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.is study aimed to analyze the application of the diagnostic model based on deep learning technology in the evaluation of thyroid
contrast-enhanced ultrasound images and to provide a reference for the evaluation of benign and malignant thyroid. A diagnosis
model of ultrasound images based on long- and short-term memory neural network (LSTM), C-LSTM, was proposed. .e
diagnostic method was compared with that based on support vector machine (SVM) and manual feature (MF), and it was applied
to the diagnosis of thyroid contrast-enhanced ultrasound images. .e results showed that the sensitivity, specificity, and accuracy
of the C-LSTM model were greatly higher than those of SVM and MF, and the differences were considerable (P< 0.05). .e
number of parameters and the calculation amount of the C-LSTM model were greatly lower than those of SVM- and MF-based
diagnosis methods (P< 0.05)..e sensitivity, specificity, and accuracy of the C-LSTMmodel were greatly greater than those of the
C-LSTM-0 model, while the amounts of parameters and calculations were greatly lesser than those of the C-LSTM-0 model
(P< 0.05). .e numbers of benign tumors with contrast-enhanced ultrasound modes of no enhancement, no enhancement at
early stage, and low enhancement were more than those of malignant tumors, while the numbers of high-enhancement tumors
were greatly less than those of malignant tumors (P< 0.05). .e diagnostic area under the curve (AUC) of rise time (RT) ratio,
time to peak (TTP) ratio, and mean transit time (mTT) ratio for malignant masses were large, which were 0.856, 0.794, and 0.761,
respectively. RTratio, TTP ratio, and mTTratio were of high diagnostic sensitivity and specificity for malignant masses, while RT,
TTP, and mTTwere of low diagnostic sensitivity and specificity. In summary, the contrast-enhanced ultrasound images based on
the deep learning C-LSTMmodel can effectively improve the diagnostic effect of benign and malignant thyroid masses..e image
feature parameters RTratio, TTP ratio, andmTTratio were of good efficiency in diagnosing benign andmalignant thyroid masses.

1. Introduction

.e thyroid nodule refers to the thyroid mass after the
abnormal proliferation of the thyroid cells, which can move
up and down with the thyroid with swallowing, and it is one
of the most common thyroid diseases [1, 2]. Most thyroid
nodules are benign, and most patients have no symptoms.
.ey are often found inadvertently during a medical ex-
amination. .e cause of thyroid nodules is not clear [3, 4].
People with a history of radiation exposure are more likely to
develop thyroid nodules. .yroid nodules become more
common with age. .yroid nodules have familial

heritability, and if parents have thyroid nodules, the risk of
children’s disease will also be increased [5].

Clinical examination methods for thyroid nodules
mainly include thyroid radionuclide scan, thyroid computed
tomography (CT) or magnetic resonance imaging (MRI),
fine needle puncture cytology, and thyroid ultrasound [6, 7].
Nuclide scanning is classified into “hot nodules” and “cold
nodules” according to their ability to absorb radionuclides.
“Hot nodules” are functionally autonomous thyroid nodules
that are almost always benign. “Cold nodules” may be
cancerous. Fine needle aspiration inter cytological exami-
nation can reduce unnecessary thyroid surgery and improve
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the detection rate of intraoperative malignant tumors, with a
diagnostic accuracy of 70%–90%, however, it is related to
experience in puncture and cytological diagnosis [8–10]. CT
and MRI can display the patients’ tissues with high clarity
and can clarify the invasion of important tissues, such as the
cervical blood vessels, trachea, and esophagus, which is of
important guiding significance for the operation [11]. Ul-
trasound can show nodules as solid, cystic, or mixed lesions.
Single solid nodules have a high probability of malignancy.
Mixed nodules are also likely to be malignant, while pure
cystic nodules are less likely to be malignant. 10% of nodules
with calcification may be malignant, and sandy nodules are
most likely to be malignant [12].

Contrast-enhanced ultrasound, also known as contrast
acoustics, is an image enhancement technology developed
based on conventional ultrasound. .e contrast agent is in-
jected intravenously at the same time as ultrasonic scanning.
.e scattering signal of the contrast agent is used to enhance
the echo, and the perfusion information of the microvessels of
the tissues is observed dynamically in real time. As the echo of
the contrast agent in the blood is different from the signal of the
surrounding tissues, the resolution, sensitivity, and specificity
of ultrasonic diagnosis are greatly improved [13, 14]. .e lo-
cation of the region of interest (ROI) is a very important task in
contrast-enhanced ultrasound-assisted diagnosis. By locating
the ROI, ultrasound doctors and clinicians can quickly conduct
a series of analyses according to the ROI to provide help for
subsequent diagnostic analysis [15]. .e general supervised
target location algorithm requires the doctor to mark the real
location of the ROI in the image, which requires a lot of energy.
In recent years, with the development of deep learning, the
combination and cross-development of medical image and
artificial intelligence are becoming closer, and the research of
deep learning models is becoming more extensive..erefore, a
method based on long- and short-term memory neural net-
work (LSTM) was considered in this research, and image-level
tags were used to locate the features of contrast-enhanced
ultrasound images.

To sum up, deep learning technology has been applied
more widely in the field of medical images, however, there
are few studies on its role in thyroid contrast-enhanced
ultrasound images. .erefore, the LSTM-based diagnosis
model C-LSTMwas proposed in this study. It was compared
with the diagnostic methods based on support vector ma-
chine (SVM) and manual feature (MF) and was applied to
the diagnosis of patients’ thyroid contrast-enhanced ultra-
sound images. .en, the diagnostic performance of different
contrast-enhanced ultrasound image features for benign and
malignant thyroid masses was compared to comprehen-
sively evaluate the application feasibility of deep learning-
based contrast-enhanced ultrasound images in the clinical
diagnosis of thyroid masses.

2. Materials and Methods

2.1. Research Objects. A total of 84 patients who were ad-
mitted to the hospital for examination because of thyroid
diseases from February 5, 2019, to March 10, 2021, were
selected as research subjects, including 36 males and 48

females. All patients were examined by contrast-enhanced
ultrasound. .is study had been approved by the medical
ethics committee of the hospital. Patients and their families
had been informed of this study and had signed the in-
formed consent.

Inclusion criteria: (i) patients with complete basic data;
(ii) patients who signed the informed consent; (iii) patients
confirmed by needle biopsy or surgical pathology; (iv) pa-
tients who had not received treatment. Exclusion criteria: (i)
pregnant women; (ii) patients with congenital heart disease
with right-to-left shunt; (iii) patients with acute infarction;
(iv) patients with severe pulmonary hypertension; (v) pa-
tients with moderate chronic obstructive pulmonary disease;
(vi) patients allergic to contrast agents.

2.2. Contrast-Enhanced Ultrasound. An ultrasound tester
was used to scan the patients with a special shallow contrast
linear array probe at a frequency of 5–10MHZ and a center
frequency of 5MHZ..e thyroid was first scanned with two-
dimensional gray-scale ultrasound before angiography. .e
location, size, shape, boundary, internal echo, transforma-
tion indicator, liquefaction, and relationship with the sur-
rounding late adjacent tissue and cervical lymph nodes were
observed. .en, the blood flow was observed by color
Doppler and pulse Doppler. Conventional ultrasound data
were collected, and thyroid contrast ultrasound was per-
formed. .e patient was supine, and venous access was
established through the elbow vein. For contrast-enhanced
ultrasound, Sonovi, an Italian company, was used to dilute
the dry powder without normal saline. Each time, the
powder was extracted and injected through the cubitus vein
and rinsed with normal saline.

Image analysis was performed using the quantitative
analysis software of the angiography images of a German
company. .e analysis data included the relative peak in-
tensity of the diseased area, the rise time (RT), time to peak
(TTP), and mean transit time (mTT) between the diseased
area and surrounding normal tissue, and the maximum peak
intensity of normal thyroid tissue was defined as 100%. In
addition, the ratio of RT, TTP, and mTT between the lesion
area and surrounding normal thyroid tissue was taken to
determine the value of benign and malignant thyroid
masses.

2.3. Ultrasound Image Lesion Diagnosis Algorithm Based on
Deep Learning. Deep learning, especially convolutional
neural networks, has achieved very good classification re-
sults on two-dimensional images. However, to perform the
classification and diagnosis tasks of contrast-enhanced ul-
trasound better and more accurately, the entire video image
needs to be used. .e task of video image classification poses
unique challenges for deep learning models because, in
addition to the spatial features of two-dimensional images,
videos also have additional temporal features. A video
contains many frames of two-dimensional images, each
frame is meaningful, and the order is also very important. If
the order information is ignored, the classification effect may
be greatly reduced.
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.e LSTM recurrent neural network [16] is a special
deep learning recurrent neural network that can solve the
problem that the ordinary recurrent neural network
structure can better deal with short-term dependence but
cannot deal with long-term dependence. LSTM mainly uses
gating units to store information outside the regular flow of
recurrent neural networks. With these gating units, the
network can manipulate information in a variety of ways,
including storing information in cells and reading infor-
mation from them. .ese cells can make decisions on in-
formation individually and can execute these decisions by
opening or closing these doors..e chain structure of LSTM
allows it to contain information over a long period of time,
which solves challenging tasks that are difficult or impossible
to solve by traditional recurrent neural networks.

LSTM mainly includes forget gate, input gate, and
output gate..e forget gate is used to delete information that
is no longer needed for task completion. .e equation ex-
pression is as follows:

ei � α He xi, ki−1 ( . (1)

In equation (1), ei represents the forgetting gate at the i
th

time point, xi represents the input at the i
th time point, ki−1

represents the hidden layer state at the i-1th time point, He

represents the weight of the forgetting gate, and α represents
the sigmoid function.

.e input gate is responsible for adding information to
the cell to update the cell state. .e equation expression is as
follows:

ri � α Hr xi, ki−1 ( . (2)

In equation (2), ri represents the input gate at the i
th time

point, Hr represents the weight of the input gate, and the cell
update state value is as follows:

Ai � tan k∗ Hc xi, ki−1 ( . (3)

In equation (3), Ai represents the cell update state value
at the ith time point, and Hc represents the cell update state
weight value. .e cell state update is the value after passing
the forget gate plus the update state value after the input gate
screening, and the cell state is expressed as follows:

ai � ei × ai−1 + ri × Ai. (4)

In equation (4), ai represents the cell state at the i
th time

point. .e output gate selects and outputs the necessary
information. .e equation expression is as follows:

pi � a Hp xi, ki−1  . (5)

In equation (5), pi represents the output gate at the ith
time point, and Hp represents the weight of the output gate.
.e current hidden state is expressed as follows:

ki � ai × tan k ai( . (6)

.us, a complete LSTM unit is designed (Figure 1). In
LSTM, addition is often used in the calculation process,
which greatly reduces the problem of the disappearance of
the back-propagation gradient.

Convolutional neural networks can extract spatial fea-
tures well, while LSTM can extract temporal features well.
.e combination of the two is used to perform image
classification to achieve the task of image diagnosis of
contrast-enhanced ultrasound. Firstly, the sequential k
frames of the contrast video image should be collected. .e
convolutional neural network is employed to extract the
spatial features of each frame, i.e., the one-dimensional
vector of the fully connected layer is taken as the abstract
feature of the frame. It can represent the frame of the image
to some extent. .en, the features of the m frames extracted
by the convolutional neural network are sequentially input
into the LSTM. .e output of the last unit of the LSTM is
used to perform classification operations. Figure 2 is a
schematic diagram of C-LSTM.

.e pretrained model is employed as the feature ex-
tractor, and feature extraction is performed on each frame
of the image. .e proposed feature vector is saved, which is
then used as the input of LSTM for training. As mentioned
above, the pretrained networks are employed for feature
extraction, which is already a very mature practice in
migration learning, and the effect is very good. In addition,
it only requires the training of the LSTM network, the
parameter amount is small, and the training is fast.
.erefore, this method is adopted for experiment and
analysis.

In addition, the error rate will increase as the number of
layers increases during the training process. .erefore, the
residual network (ResNet) module (Figure 3) is introduced
to form the structure of CNN. Adding an identity shortcut
connection in the structure allows the flow of information,
i.e., the data is easier to bypass the normal convolutional
layer and directly connect to the subsequent layers.

.erefore, the function that the original network needs
to be fitted is recorded as S(x), and the residual module needs
to be learned as G(x)..en, the relationship between the two
is expressed as follows:

G(x) � S(x) − x. (7)

By the addition of the residual module, adding additional
new layers will not harm the performance of the model,
however, it will improve slightly. .ese residual modules are
stacked together to form a very deep network. .e residual
module with the identity shortcut connection can also make
each block very easy to learn the mapping of the original
function. It means that additional residual modules can be
superimposed without compromising the performance of
the training set. An 18-layer network structure is con-
structed in this research.

2.4. Performance Evaluation Indicators. .e diagnosis
method based on SVM [17], the diagnosis method based
on MF [18], and the C-LSTM diagnosis method designed
were compared and analyzed. Sensitivity (SE), specificity
(SP), accuracy (AC), floating point calculations (FLOPs),
and parameter quantity (PQ) were used as performance
evaluation indicators. .e equation expressions are as
follows:
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SE �
TP

(TP + TN)
,

SP �
TN

(FP + TN)
,

AC �
(TP + TN)

(TP + FP + TN + FN)
,

PQ � s∗ s∗ lin( ∗ lout + lout,

FLOPs � s∗ s∗ lin( ∗ lout + lout( ∗ h∗ b.

(8)

TP is true positive, TN is true negative, FP is false
positive, and FN is false negative. s represents the size of the
convolution kernel, lin represents the number of channels in
the current feature map, lout represents the number of
channels in the next layer of feature maps, h represents the
height of the feature channel, and b represents the width of
the feature channel.

2.5. Statistical Methods. SPSS 19.0 was employed for data
statistics and analysis. Mean± standard deviation (x± s) was
how measurement data were expressed, and percentage (%)
was how count data were expressed. One-way analysis of
variance was used for pairwise comparison. .e difference
was statistically considerable with P< 0.05.

3. Results

3.1. Algorithm Performance Analysis. Figure 4 shows the
comparison of the sensitivity, specificity, and accuracy of the
three diagnostic methods. .e sensitivity, specificity, and
accuracy of the C-LSTM model were greatly greater than
those of the SVM and MF diagnostic methods, and the
difference was considerable (P< 0.05).

Figure 5 shows the comparison of the parameters and
calculations of the three diagnostic methods. .e parameter
quantity and calculations of C-LSTM model were greatly
lesser than those of the SVM andMF diagnosis methods, and
the difference was considerable (P< 0.05).

.e performance of the model with or without the added
module was compared to analyze the role of the residual
module added in this research, and the results are shown in
Figure 6 below. .e sensitivity, specificity, and accuracy of
the C-LSTM model were greatly greater than that of the
C-LSTM-0 model, and the difference was considerable
(P< 0.05). .e parameter quantity and calculations of the
C-LSTM model were greatly smaller than those of the
C-LSTM-0 model, and the difference was considerable
(P< 0.05).

CNN CNN

Equal quick connection

Figure 3: Residual network modules.

sigmoid sigmoid sigmoid
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ei ri pi
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Figure 1: Schematic diagram of LSTM unit structure.
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Figure 2: C-LSTM method flow.
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3.2. Image Data of Some Patient Samples. Figure 7 shows the
imaging data of a 29-year-old male patient. Conventional
ultrasound showed asymmetric thyroid enlargement, and
the boundary between the part of the right thyroid lobe
envelope and the muscles and soft tissues in front of the neck
was unclear. .e low echoic area was seen in the gland at the
right, with irregular shape and blurred boundary, and it
seemed to have scattered slightly stronger echoic points.
Color ultrasound showed abundant internal blood flow
signal and irregular low echoic area in the left gland.

Figure 8 shows the image data of a 40-year-old female
patient. Conventional ultrasound showed thyroid isthmus
thickening, and bilateral thyroid echoes were uneven. .ere
was a mixed echo in the thyroid of the right lobe. .e
boundary was clear, the shape was regular, and the internal
echo was uneven. Color ultrasound showed a small number
of short rod blood flow signals around and inside.

3.3. Contrast-Enhanced Ultrasound Modes of Benign and
Malignant7yroidMasses. Among the 84 patients selected in
this research, there were 86 lesions, 52 of which weremalignant

and 34 were benign (Figure 9(a)). From Figure 9(b), the
number of contrast-enhanced ultrasound images in benign
masses with no enhancement, early no enhancement, and low
enhancement was more than that of malignant masses, and the
difference was considerable (P< 0.05). .e number of benign
masses with high-enhancement ultrasound mode was greatly
lesser than that of the malignant masses, and the difference was
considerable (P< 0.05). .ere was no statistically considerable
difference in the number of equal enhancement patterns be-
tween the benign and malignant masses (P> 0.05).

3.4. 7e Diagnostic Performance of Contrast-Enhanced Ul-
trasound Image Characteristic Parameters for Malignant
Masses. Figure 10 shows the diagnostic performance anal-
ysis results of contrast-enhanced ultrasound image char-
acteristic parameters for malignant masses. RT ratio, TTP
ratio, and mTT ratio had relatively larger diagnostic AUCs
for malignant tumors, which were 0.856, 0.794, and 0.761,
respectively. However, the diagnostic AUCs of RT, TTP, and
mTTfor malignant masses were relatively small, which were
0.644, 0.607, and 0.638, respectively.
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Figure 4: Comparison of sensitivity, specificity, and accuracy of the three diagnostic methods. ∗Considerable difference compared
with C-LSTM (P< 0.05).
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Further quantitative comparisons of the sensitivity and
specificity of each contrast-enhanced ultrasound image
characteristic parameter for the diagnosis of malignant
masses are presented in Figure 11. RT ratio, TTP ratio, and

mTT ratio were of high sensitivity and specificity for the
diagnosis of malignant tumors, while RT, TTP, and mTT
were of low sensitivity and specificity for the diagnosis of
malignant tumors.
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Figure 6: Comparison of sensitivity, specificity, accuracy, parameter amount, and calculation amount of three diagnostic methods.
(C-LSTM-0 indicated a model lacking residual module. A was sensitivity, specificity, and accuracy. B was parameter quantity and
calculation amount). ∗Considerable difference compared with C-LSTM (P< 0.05).

(a) (b) (c) (d)

Figure 7: Conventional ultrasound and color Doppler ultrasound images of a 29-year-old male patient (ABC were conventional ultrasound
images; C was a color Doppler image).
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4. Discussion

At present, contrast-enhanced ultrasound has the most
research reports and is the most mature in the identification
of benign and malignant fat tumors of the liver. It has been
widely used in clinical practice, however, there are relatively
fewer pieces of research on thyroid diseases [19–21]. As the
thyroid knee blood vessel only has an arterial blood supply,

which is different from the liver with dual arterial and portal
blood supply, the effect on the effect of angiography is
different. In addition, the frequency of the superficial ul-
trasound probe does not match the resonance frequency of
the ultrasound contrast, whichmakes the performance of the
ultrasound contrast in the thyroid scan deviation [22, 23].
.erefore, a deep learning-based ultrasound image lesion
diagnosis model C-LSTMwas proposed in this work, and the

(a) (b) (c) (d)

Figure 8: Conventional ultrasound and color Doppler ultrasound images of a 40-year-old female patient (ABC were conventional ul-
trasound images; C was a color Doppler image).
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Figure 9: Comparison of contrast-enhanced ultrasound modes of benign and malignant thyroid masses. (a) .e ratio of benign and
malignant masses. (b) .e contrast mode of benign and malignant masses. ∗.e difference compared with the malignant mass was
considerable (P< 0.05).
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diagnosis methods based on SVM andMFwere proposed for
comparison. It was found that the sensitivity, specificity, and
accuracy of the C-LSTM model were greatly greater than

those of SVM and MF diagnostic methods, and the differ-
ence was considerable (P< 0.05). .is was similar to the
research results of Slough et al. (2019) [24], indicating that
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Figure 10: Analysis of the diagnostic performance of contrast-enhanced ultrasound image characteristic parameters for malignant masses.
(a) RT; (b) TTP; (c) mTT; (d) RT ratio; (e) TTP ratio; (f ) mTT ratio.
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Figure 11: Diagnosis sensitivity and specificity of each contrast-enhanced ultrasound image characteristic parameter for malignant masses.
(a) Diagnostic sensitivity. (b) diagnostic specificity.
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the C-LSTM model designed in this work can perform the
task of diagnosing benign and malignant thyroid with
contrast-enhanced ultrasound images. .e parameter
quantity and the calculations of the C-LSTM model were
greatly lesser than SVM andMF diagnostic methods, and the
difference was considerable (P< 0.05), which showed that
the C-LSTM model can greatly reduce the computational
workload and improve the computational efficiency while
ensuring the accuracy of the diagnosis [25]. .e perfor-
mance of the model with or without the added module was
compared to analyze the role of the residual module added in
this research. .e sensitivity, specificity, and accuracy of the
C-LSTM model were greatly greater than those of the
C-LSTM-0 model, and the difference was considerable
(P< 0.05). .e parameter quantity and the calculations of
the C-LSTM model were greatly smaller than those of the
C-LSTM-0 model, and the difference was considerable
(P< 0.05), which suggested that adding a residual module
can greatly improve the diagnostic effect of the model.

.e number of benign tumors with contrast-enhanced
ultrasound mode, no enhancement, early nonenhancement,
and low enhancement were more than those of malignant
tumors, while the number of high-enhancement tumors was
greatly less than that of malignant tumors (P< 0.05). It was
similar to the study of Bailey and Wallwork [26], indicating
that the imaging modes of benign and malignant masses
were mainly equal enhancement and high enhancement.
.en, the diagnostic performance of the contrast-enhanced
ultrasound image characteristic parameters for malignant
masses was analyzed. It was found that the AUCs of RTratio,
TTP ratio, and mTT ratio for the diagnosis of malignant
masses were relatively large, which were 0.856, 0.794, and
0.761, respectively. However, the diagnostic AUCs of RT,
TTP, and mTT for malignant masses were relatively small,
which were 0.644, 0.607, and 0.638, respectively. .is meant
that the RT ratio, TTP ratio, and mTT ratio had relatively
better application value in diagnosing benign and malignant
thyroid. Further quantitative comparisons of the sensitivity
and specificity of each contrast-enhanced ultrasound image
characteristic parameter for the diagnosis of malignant
masses were performed. It was found that RT ratio, TTP
ratio, and mTT ratio had high sensitivity and specificity for
the diagnosis of malignant tumors, while RT, TTP, and mTT
had low sensitivity and specificity for the diagnosis of
malignant tumors [27]. Combined with the above results, it
was proved that the contrast-enhanced ultrasound image
based on the deep learning C-LSTM model can effectively
improve the diagnostic effect of benign and malignant
thyroid masses. .e image feature parameters RTratio, TTP
ratio, and mTT ratio were of good efficiency in diagnosing
benign and malignant thyroid masses.

5. Conclusion

In this study, a deep learning-based diagnosis model,
C-LSTM, was proposed and compared with the SVM and
MF-based diagnosis methods, which were applied in the
diagnosis of thyroid contrast-enhanced ultrasound images.
.e results showed that contrast-enhanced ultrasound

images based on the deep learning C-LSTM model could
effectively improve the diagnosis effect of benign and ma-
lignant thyroid masses. Moreover, the image characteristic
parameters RT ratio, TTP ratio, and mTT ratio were of high
efficiency in the diagnosis of benign and malignant thyroid
masses. However, since the contrast-enhanced ultrasound
data does not have real ROI location labeling, only quali-
tative comparative analysis and lateral quantitative analysis
can be performed. Subsequently, it is necessary to obtain the
real location annotation of the ROI for accurate quantitative
analysis and comparison. In this way, the algorithm can be
further optimized to achieve better diagnosis results. In
conclusion, the results of this study support the clinical
diagnosis of benign and malignant thyroid masses.
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