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(e accurate monitoring of tool condition is of great significance to improve themachining quality and efficiency of parts, prolong
the service life of tools and machine tools, and reduce the harm of manufacturing environment. In this dissertation, two methods
based on synchronous compressed continuous wavelet transform and deep convolution neural network (SWT-DCNN) and
synchronous compressed continuous wavelet transform and deep convolution neural network (SST-DCNN) are proposed to
monitor tool wear. It is found that the recognition accuracy of SWT-DCNNmethod is 99.96%, and that of SST-DCNNmethod is
99.86%. (e reason is that SWTmethod has good time-frequency energy aggregation. Compared with the SST-DCNN method,
the recognition accuracy of the SWT-DCNN method is more stable. At the same time, it is found that the recognition rate of the
SST-DCNN method in the process of normal tool monitoring is only 93.3%, which is easy to classify normal tools into the initial
wear category. (e experimental results show that the two methods proposed in this paper can effectively monitor the tool
wear state.

1. Introduction

With the development of intelligent manufacturing tech-
nology, the process system is required to further improve the
ability of active perception and independent decision-
making. (erefore, tool condition monitoring has become a
research hotspot in the machining field. (e accurate
monitoring of tool condition is of great significance to
improve the machining quality and efficiency of parts,
prolong the service life of tools and machine tools, and
reduce the harm of manufacturing environment.

(ere are mainly two commonly used tool wear mon-
itoring methods: one is the direct monitoring method based
on machine vision [1] and the other is the indirect moni-
toring method based on sensor signals [2–6]. (e visual
monitoring method can obtain the tool wear more intui-
tively and quantitatively, but its premise is to stop cutting to

take a clear tool image, which leads to the reduction of
machining efficiency [7]. (e application of real-time wear
monitoring methods based on sensor signals is more
common. (e tool wear state monitoring method based on
sensor signals mainly collects the cutting force [2], vibration
[3], acoustic emission [4], spindle current [5], and cutting
temperature [6] in the machining process. (en, the ma-
chine learning method is used to determine the relationship
between the signal and the wear amount through the analysis
and processing of the signal. Finally, the wear state of the tool
is judged according to the signal in the production process.

Many machine learning models are usually used in data-
driven applications, such as extreme learning machine [3, 4],
support vector machine [8, 9], and hidden semi-Markov
model [10, 11]. Lei et al. [8] proposed a least squares support
vector machine method for predicting tool life. Zhang and
Zhang [9] established a tool wear monitoring model
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combining trajectory similarity and support vector regres-
sion. Drouillet et al. [5] obtained the prediction model of
tool remaining service life based on the artificial neural
network by using spindle motor power. Lei et al. [3] used the
hybrid GAPSO algorithm to optimize the initial weight and
threshold of the extreme learning machine method. (en,
they used the optimized extreme learning machine method
to monitor the tool wear state. Zhou et al. [4] used the
double-layer network structure to enhance the learning of
time-frequency domain characteristics of acoustic signals.
(en, the two angle kernel function is used to replace the
preset hyperparametric problem of kernel function in the
traditional extreme learning machine method, and finally,
the tool wear monitoring in the milling process is realized.

A single sensor cannot capture all the characteristics of
the tool wear [12]. To solve the above problems, researchers
study multisensor fusion technology to detect chatter and
tool wear. Aliustaoglu et al. [13] realized tool wear detection
based on the statistical characteristics of cutting force,
vibration and acoustic signal combined with a two-level
fuzzy logic algorithm. Rizal et al. [14] realized tool wear
detection based on the time-frequency domain charac-
teristics of cutting force, vibration, torque, and temperature
signals combined with Martin’s system. Liu et al. [15] re-
alized the detection of different machining states based on
the time-frequency domain characteristics of force and
vibration signals and support vector machine. Multisensor
fusion technology can more accurately monitor the pro-
cessing state, but there are great problems in industrial
production.

With the development of computer technology, deep
learning method shows outstanding performance in clas-
sification, especially in image classification.(e advantage of
deep learning is that it can automatically extract and learn
representative features instead of performing manual feature
extraction and selection. Li et al. [16] proposed a deep bi-
directional long-term and short-term memory neural net-
work model to predict the remaining service life of tools. Ma
et al. [2] established a tool wear prediction model using
convolution bidirectional long-term and short-term mem-
ory network and convolution bidirectional gated recursive
unit. (e minimum prediction errors are within 8%, which
proves the effectiveness of the proposed method. An et al.
[17] established a hybrid model combining the convolu-
tional neural network and superimposed bidirectional and
unidirectional LSTM networks to predict the remaining
service life of tools, with an average prediction accuracy of
90%. Huang et al. [18] performed short-time Fourier
transform on the vibration data in the cutting process to
obtain the time-frequency domain diagrams under different
tool states and combined with the convolutional neural
network to monitor the tool state. Meanwhile, the con-
volutional neural network also shows excellent performance
in pattern recognition when is applied to fault diagnosis [19]
and cutting chatter [20, 21].

(e tool condition monitoring signal obtained in the
cutting process contains obvious unsteady characteristics,
so time-frequency analysis has obvious advantages in
processing machining signals. Firstly, the vibration signals

in the machining process are processed by synchronous
compressed short-time Fourier transform (SST) and
synchronous compressed continuous wavelet transform
(SWT), and then the time-frequency domain diagrams
with different tool states are obtained. (en, a deep
convolution neural network (DCNN) model with an ac-
tivation function of Leaky ReLU is constructed, which
overcomes the problem of vanishing gradient. Finally, the
deep neural network is trained with the time-frequency
domain Atlas with different tool wear conditions, and two
methods of automatically monitoring tool wear are
obtained.

2. Theory

2.1. SST. Synchronous compression based on short-time
Fourier transform is a time-frequency analysis method with
high time-frequency resolution. In essence, the combination
of time-frequency distribution rearrangement and short-
time Fourier transform compresses the time-frequency
distribution after short-time Fourier transform, so as to
greatly improve the time-frequency resolution [22, 23].

(e synchronous compression transformation of signal
x(t) is described as follows.

G(t, w) � 
+∞

− ∞
x(u) · g(u − t) · e

− iwudu, (1)

where g(u − t) represents the time window function.
Based on Plancherel’s theorem, equation (1) can be

abbreviated as follows:

G(t, w) � 
+∞

− ∞
x(u) · g(u − t) · e

− iwu
 

∗
du

� 
+∞

− ∞
x(u) · gw(u)( 

∗du

�
1
2π


+∞

− ∞
x(ξ) · gw(ξ)( 

∗dξ,

(2)

where ∗ represents conjugate operation, gw(ξ) represents
the Fourier transform of gw(u), and x(ξ) represents the
Fourier transform of x(u).

Set up t′ � u − t, gw(ξ) is described as follows:

gw(ξ) � 
+∞

− ∞
g t′(  · e

iw t+t′( ) · e
− iξ t+t′( )dt′

� e
iwt− iξt

· 
+∞

− ∞
g t′(  · e

iwt′− iξt′dt′

� e
iwt− iξt

· g(w − ξ).

(3)

Replace is described in equation (2) with equation (3)
and introduce the phase shift operator eiwt.

G(t, w) �
1
2π


+∞

− ∞
x(ξ) · gw(w − ξ) · e

iξtdu. (4)

(e Fourier transform of the signal x(t) is described as
follows:

x(ξ) � 2πA · δ ξ − 2πf0( . (5)
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Substitute equation (5) into equation (4), G(t, w) is
described as follows:

G(t, w) � A · gw w − 2πf0(  · e
i2πf0t

. (6)

According to equation (6), the time-frequency energy of
the signal will propagate within the frequency interval of
[2πf0 − Δ, 2πf0 + Δ], where Δ is the frequency range of the
sliding time window function.

ztGe(t, w) � zt Ag w − 2πf0(  · e
i2πf0t

 

� A · w − 2πf0(  · e
i2πf0t

· j · 2πf0

� Ge(t, w) · j · 2πf0,

(7)

where Ge(t, w)≠ 0; then, the instantaneous frequency of f0
is described as follows:

f0(t, w) � − i
ztGe(t, w)

2πGe(t, w)
,

SST(t, w) � 
+∞

− ∞
Ge(t, w) · δ w − f0(t, w)( dw,

(8)

where 
+∞
− ∞ Ge(t, w) · δ(w − f0(t, w))dw is a synchronous

compression operator and δ represents Dirac function.

2.2. SWT. Daubechies et al. [24] combined synchronous
compression technology with continuous wavelet trans-
form and proposed the SWT method. SWT increases the
time-frequency resolution by compressing and rear-
ranging the CWT transform coefficients in the frequency
direction.

For any signal s(t), its CWTis described in equation (10).

Ws(a, b) �〈s,ψa,b〉

�  s(t)a
− (1/2)ψ ∗

t − b

a
 dt,

(9)

where Ws(a, b) is the wavelet transform coefficient spec-
trum, a and b are scaling and displacement variables re-
spectively, ∗ represents complex conjugate, and ψ(t) is
wavelet basis function.

According to Plancherel’s theorem, transform Ws(a, b)

to the frequency domain; its expression is as follows.

Ws(a, b) �
1
2π

s(ξ)a
1/2ψ ∗ (aξ)e

ibξdξ, (10)

where ξ is the angular frequency and s(ξ) is the Fourier
transform of signal s. When Ws(a, b)≠ 0, the instantaneous
frequency ωs(a, b) of a signal is described as follows:

ωs(a, b) � − i Ws(a, b)( 
− 1 z

zb
Ws(a, b). (11)

(en, the synchronous compression transformation is
carried out, the mapping from the starting point (b, a) to
(b,ωs(a, b)) is established, andWs(a, b) is transformed from
the time scale plane to the time-frequency scale plane to
obtain a new time-frequency spectrum.

In order to suppress the ambiguity at the scale param-
eters, add the energy in the continuous interva
[ωl − (1/2)Δω,ωl + (1/2)Δω], and redistribute the distrib-
uted energy to the instantaneous frequency; the SWTcan be
obtained as follows.

SWT ωl, b(  �
1
Δω

 Ws ak, b( ak
− 3/2

(Δa)k, (12)

where ak is the kth discrete scale parameter, which satisfies
|ω(ak, b) − ωl|≤Δω/2, ωl is the L-th center frequency,
Δω � ωl − ωl− 1, and (Δa)k � ak − ak− 1.

2.3. Convolutional Neural Network. Convolutional neural
networks (CNN) are a kind of feedforward neural networks
with depth structure including convolution calculation. It is
a deep learning network as one of the representative algo-
rithms of deep learning. It can extract high-level features
from the input information and classify the input infor-
mation according to its hierarchical structure with trans-
lation invariance. It has unique characteristics in image
recognition and classification.

Convolutional neural networks mainly include an input
layer, an output layer, and multiple hidden layers in
structure. (e hidden layer is usually composed of a con-
volutional layer, a pooling layer, and a fully connected layer.
(e output layer is usually composed of a fully connected
layer and a classification layer.

In order to extract different features of the input feature
map, the pixel values of the input features are convoluted by
convolution check, and the convolution layer is calculated as
follows [25].

x
l+1
i,j � f 

L

j�1


m

i�1
X

l
i,jω

l
i,j  + b⎛⎝ ⎞⎠, (13)

where Xl
i,j is the jth eigenvalue of the ith characteristic graph

in the network layer l. L is the convolution kernel size. ωl
i,j is

the weight coefficient, b is the deviation value, and f(·) is the
activation function.

(e main function of the activation function is to
present the nonlinear modeling ability of the network.
Sigmoid, tanh, and ReLU activation functions are widely
used. Sigmoid is the most widely used activation function,
which has the shape of an exponential function. Its dis-
advantage is that it has very obvious saturation, and the
derivatives on both sides of the function tend to 0. Tanh
converges faster than sigmoid, reducing the number of
iterations and causing the gradient to disappear. ReLU can
maintain the gradient without attenuation at x> 0 to al-
leviate the gradient disappearance problem, but at x> 0, the
gradient will also disappear, resulting in the corresponding
weight cannot be updated, affecting the convergence of the
network. Leaky-ReLU activation function can effectively
solve the gradient disappearance problem, and its ex-
pression is as follows.

f(x) �
x, if x> 0,

α e
x

− 1( , if x< 0.
 (14)
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(e function of the pooling layer is to sample the features
obtained from the previous convolution layer to reduce the
dimension, reduce the computational complexity, and avoid
overfitting. (e general form of pooling is described as
follows:

x
l
i,j � f βl

jdown x
l− 1
i,j  + b , (15)

where β is a multiplicative bias and down(·) is the down-
sampling function.

Softmax function is a generalization of logistic classifier,
which is mainly used for multiclassification problems.
Suppose the set of training output samples is
X � x1 · · · xi · · · xT , where the category of input sample
elements is C � c1 · · · ci · · · xK  and the corresponding label
is y, so the probability of judging input sample xi as a
category in C set is P � yi � ck|xi . (e mathematical ex-
pression of Softmax function is described as follows:

P � yi � ck|xi 

� e
x

Tck
i

1


K
k�1 e

x
Tck
k

,
(16)

where ex
Tck
i is the correlation coefficient between category ck

and the whole xi classification category and 1/
K
k�1 ex

Tck
k is

the normalization function.

3. Experiment and Parameter Design

3.1.Experimental Setup. VDL-1000E three-axis NCmachine
tool produced by the Dalian machine tool group was used
for metal material cutting. (e solid carbide ball end mill is
SH300-B2-10015-H produced by the Xiamen Golden Heron
Company with a diameter of 10mm and the tooth number
of 2. Cr12MoV harden steel with 45HRC hardness was
selected as experimental. Cr12MoV hardened steel is mainly
used for automobile panel dies.(e chemical composition of
the Cr12MoV steel parts is shown in Table 1. (e workpiece
is fixed on the fixture through M10 bolts, and the fixture is
fixed with the machine tool workbench through vice. (e
included angle between the workpiece and the horizontal
plane is 20.2° (as shown in Figure 1(a)). PCB acceleration
sensor with a sensitivity of 10.42mv/g and DH5922 ac-
quisition system of Donghua were used to collect the ac-
celeration signal of machining process (as shown in
Figure 1(b)). VHX-100 ultradepth of field microscope is
used to measure the tool flank wear (as shown in
Figure 1(c)).

3.2. Parameter Setting. (e processing parameters of this
experiment are given, including the axial cutting depth is
0.25mm, the spindle speed is 4000 rpm, the cutting width is
0.3mm, and the feed rate per tooth is 0.12mm/tooth. (e
tool wear status is defined as follows: the normal tool
(VB � 0mm), the initial wear (VB � 0.087mm), the normal
wear (VB � 0.121mm), and the sharp wear
(VB � 0.164mm), as shown in Figure 2. (e sampling fre-
quency of this experiment is 5000Hz, and the acceleration

sets under different tool wear states are collected, respec-
tively. (e collected data are divided into four status labels
according to tool wear. (e collected data is divided into
training samples, test samples, and verification samples
according to the ratio of 3 :1 :1. (e number of sampling
points in each section is set to 800. (e number of training
samples in each state is 1200, the number of test samples is
400, and the number of verification samples is 400.

(e structure of the deep convolution neural network
constructed in this study is shown in Figure 3. It includes 3
volume layers, 3 pool layers, 1 input layer, and full con-
nection layer. (e Adam adaptive optimizer is used to
continuously update the network training parameters. (e
initial learning rate is 0.0001, and the attenuation rate is 0.9.
25 samples are used as a batch input convolutional neural
network for training, and the number of iterations is 10. (e
cross entropy loss function is used to detect the training state
of the convolutional neural network. (e error function
calculates the loss value of each iteration according to the
error between the actual value and the expected value during
the training period.

4. Result Analysis

4.1. Cutting Vibration with Different Tool States. (e accel-
eration data in X direction with different tool wear states are
shown in Figure 4. (e maximum amplitude during the
normal tool cutting is 8.6m/s2. (e maximum amplitude
during the initial wear is 13.6m/s2.(emaximum amplitude
during the normal wear is 15.1m/s2. (e maximum am-
plitude during the sharp wear is 18.3m/s2. In conclusion,
cutting vibration increases with the increase of tool wear.

4.2. Time-FrequencyDomainDiagramofDifferentTool States.
Sample data under different tool states are converted into
time spectrum by synchronous compressed short-time
Fourier transform and synchronous compressed continuous
wavelet transform, as shown in Figures 5 and 6.

It can be seen from Figures 5 and 6 that the trend of the
tool wears characteristic frequency changes with time.When
the total number of samples is large, the time-frequency
graphs generated by the samples of the same tool state are
still different in different degrees. (e efficiency and accu-
racy of tool state diagnosis cannot be guaranteed by manual
operation, so it is of great significance to us in the deep
convolutional neural network to extract the features of time-
frequency graphs of different tool wear.

In order to compare the time-frequency energy aggre-
gation performance of this method, the time-frequency
domain map in the state of sharp war was locally amplified,
and the results are shown in Figure 7. Compared with the
SSTmethod, SWTmethod has better time-frequency energy
aggregation, which is beneficial to improve time-frequency
resolution.

4.3. Comparative Analyses of Recognition Models. In this
paper, SST-DCNN method and SWT-DCNN method were
used to monitor tool wear. According to the mean and
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Table 1: Chemical composition table of Cr12MoV steel parts.

Element C Si Mn P S Cr V Mo Ni Cu
Content (%) 1.45–1.70 ≤0.40 ≤0.40 ≤0.03 ≤0.03 11.0–12.50 0.15–0.30 0.40–0.60 ≤0.25 ≤0.30

PCB
accelerometer

Workpiece

(a)

Vibration
data

(b)

Super deep scene 3D
microscope

(c)

Figure 1: Processing and test site.

(a)

87 um

(b)

121 um

(c)

164 um

(d)

Figure 2: Different tool wear states.
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standard deviation of each iteration result of the data sets of
the two methods, the loss value curve of the training set, the
recognition accuracy of the verification set and the final
recognition accuracy are obtained, so as to test the training
speed, recognition accuracy, and generalization ability of the
two methods. (e loss function curve of the training set,
recognition accuracy curve of verification set, and final
recognition result is shown in Figure 8.

It can be seen from Figure 8(a) that the two methods
proposed in this paper tend to converge at the fourth it-
eration. It can be seen from Figure 8(b) that, after the
convergence of the convolution model with SWT-DNCC
method, the oscillation of the recognition accuracy curve of
the verification set is smaller and the recognition accuracy of
the model is more stable. It can be seen from Figure 8(c) that
the SWT-DNCC method is superior to the SST-DNCC
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Figure 3: Deep convolution neural network structure.
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Figure 4: Cutting vibration. (a) (e normal tool. (b) (e initial wear. (c) (e normal wear. (d) (e sharp wear.
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Figure 5: Time-frequency domain diagram with the SSTmethod. (a) (e normal tool. (b) (e initial wear. (c) (e normal wear. (d) (e
sharp wear.
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method in the recognition accuracy of the training set,
verification set, and test set. In conclusion, the characteristic
information of the time spectrum obtained by the SWT-
DNCC method is easier to be learned and extracted by the
convolutional neural network.

In order to further investigate the misjudgment of the
tool processing state by the method proposed in this paper,
confusion matrix experiments were carried out on the test
results, and the results are shown in Figure 9.

As can be seen from Figure 9(a), the diagnostic accuracy
of the SST-DCNN method for normal tools is only 93.3%,
and the probability of disqualifying normal tools as initial
wear is 7.6%. (e diagnostic accuracy of SWT-DCNN
method is 98.1% and 99.6%, respectively. It can be seen from
Figure 9(b) that the diagnostic accuracy of SWT-DCNN
method is 97.5%, 99%, and 99.7% for normal tool, initial

wear tool, and normal wear tool, respectively. In conclusion,
the diagnostic accuracy of SWT-DCNN method is higher
than that of SST-DCNN method in various tool status.

In order to further verify the advantages of the method
proposed in this paper, the experimental results of the
method proposed in this paper are compared with those of
the method of short-time Fourier transform combined with
the deep convolution neural network (STFT-DCNN) and
the method of continuous wavelet transform combined with
deep convolution neural network (CWT-DCNN). (e re-
sults are shown in Table 2.

It can be seen from Table 2 that the characteristic in-
formation of SWT and SST time-frequency diagrams is
easier to be learned and extracted by the convolutional
neural network. (erefore, the method proposed in this
paper has higher recognition accuracy.
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Figure 6: Time-frequency domain diagram with the SWTmethod. (a) (e normal tool. (b) (e initial wear. (c) (e normal wear. (d) (e
sharp wear.
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Figure 8: Loss function and recognition accuracy. (a) Value of the loss function (b) Identification accuracy of verification set. (c)
Identification accuracy.
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Figure 9: Different methods of confusion matrix. (a) SST-DCNN method. (b) SWT-DCNN method.
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5. Conclusion

In this study, SWT-DCNN and SST-DCNN models were
constructed to monitor the tool state during cutting. Ex-
perimental results show that the two models have high
diagnostic accuracy. (e specific conclusions are as follows:

(1) Compared with the SST method, the characteristic
information of the time spectrum obtained by the
SWTmethod is easier to be learned and extracted by
the convolutional neural network. (e recognition
accuracy of SWT-DCNN method is 99.96% and that
of SST-DCNN method is 99.86%.

(2) (e diagnostic accuracy of the SST-DCNN method
for normal tools is only 93.3%, which is easy to
classify normal tools into the initial wear category.

(3) Compared with SST method, the SWT method has
better time-frequency energy aggregation, which is
conducive to improving time-frequency resolution.
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