
Research Article
Robust Extreme LearningMachineUsingNewActivation and Loss
Functions Based on M-Estimation for Regression and
Classification

Adnan Khan ,1 Amjad Ali,1 Naveed Islam,2 Sadaf Manzoor,1 Hassan Zeb,1

Muhammad Azeem,3 and Shumaila Ihtesham 1

1Department of Statistics Islamia College University Peshawar, Peshawar, Pakistan
2Department of Computer Science Islamia College University Peshawar, Peshawar, Pakistan
3Department of Statistics, University of Malakand, Peshawar, Pakistan

Correspondence should be addressed to Adnan Khan; adnan@icp.edu.pk

Received 18 May 2022; Accepted 18 August 2022; Published 15 October 2022

Academic Editor: Sadiq Hussain

Copyright © 2022 Adnan Khan et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

�is paper provides an analysis of the combining e�ect of novel activation function and loss function based on M-estimation in
application to extreme learning machine (ELM), a feed-forward neural network. Due to the computational e�ciency and
classi�cation/prediction accuracy of ELM and its variants, they have been widely exploited in the development of new tech-
nologies and applications. However, in real applications, the performance of classical ELMs deteriorates in the presence of outliers,
thus, negatively impacting the precision and accuracy of the system. To further enhance the performance of ELM and its variants,
we proposed novel activation functions based on the psi function of M and redescend the M-estimation method along with the
smooth l2-norm weight-loss functions to reduce the negative impact of the outliers. �e proposed psi functions of severalM and
redescending M-estimation methods are more �exible to make more distinct features space. For the �rst time, the idea of the psi
function as an activation function in the neural network is introduced in the literature to ensure accurate prediction. In addition,
new robust l2 norm-loss functions based on M and redescending M-estimation are proposed to deal with outliers e�ciently in
ELM. To evaluate the performance of the proposed methodology against other state-of-the-art techniques, experiments have been
performed in diverse environments, which show promising improvements in application to regression and
classi�cation problems.

1. Introduction

Neural networks (NNs) are biological-inspired predictive
techniques that mimic the behavior and neural processing of
the biological nervous system. NN has been extensively and
successfully applied to pattern recognition, time series
prediction and modeling, adaptive control, classi�cation,
and other areas of arti�cial intelligence (AI). Advancements
in AI applications depend upon robust machine learning
algorithms. �e shortcomings of traditional NN were de-
tached by Zhu et al. [1] developed a single-layer feed-forward
neural network called ELM due to its high speed and ac-
curacy, and further Huang et al. [2] observed its perfor-
mance over the popular back propagation neural

network(BPNN) and support vector machine (SVM) in
regression and classi�cation problems. ELM has been used
widely in numerous application domains, such as bio-
medical engineering, system identi�cation, computer vision,
control, and robotics [3]. Harikumar et al. [4] developed
ELM-based classi�er for epilepsy identi�cation from EEG
signals and compared the computational performance with
BPNN. In reference [5], Li et al. deployed ELM for daily
stream forecasts and showed better performance than
random forest. ELM performed considerably faster without
a signi�cant loss in accuracy. Bhatia et al. [6] used ELM in
plant disease prediction for a highly imbalanced dataset.
Fabric wrinkle evaluation model with regularized ELM
based on improved Harris’s Hawk optimization was
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discussed in [7]. In short, more applications of ELM were
found in the literature such as mine reclamation based on
remote sensing information and error compensation, co-
operative spectrum sensing for cognitive radio networks,
detection of total iron content, evaluation of shape factor
impact on the discharge coefficient of side orifices, coal
exploration based on a multilayer extreme learning machine
and satellite images, e-mail spam filtering techniques, and
emotion recognition in election day tweets and compared
the performance with existing classification approaches and
noted the highest accuracy [8–14]. In machine learning,
ELM has introduced a better alternative to existing algo-
rithms used in several supervised and unsupervised learn-
ings. 'ere is no need to iteratively tune the inputs, hidden
and output layer weights, and biases like BPNN [1, 15–19].
Due to this, the ELM is capable of lower cost and high speed
learning with good generalization accuracy and perfor-
mance. ELM has the capacity to introduce nonlinearity if
any, using different differentiable or nondifferentiable ac-
tivation functions in its training/testing phase, and pos-
session of a unique solution to a different complex problem
in practice [20]. Furthermore, ELM avoids the problem of
overfitting due to analytical solutions and local minima
[1, 20]. ELM needs fewer hyperparameters such as activation
function and hidden layer size to be optimized as compared
to other techniques, as in conventional neural networks,
SVM, and least-square SVM, with similar computational
costs. ELM filled the gap between biological learning and
conventional learning machines [21]. Instead of the great
merits of classical ELM, it has several deficiencies such as
contamination in data and ill-posed structure due to which
sometimes analytical solution of output weights was not
possible due to noninvertibility and sensitivity of hyper-
parameters. Deng et al. [22] and Horata et al. [23] intro-
duced regularized and weighted regularized ELM (WRELM)
to solve the problem of overfitting and noninvertibility.
Following Deng et al. [22] and Horata et al. [23], Barreto
et al. [24] used robust M-estimators based on cost functions
to downweigh outliers and avoid their negative effects in the
computational process in image classification with salt and
pepper noise. Zhang and Luo [25] developed an outlier
robust extreme learning machine for regression and clas-
sification purposes based on l1− the norm and augmented
language multiplier (ALM), a novel variant of ELM, and
compared its performance with a weighted regularized ex-
treme learning machine by taking real benchmark data from
the UCI machine learning repository. Chen et al. [26] used
some popular M estimators-based weight-loss functions to
regression problems in the presence of outliers instead of the
Huber loss function, as it has a linear relationship with error
and has no smoothing criteria to downweigh outliers
properly. Recently, more robust M-estimators are developed
to properly filter and smoothly reduce the negative effects of
outliers by many researchers in statistical regression anal-
ysis. 'e detailed information about existing and recently
developed M-estimation based objectives, psi, and weight
functions is given in Table 1 [27–29]. Almost all researchers
including [1, 2, 6–26] used sigmoid, sine, cosine, Gaussian,
tan-sigmoid ReLu, radial basis function (RBF), and their

modified version as activation functions in ELM and also
used their variants to introduce nonlinearity in hidden layer
space of the neural network. Unlike the traditional typical
gradient-based learning algorithms which only work for
differentiable activation functions, it is easily detected that
ELM could be used to train with many nondifferentiable
activation functions. Huang et al. [2] discussed the limi-
tations of popular activation functions that behave S type
bounded shape function between 0 and 1 or − 1 and 1, which
observed the problem of diminishing gradient necessary to
differentiate between good and bad observations at extreme
edges during the training process. Due to this misman-
agement, significant information may be lost. Liu et al. [30]
introduced a robust activation function (RAF) to keep
activation function output away from zero as much as
possible and make inputs fully informative. 'e very same
problem may happen with tan sigmoid as well as with RAF,
which was introduced by Liu et al. [30] in ELM and still has
the problem of robustness against outliers. SIBI et al. [31]
studied the effects of different activation functions while
training BPNN to extract useful information by trans-
forming inputs into output signals. 'ey concluded that
there is no significant difference found among them to
prefer it over one another. Gomes et al. [32] analyzed the
performance of different activation functions in NN to
accurately forecast time series data. Later, Essai and Ellah
[33] performed experiments using robust M-estimators
objective functions as activation functions which out-
performed the activation functions used earlier in the lit-
erature. Freire and Barreto [34] used the idea of batch
intrinsic plasticity (BIP) to maximize hidden layer infor-
mation combined with robust estimation of the output
weights. 'is paper proposes several redescending M-esti-
mators ψ − function as activation functions in ELM and in
their variants complemented by weight-loss functions to
smoothly avoid the negative impact of contamination. A ψ −

function is a piecewise continuous ψ − function redes-
cending towards zero ψ(x) � 0 x≥C for, and C is often
called the rejection point to real outliers. 'is study aims to
extend the applicability of high breakdown M-estimator's
psi-functions as activation functions against other com-
petitors, complemented by robust loss functions in ELM and
its variants. To evaluate the performance of the proposed
methodology against other state-of-the-art techniques, ex-
periments have been performed in diverse environments,
which shows promising improvements in application to
regression and classification problems. 'e details of the
remaining paper is as in section 2. First, an overview of
related work of ELM and its variants is discussed and ex-
tended to the proposed methodology. In section 3 experi-
mental design of the simulation study is defined, in section 4
results and discussions are mentioned, and in the last
section conclusions and future work is discussed. Figure 1
shows all loss functions.

1.1. Extended ELM Based on Convex and Nonconvex 2 Norm
Loss Functions. 'e overfitting problem in ELMs using
lthe 2-norm loss function is intrinsically caused by the
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number of outliers in data. In a real scenario far away data
can transfers statistical results into a biased analysis.
Wang et al. [35] have exploited the strict nonconvex loss
function to mitigate the effect of wild observation if any
while training the desired network. 'ough the outcomes
produced are satisfactory in specific applications, yet,
these good results negatively impact the overall perfor-
mance in terms of accuracy and stability in general
applications.

In our approach, a nonconvex 2-norm smooth loss
function based on M and redescending M-estimation
theory was incorporated in ELM, as inspired by Wang
et al. [35] because strict nonconvex loss function some-
times loses valuable information. Graphically shown in
Figure 1 where (a) l2-norm loss function which uses all
data while training model even outliers, (b) strict non-
convex loss function which holds data in original form
and excludes observations from a specific point, and (c)
smooth nonconvex l2-norm loss function to assign
weights in such way weights decreases as residuals
increases.

lc(z) � min c
2
, ρ(z)􏽮 􏽯 �

ρ(z), |z|≤C,

c
2
, |z|>C.

􏼨 (1)

Special cases case 1. If ρ(z) � z
2

an d C �∞ It re-
duces to a l2-norm convex loss function that is applied to
minimize the training error while keeping outliers as well if
any.

case 2. If ρ(z) � z2 andCis predefined constant, then it
reduces to a strict nonconvex l2-norm loss function applied
by Wang et al. [35] in ELM to reduce the negative impact of
outliers during the training model.

case 3. If ρ(z)is function of z whose derivative is nonlinear
andC defined optimizing constantis proposed loss function
ρ(z)is based on M and re-descending M-estimation theory,
where outliers are down weighed to normalize training data
while training a classifier.

'e conventional form of supervised learning data
(xi, yi) ⊂ Rd × R, the general form of the objective function
of ELM.

􏽘
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where ai � [ai1, ai2, ai3, . . . , ain]Tis the weights vector and
bias term bi randomly generated from any continues distri-
bution, connecting the hidden nodes and input nodes;
βi � [βi1, βi2, βi3, . . . , βim]Tis the weight vector connecting
hidden nodes with output neurons
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, Y � [y1, y2, . . . yN]T.

'e Lagrange function for optimization of (3) and (4)
becomes as follows:

l β, ei, αi( 􏼁 �
1
2
‖β‖

2
+ ζ 􏽘

N

i

ρ ei( 􏼁 + 􏽘
N

i�1
αi yi − h xi( 􏼁β − ei( 􏼁,

(5)

where β ∈ R
􏽢N is the output weights vector and l(., .): R ×

R⟶ R is the loss function. 'e parametenetwork as a
regularization agent to maintain a bias-variance trade-off.
Traditional ELM uses a simple square loss function which is
highly sensitive to outliers. 'erefore, M-estimator and
redescending M-estimator loss functions have been used to

Table 1: Commonly used continuous and differentiable activation functions.
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Figure 1: l2-norm loss function, strict nonconvex l2-norm loss function, and smooth nonconvex l2-norm loss function.
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enhance the robustness of ELM against outliers, which ρ(.)

denotes robust loss function and ei is the standardized re-
siduals. 'e psi function of ρ(e) is ψ(e) � zρ(e)/z(e), and
corresponding weight function is w(e) � ψ(e)/e. In the
present work, efficient M-estimation-based loss functions
are studied along with their psi function as activation
function complemented by their loss function to gain
maximum accuracy. 'e detailed information on the pro-
posed M-estimation with their objective, psi function, and
weight function is given in Table 2.

After simplification, the output weights estimate ofβ, the
objective function (5) using l2-norm smooth loss function
regularization term can be written as follows:

β �

H
T
WH +

I

ζ
􏼠 􏼡

− 1

H
T
y, N≥ 􏽥N

H
T

WH
T
H +

I

ζ
􏼠 􏼡

− 1

y, N< 􏽥N,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where wi � zρ(ei)/zei/ei �
zρ(ei)/zei/ei, |ei|≤ c

0, |ei|> c.
􏼨 weight

function for training data. Setting the diagonal matrix

W � diag w1, w2, . . . , wN􏼈 􏼉. Cases 1 and 2 are special cases of
solution given in (6).

1.2. Proposed Iterative ReweightedAlgorithm for Robust ELM.
Input: training data (xi, yi) ⊂ Rd × R ,number of hidden
nodes 􏽥N, maximum of iterations, kmax, and activation
function g (.) given below in Table 2 and in Table 2 only psi
function as activation function. Calculate the hidden layer
output matrix Hand initiate the weight matrix
W(0) � I&k � 1.

Step 1. Compute initial output weights by equation-(6)

β(k) �
(H

T
W

(k)
H + I/ζ)

− 1
H

T
y, N≥ 􏽥N

H
T
(W

(k)
H

T
H + I/ζ)

− 1
y, N< 􏽥N.

􏼨

'e estimate function is given in (2).

Step 2. Obtain residual e
(k)
i � yi − 􏽢yi and standardize it

using robust location and scale parameter and assign weights
using existing and proposed weight function based on
M-estimation given in Table 2 to update W(k) � w

(k)
i I .

Step 3. Update β(k+1) computed in Step 1.

Table 2: 'e ρ(.), ψ(.), and weight function w(.), of M and redescending M- estimators.

Method Weight-loss function ρ(ei)

ψ –functions
ψ � d/r(ρ(ei))

Proposed activation functions
Weight-function w(e) � ψ(e)/e C

Lm1stf log (1 + 1/2e2) e/1 + 1/2e2 1/1 + 1/2e2 NA

ALARM 2 c
2/3[1 − 2(1 + 3e

(
e

c
)
2

)/(1 + e
(
e

c
)
2

)
3

]

2 c
2/3[1 − 2(1 + 3e)/(1 + e)

3
]

16ee− 2(e/c)2 /(1 + e− (e/c)2 )40 (4e− (e/c)2 )2/(1 + e− (e/c)2 )40 3

OLS 1/2e2 e 1 NA

Insha [c2/4[Arctan(e/c)2 + (ce)2/c4+e4]] [e[1 + ((e/c))4]− 2] [1 + ((e/c))4]− 2 1.5
Welsch c2/2[1 − exp (− ((e/c)2)] e. exp (− ((e/c)2) exp (− ((e/c)2) 4.654
Tukey bisquare c2/6[1 − 1 − (e/c)23]c2/6􏽮 e[1 − (e/c)2]20 e[1 − (e/c)2]20 2.985
GMtf e2/2/1 + e2 e/(1 + e2)2 1/(1 + e2)2 NA
Ali 2e/3(1 − (e/c)4)

0
2e/3(1 − (e/c)4) 2/3(1 − (e/c)4) 2

Cauchy c2/2log (1 + (e/c2) e/1 + (e/c)2 1/1 + (e/c)2 3
Khalil et al.(2017 3/2e[1 − (e/c)4]2 sin (2/3(1 − e/c))2 3/2e[1 − (e/c)4]2 sin (2/3(− e/c))2 3/2[1 − (e/c)4]2 sin (2/3(1 − e/c))2 3
Logistic c2 log [cosh (e/c)] e(e/c)− 1 tanh (r/c) (e/c)− 1 tanh (e/c) 1.205

Table 3: Proposed Activation Functions in Extreme Learning Machine and its variants.

Proposed 1 Lm1stf ψ –function
Proposed 2 Alarm ψ –function
Proposed 3 OLS ψ –function
Proposed 4 Insha ψ –function
Proposed 5 Welsch ψ –function
Proposed 6 Bisquare ψ –function
Proposed 7 Ali ψ –function
Proposed 8 Qadir ψ –function
Proposed 9 Cauchy ψ –function
Proposed 10 Khalil ψ –function
Proposed 11 Logistic ψ –function
W1�Tukey Bisquare M-estimator weights-loss function, W2 � Welsch weights-loss function, W3 �Gmtf, W4 �ALARM weights function, W5 � Insha
weights-loss function, and W6 � Cauchy weights-loss function.
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Figure 2: Block diagram of the proposed study.
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Figure 3: (a) Iris flower detection, (b) SatImage classification, and (c) emails spamming filtering.

Scientific Programming 5



Step 4. If k>kmaxor‖β
(k+1) − β(k)‖≤0.001, stop, and 􏽢β� β(k+1);

else go to step 5.

Step 5. Finally, the estimate function is given in equation (1)

1.3. Experimental Design and Simulation Studies. 'is sec-
tion elaborates on the mechanism to know the performance
of the proposed method against RELM and the existing
weighted RELM. Several redescending M-estimators based
on psi-functions are considered as activation functions to
build hidden layer nonlinear space from the input space. As
in ELM-related literature, common activation functions are
used such as logistic sigmoid, tan-sigmoid, ReLU, softsign,
Sin, Cos, leakyReLU, BentIdle, and Arc Tan in ELM and its
variants including [1–25] respectively. Furthermore, we use
redescending M-estimators based on nonconvex loss
functions to reduce the effect of outliers in our proposed
studies. 'e details of the nonconvex loss functions based on
M-estimation are mentioned in Table 2 and in Table 3. 'e
proposed psi functions are mentioned for convenience.
However, we use the different numbers of hidden layer
neurons to assess the performance of the proposed strategy.

'e results are shown here only for a single number, as our
objective is not here to optimize hidden layer size. All ex-
periments are carried out in an R-studio environment
running on an Intel Core m3 7th Gen PC. In each experiment
datasets are broken into two halves with a ratio of 70 : 30
where training and testing data sets are 70% and 30%, re-
spectively. We have checked the performance of the pro-
posed methods using two benchmark regression-related
datasets, such as Boston Housing Price data and abalone age
prediction data; however, only the results of the abalone data
set with and without artificial outliers are kept to assess the
performance of each method due to space limitation. Dif-
ferent scaling techniques were used in literature to reduce the
size of data such as linear scaling minimax (0, 1) or (− 1, 1)
or statistical standardization We have considered minimax
techniques to scale all data available on attributes and re-
sponse variables to the range of (0, 1) before training the
proposed and existing networks. 'e training dataset is
contaminated in each trial with 20% outliers generated from
uniform distribution but highly distant from the remaining
dataset, which trains both the existing RELM and proposed
RELM and check their performance on the test set. Proposed
RELM and existing methodologies are repeatedly performed

Table 4: Testing RMSE and SD of existing and proposed weighted ELM in clean abalone data.

Af ELM W1ELM W2ELM W3ELM
Proposed

W4ELM
Proposed

W5ELM
Proposed W6ELM Proposed

Sigmoid 2.144143
0.1442943

2.175000
0.136926

2.348306
0.30963177

2.205588
0.16094535

2.191642
0.13586263

2.173392
0.1334078 2.189162 0.138817

Tan-sig 2.150399
0.1926798

2.123554
0.1643963

2.298845
0.24419012

2.157511
0.20161524

2.135203
0.16191567

2.126287
0.1626033 2.132039 0.164313

Sine 2.186667
0.2009761

2.129157
0.1452062

2.330158
0.15104044

2.161264
0.15971286

2.139394
0.13502665

2.133264
0.1450795 2.136425 0.137740

Cosine 2.213637
0.2063120

2.186199
0.1776403

2.384910
0.19514964

2.248835
0.20166515

2.196252
0.16658765

2.185097
0.1719300 2.195070 0.1720428

BentIdle 2.132008
0.1605604

2.129026
0.1561023

2.277284
0.09741951

2.156375
0.17502070

2.137727
0.14920465

2.132926
0.1559677 2.134048 0.1507907

RAF 2.145623
0.1463326

2.161926
0.1426574

2.374974
0.17473441

.235957
0.23472574

2.180706
0.14963018

2.159569
0.1337737 2.178774 0.1537632

Proposed 1 2.166058
0.1874100

2.131701
0.14846

2.284179
0.24488947

2.157106
0.15988542

2.137113
0.13883288

2.136875
0.1488099 2.134278 0.1413268

Proposed 2 2.151613
0.1661444

2.133518
0.1576740

2.250627
0.26301000

2.151150
0.18135924

2.138221
0.14918027

2.138806
0.1575292 2.135509 0.1522103

Proposed 3 2.380380
0.3186960

2.286334
0.2351961

2.428068
0.28907843

2.324140
0.26964348

2.283338
0.21956250

2.282506
0.2278787

2.286572
0.2275768

Proposed 4 2.192119
0.2036608

2.161120
0.1775893

2.224148
0.12617183

2.154010
0.17595357

2.159759
0.16575919

2.168203
0.1807883 2.157113 0.1676623

Proposed 5 2.145925
0.1535060

2.162594
0.1468836

2.397043
0.30858832

2.238244
0.23296731

2.183591
0.15598956

2.162214
0.1404016 2.180518 0.1585908

Proposed 6 2.139137
0.1634156

2.162571
0.1887972

2.399246
0.23987476

2.212400
0.21515337

2.179009
0.18678814

2.160730
0.1799538 2.176938 0.1914957

Proposed 7 2.321377
0.2732022

2.195224
0.1883943

2.358959
0.11484580

2.245618
0.25699135

2.210419
0.19094163

2.193319
0.1768587 2.207753 0.1976999

Proposed 8 2.167783
0.2002444

2.633435
0.1051162

2.609206
0.11752655

2.850021
0.02805903

2.748345
0.07666315

2.616541
0.1089142 2.730395 0.0814038

Proposed 9 2.155725
0.1738043

2.143697
0.1383195

2.321712
0.16859567

2.195728
0.19172220

2.158484
0.13940778

2.145574
0.1338223 2.155555 0.1426305

Proposed
10

2.130854
0.1575525

2.134321
0.1507116

2.179927
0.12246446

2.158516
0.13017982

2.145262
0.14917700

2.136971
0.1535475 2.142324 0.1481731

Proposed
11

2.138887
0.1472135

2.120890
0.1389861

2.242633
0.05301144

2.164488
0.18233037

2.129773
0.13005945

2.125429
0.1396772 2.126699 0.1324753
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50 times, and computed training and testing root mean
square (RMSE) and their standard deviation (SD) are
recorded in the case of regression. 'e step-by-step abstract
block diagram of the proposed strategy is defined in Figure 2.
While knowing the performance of the proposed strategy in
classification, we consider a benchmark dataset IRIS, satellite
image, and e-mails spam filtering datasets considered from
the UCI machine repository. 'e photos of classification
applications are shown in Figure 3 to know the importance
of the proposed work easily. We have used three random
choices of weights initialization from standard normal,

uniform (− 1, 1), and exponential distribution. However, due
to space limitations, the results of standard normal distri-
bution are kept into consideration as there is found no
significant impact on initial weights.

1.4. Performance Metrics Root. Mean Square Error

(RMSE) �

��������������

􏽐
N
i�1((y − y∧)2)/N

􏽱

Mean RMSE � 􏽐
50
j�1

RMSE/50, SD �
��������������������������������
(􏽐

5 0
j�1 (RMSE − meanRMSE)2/5 0)

􏽱
,

Table 5: Testing RMSE and SD of existing and proposed weighted ELM with 20% outliers in abalone data.

Af ELM W1ELM W2ELM W3ELM
Proposed

W4ELM
Proposed

W5ELM
Proposed W6ELM Proposed

Sigmoid 4.754750
0.06268815

3.227287
0.1091655

2.414179
0.09269088

2.287563
0.12418925

2.172357
0.038659

3.757036
0.103437

2.234866
0.06961570

Tan-sig 4.703597
0.13000821

3.132457
0.1208053

2.406314
0.01755072

2.276477
0.07965595

2.170417
0.010285181

3.615910
0.134645

2.239491
0.010221790

Sine 4.666985
0.20622199

3.060303
0.2181420

2.361913
0.06551598

2.265762
0.10267846

2.150898
0.006244196

3.528365
0.2596405

2.210075
0.033152012

Cosine 4.698598
0.20381093

3.180699
0.2577677

2.399364
0.21437287

2.308385
0.14727834

2.198570
0.0875391569

3.701441
0.2523779

2.249796
0.145378848

BentIdle 4.713415
0.13830989

3.143851
0.1155777

2.390502
0.03791609

2.287222
0.11066652

2.163265
0.0004587613

3.644029
0.1344872

2.228988
0.018264087

RAF 4.750438
0.10228568

3.196679
0.1157485

2.378543
0.09912061

2.267268
0.12104854

2.133434
0.0453002613

3.729898
0.1163393

2.204034
0.072324507

Proposed 1 4.705598
0.14179679

3.089672
0.2089739

2.378945
0.06826299

2.265295
0.09770380

2.057172
0.0025575652

3.565513
0.2448967

2.219889
0.032597902

Proposed 2 4.751669
0.14523476

3.097359
0.1859790

2.375285
0.06077762

2.276195
0.09643253

2.119978
0.00707343

4.582049
0.2195192

2.223024
0.037928300

Proposed 3 4.409515
0.66763602

3.089344
0.4398715

2.462548
0.24848033

2.350298
0.20780245

2.271832
0.0850197195

3.504199
0.5013264

2.318664
0.160961103

Proposed 4 4.754798
0.23081970

3.120053
0.2150026

2.426455
0.05665887

2.297376
0.08989809

2.205088
0.0134925439

3.583513
0.2651077

2.267244
0.036196250

Proposed 5 4.599507
0.30391626

3.074987
0.2746488

2.396853
0.10360959

2.315319
0.15672495

2.190741
0.0127734590

3.530176
0.3270949

2.247327
0.061538856

Proposed 6 4.595273
0.29349235

3.117355
0.2979396

2.435072
0.13227469

2.321735
0.17585465

2.218868
0.0340319304

3.569725
0.3348503

2.280369
0.088922964

Proposed 7 5.291630
1.54315324

3.723273
1.2721507

3.230150
1.31582437

2.554555
0.51404176

2.965076
1.1100654156

4.081953
1.2158311

3.003771
1.144834877

Proposed 8 4.733634
0.17460431

3.314672
0.1572617

2.763327
0.10634390

2.598141
0.09347673

2.501335
0.0801301294

3.696463
0.1703520

2.558568
0.099964180

Proposed 9 4.606322
0.33914493

3.073412
0.2470656

2.388054
0.09013738

2.289723
0.14496423

2.179600
0.0151039952

3.532195
0.2858742

2.237992
0.060854415

Proposed
10

4.818178
0.23783341

3.134719
0.1284443

2.378025
0.06425884

2.268276
0.08654497

2.147976
0.0408592032

3.638479
0.1393702

2.212687
0.059960084

Proposed
11

4.716515
0.12247669

3.106628
0.1597634

2.378284
0.02981345

2.274507
0.06553342

2.122296
0.0231154939

3.590920
0.1990009

2.217427
0.002427482

Table 6: Experimental results on real–world dataset abalone with 0%–20% Outlier’s levels.

Wang et al. [35] used sigmoid activation function in existing ELM and its variants
ELM WELM ORELM IRRELM IRRELM
Outliers (RMSE, SD) (RMSE, SD) (RMSE, SD) (RMSE, SD) (RMSE, SD)
0% 2.1382, 0.0692 2.1532, 0.0737 2.1909, 0.0576 2.2106, 0.0646 2.1350, 0.0625
5% 2.3182, 0.0533 2.1557, 0.0609 2.1712, 0.0589 2.1928, 0.0632 2.1455, 0.0552
10% 2.6679, 0.0533 2.1603, 0.0597 2.1667, 0.082 2.1724, 0.0579 2.1499, 0.0621
15% 3.1917, 0.0763 2.1701, 0.0909 2.1713, 0.0820 2.1492, 0.0603 2.1508, 0.0643
20% 3.2161, 0.0976 2.2297, 0.0636 2.2168, 0.0741 2.1694, 0.0755 2.1633, 0.0716
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Comparison of Proposed Weighted ELMs and Wang et al. 2020 with 20% outliers in term of average RMSE
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Figure 4: Comparison of proposed weighted ELMS and Wang et al. 2020 weighted ELMs.

Table 7: Percent accuracy with SD of different existing and proposed activation functions in basic ELM.

Af ELM 50 IRIS ELM 300 SatImage ELM 1000 E-mail spam filtering
Sigmoid 95.67, 4.83 87.5, 0.518874500 88.00000, 1.387233
Tan-sigmoid 96.00, 2.11 87.7857, 0.6992932 88.00000, 1.732051
Sine 95.33333, 4.216370 88.5714, 0.9376145 88.66667, 1.527525
Cosine 98.00000, 2.810913 88.3571, 0.6333237 88.66667, 1.527525
Bentidle 97.00000, 3.314763 86.21429, 0.8418974 90.33333, 0.5773503
RAF 96.00000, 3.784308 88.92857, 0.8287419 76.33333, 0.5773503
Proposed-1 97.66667, 2.249829 88.07143, 0.6157279 88.33333, 1.527525
Proposed-2 95.66667, 3.531166 88.21429, 0.6112498 88.66667, 1.154701
Proposed-3 85.66667, 6.675920 75.00, 0.6793662000 88.66667, 1.527525
Proposed-4 96.00000, 4.097575 89.85714, 0.8644378 88.66667, 1.527525
Proposed-5 96.66667, 2.721655 87.78571, 0.5789342 89.00000, 1.732051
Proposed-6 97.00000, 4.830459 86.85714, 0.7449463 89.00000, 1.732051
Proposed-7 96.33333, 1.892154 60.0, 5.7912400000 70.66667, 1.154701
Proposed-8 98.33333, 2.357023 88.07143, 0.9168748 93.66667, 0.5773503
Proposed-9 95.66667, 2.744242 87.64286, 0.7449463 93.66667, 0.5773503
Proposed-10 96.66667, 3.513642 77.78571, 1.5281250 71.66667, 0.5773503
Proposed-11 95.33333, 4.499657 88.28571, 0.6112498 71.66667, 0.5773503

Classification Accuracy of Exisitng and Proposed Activation Functions in ELM
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Figure 5: Classification accuracy of existing and proposed activation functions in ELM.
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Accuracy �No. of correctly classified classes by
classifier/total cases ∗ 100.%SD ������������������������������

(􏽐
50
j�1 (Accuracy − Accuracy)2/50)

􏽱
.

2. Results and Discussions

'e results of the simulation study revealed in Tables 4–5,
explain the performance of each activation function com-
plemented with their corresponding loss function in terms
of RMSE and SD in regression application.

In Table 4 and Table 5, the application of proposed
methods extends to well-known data abalone age prediction,
where proposed methods outperform in terms of RMSE and
SD as compared to other state-of-the-art techniques in both
clean and contaminated data as well. For further confir-
mation of the performance of the proposed methods, we
compared robust ELM using the sigmoid activation function
by Wang et al. [35], called iterative reweighted ELM
(IRRELM) compared with ELM, WELM, ORELM, and
IRWELM, whose results are mentioned in Table 6 with
different contamination levels and further performance of
the proposed methods are shown in Figure 4. If we see their
results and compar them with our proposed methods, they
clearly show improvement in efficiency even at all levels of
outliers. To further check the performance of proposed
methods, we extended their applications to classification
problems.We considered three popular benchmark data sets
to show the classification accuracy of the proposed methods.
'e following table demonstrates the efficiencies of existing
methods and proposed methods.

Table 7 along with Figure 5 describes the performance of
the proposed methods in terms of percentage testing accuracy
with SD using well-known low- and high-dimensional data
clearly depicted in Figure 4. To clarify our results given in
Table 7, for each trial of simulation of Iris, Satimage, and
emails spam filtering, the training, and testing datasets are
randomly generated from their database. Fifty trials have been
set for the ELM algorithm using different activation functions
trained under a fixed hidden layer size, and at the end, average
testing accuracy was measured with standard deviation. In the
case of the Satimage dataset, one of our proposed activation
functions reaches an average accuracy of 89.86% with a 0.8644
standard deviation. 'ese results are compared with Huang
et al. [2]. 'e ELM classifier with sigmoid activation function
got 89.04% accuracy with a standard deviation of 1.57 using
500 nodes in the hidden layer, whereas the proposed activation
function achieved a higher accuracy with only 300 hidden
nodes in the hidden layer, which clearly showed that ELM
under the proposed activation function makes the desired
classifier have less computational complexity with higher
accuracy. 'e remaining proposed activation functions in the
same experiment showed almost similar performance to all
competitors. In the case of another high-dimensional data,
“emails” proposed 8 and 9 number activation functions
outperform all existing and proposed activation functions with
an higher average accuracy of 93.66. In Iris data, the classi-
fication accuracy of the proposed and existing activation
functions are the same nearly.

3. Conclusion

'is paper proposed a new robust activation function
complemented by weight-loss on M and redescending
M-estimation in ELM with l2-norm regularization criteria
for solving regression and classification problems. 'e focus
of this work was to introduce the psi function of different
redescending M-estimators as activation functions in ELM,
complemented by existing and some new weight-loss
functions. In the task of prediction, the proposed methods
show improvement in terms of accuracy and precision over
existing methods for predicting the age of abalone with and
without adding outliers to the training set. Several combi-
nations of activation function and loss function are studied
and compared with their performance with proposed
combinations. 'e performance of the proposed combina-
tion of activation and weight-loss functions outperformed
existing methods in regression problems in the presence of
contaminations. Moreover, the application of the proposed
activation function in ELM is extended to know the clas-
sification accuracy in low and high-dimensional data sets. In
almost all classification applications, the predictive perfor-
mance of proposed activation functions in ELM out-
performed. For instance, in the case of regression application
using an abalone dataset, the proposed activation function
along with the weighted loss function performed better than
the existing combination of activation and weight-loss
function in extreme learning machine in the presence of
outliers. Furthermore, the application of proposed activation
functions was deployed to classification problems using the
famous Iris, Satimage, and emails datasets, where some of
the proposed activation functions outperform their existing
competitors. In the future, the role of the proposed acti-
vation function in ELM can be studied with different
convolutional neural networks (CNNs), such as Google Net,
Alex Net, VGG-16, and ResNet, using feature selection
techniques from image data along with famous robust
statistical feature selectionmethods. Moreover, in the future,
the applications of proposed activation functions in extreme
learning machines can be extended to analyze their per-
formance in epilepsy identification from EEG signals,
emotion recognition in Election Day tweets, total iron de-
tection, and fault diagnostic of electric impact drills using
thermal imaging.
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