation Technology (ICCASIT), October 2020.

14 Scientific Programming

https://arxiv.org/abs/1706.10295
https://arxiv.org/abs/1312.5602

