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For smart cities, location-based services (LBSs) are indispensable; however, the urban environment is typically a multipath
channel and achieving high accuracy localization is challenging, especially in GNSS-denied environments. It is already known that
there are two key factors that constrain IoT localization performance, namely, the presence of outliers in the inter-node ranging
data and the difficulty to guarantee that ranging is carried out between all nodes, which means that we are dealing with an
incomplete Euclidean distance matrix (EDM) contaminated with outliers. In this paper, we propose a robust localization
framework, termed low-rank approximation-based localization (LRAbL). LRAbL enables network localization in a stepwise
manner using partially observed EDMs that contain coarse noise (outliers). Specifically, the working process of LRAbL can be
divided into three stages: the preprocessing of the observed EDM, aiming to eliminate outliers with large values, the use of low-
rank approximation means to obtain the complete EDM, and finally the application of non-classical MDS to calculate the
coordinates of the nodes in the network. To confirm the applicability of the proposed framework, extensive numerical experiments
were conducted, which indicated that LRADL was still able to achieve satisfactory localization results when the network links were
sparse (only about 1/4 of the entries can be observed) and contained a certain percentage of large value outliers. In summary, our

work provides a solution worthy of consideration for location-based services in the future Internet of Things.

1. Introduction

The last decade has witnessed a boom in Internet of Things
(IoT) technologies, and it can be predicted that location-
based services (LBSs) will play an increasingly important
role in smart cities [1, 2]. Existing localization techniques,
such as Global Navigation Satellite System (GNSS), cellular
networks, or Wi-Fi, have their limitations and are either
infrastructure-dependent or not suitable for working in
urban dense buildings. Therefore, in order to achieve high-
accuracy localization of IoT in smart cities, we expect the
network nodes to have relative localization capabilities, that
is, they can obtain relative coordinates even without relying
on additional equipment and using only ranging data.

By using received signal strength indication (RSSI), time
of flight (TOF), or time difference of arrival (TDOA), the

distance between nodes can be measured and, theoretically,
the relative coordinates of nodes can be easily calculated
using the Euclidean distance matrix (EDM) constructed
from range data. However, in real-world scenarios, the
performance of distance-based IoT localization is often
affected by two negative factors, i.e., the loss of range data
and outliers caused by non-line-of-sight (NLOS)
propagation.

Although some localization algorithms, such as the
classical MDS and its variants [3-5], have been proposed in
the hope of accurately calculating the relative coordinates of
nodes, to the best of our knowledge, robust localization
methods that work well in complex environments, where
range data loss is common and can contain outliers, are still
lacking; therefore, the design of robust and less complex
relative localization frameworks remains an area of interest.
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Focusing on this issue, the existing work can be broadly
classified into three categories, namely, outlier processing,
matrix completion, and localization based on optimization
methods.

Two main methods are used to detect outliers in EDM
without considering missing entries, outlier detection using
only ranging data, and NLOS link identification based on
statistical characteristics of the received signal. Using only
EDM, Blouvshtein and Cohen-Or [6] proposed an outlier
detection method based on triangle inequalities, which is
able to detect errors of large amplitude in the ranging data
but requires an artificially determined threshold according
to the number of broken triangles. By projecting the ob-
served EDM onto a high dimensional space, Zhu et al. [7]
proposed a novel outlier detection method; nevertheless, the
performance of the method cannot be guaranteed when the
number of outliers is relatively large.

Based on the statistical characteristics of the received
signal strength (RSS) time series, Xiao et al. [8] achieved the
separation of LOS/NLOS data; experiments show that this
method can obtain a detection success rate of 95%. Similarly,
by modelling the error data due to NLOS, Momtaz et al. [9]
also proposed a fast detection method using feature vectors.
Recently, Nguyen et al. [10] introduced machine learning
tools into the localization system and used the relevance
vector machine (RVM) to identify the NLOS links and
suppress the gross errors. Using the data generated by the
WLAN, Choi et al. [11] demonstrated that the data collected
in a short period of time can be used to train a deep learning
model to better learn the non-linear relationship between
input and output, which in turn enables the identification of
NLOS links. In addition, based on expectation maximization
(EM) algorithm of Gaussian mixture model, Fan and Awan
[12] introduced unsupervised machine learning method into
the UWB system for LOS/NLOS link identification.

Focusing on the outlier detection problem, although
some research achievements have been made, it must be
noted that NLOS link identification based on statistical
methods requires the collection of sufficient training data,
and thus the real-time performance of localization is hardly
guaranteed; moreover, such methods require more com-
puting resources and storage space.

In practice, as mentioned already, most of the time only
some entries of the EDM can be observed; for this reason,
researchers have developed various methods to solve this
problem. MDS-MAP [13] uses shortest path methods to
calculate the approximation of missing entries, while SVD-
MDS [14] uses singular value decomposition (SVD) to re-
construct the EDM, both of which are able to recover the
missing entries, but the accuracy is not satisfactory. To
obtain more accurate EDM, an intuitive idea is to use matrix
completion (MC) algorithms, for which a preliminary
summary is given in [15], and in addition, we suggest the
readers to follow work such as [16]. Indeed, several re-
searchers have noticed the problem presented in this paper,
namely, how to obtain the exact coordinates of the nodes
when the incomplete EDM contains outliers. Nguyen et al.
[17] formulated matrix completion as an unconstrained
optimization problem on Riemannian manifolds, solved it
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using a modified conjugate gradient algorithm, and also
considered the case of the presence of outliers. Similarly,
using optimization algorithms such as block coordinate
descent (BCD) and alternating direction multiplication
(ADMM), Xiao et al. and Guo and Lin [18, 19] hoped to deal
with two things simultaneously, namely, outlier filtering and
matrix completion, by solving an optimization problem.

Using an optimization algorithm to deal with both
outliers and missing entries is mathematically well inter-
preted; however, it imposes a large computational burden
and, to achieve good results, requires repeated attempts to
adjust the optimization parameters for different scenarios.
To address these issues, we propose a low-rank approxi-
mation-based localization (LRADbL) scheme to achieve ro-
bust localization using partially observed EDM that contains
outliers. Compared to existing schemes, our work is different
in the following ways:

(i) We propose a general framework LRADL, in which
the three main modules, outlier detection, low-rank
approximation, and coordinate calculation, can be
flexibly replaced as required; for example, outlier
processing can be done using only EDM or using
statistical detection methods.

(ii) Considering the characteristics of NLOS link
ranging, we propose an outlier detection method
using only observed EDM; unlike existing methods,
our approach identifies and filters outliers with large

values without artificially setting a decision
threshold.

(iii) Several mainstream low-rank approximation algo-
rithms are applied to LRADL, their performance is
compared in depth, and the corresponding theo-
retical analysis is carried out. In addition, we discuss
the potential of RPCA for robust localization, which
has rarely been addressed in the literature.

2. Problem Formulation

Considering a sensor network with N nodes deployed in
d-dimensional space, the coordinates of all nodes are rep-
resented as X € RN*. Define dij = X; - X; |l as the Eu-
clidean distance between node i and node j; obviously there
is d;; = dj; a symmetric square matrix, called Euclidean
distance matrix (EDM), can be constructed, and subse-
quently, the coordinates of the nodes can be easily calculated
using methods such as MDS.

Figure 1 illustrates the mechanism of generating the
Euclidean distance matrix (EDM) in a complex environ-
ment, and it can be seen that because there is no direct
ranging link between nodes n; and »; (because of too far
distance or severe signal fading), the entry in the EDM at
the corresponding position is missing (denoted as ?);
moreover, due to the presence of obstacle between nodes
and n,, the measurement of the distance between them is
actually implemented on the NLOS link; therefore, the
measured distance may be much larger than the true
distance (denoted as A); in other words, an outlier is in-
troduced in the EDM.
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FIGURE 1: Generation of the observed EDM, where ? denotes missing entries, while A denotes entries that contain outliers.

In order to obtain the coordinates of the nodes, we need
to have a complete and accurate EDM; however, even if the
ranging noise is weak, reconstructing the ideal EDM L from
D is still challenging and requires simultaneously recovering
the missing entries and filtering out the outliers. Mathe-
matically, the problem to be solved can be expressed as

1
minL,SEH P, (L+S—D) |7+ ARank (L) + 7| S|, (1)

where P, (D) denotes the sampling operator, defined as

b (e
(PQ(D))U:{ (B (2)

0, other wise,

where L and S with the same dimensions as D € RVN,
respectively, representing the ideal EDM and sparse outlier
matrix caused by NLOS propagation, respectively. A and 7
are regularization parameters, and | - IIf; is the Frobenius
norm of the matrix; furthermore, Rank (L) denotes the rank
of L, and S, denotes the /; norm of §. We can give an in-
tuitive interpretation of (1) by first introducing Theorem 1.

Theorem 1 (see Theorem 1 in [15]). The rank of an EDM
L € RV corresponding to points X € RN* is at most d + 2,
i.e.,, Rank(L)<d + 2.

In order to suppress ranging noise, the first term of (1)
requires that the reconstructed matrix is as close as possible
to the entries of the EDM in the observable subset Q. The
second term comes from Theorem 1, and the third term is
based on the reasonable assumption that the matrix of
outliers due to NLOS propagation is sparse. The solutions to
our problem of concern are summarized in Figure 2.

® in Figure 2 is, in fact, the MDS-MAP, and ® is an
improvement of @, exploiting the low-rank nature of the
EDM, while @ tries to go directly to solve problem (1). The
shaded areas @ and ® represent our work, and it is im-
portant to highlight that the outlier detection we use differs
from the approach of ®, where (P) and (C) denote the
partial and complete EDM, respectively. Table 1 summarizes
the characteristics of the six schemes, and it can be seen that
our work contains three robust processing modules that, in
theory, have the potential to perform better.

3. Proposed Framework

This section provides a detailed description of LRADL, as
shown in Algorithm 1. LRAbL first performs outlier detection

and filtering, followed by low-rank matrix reconstruction and,
finally, calculates the relative coordinates of the nodes.

The operator ® in Algorithm 1 denotes the Hadamard
product. It is important to emphasize the second step of
Algorithm 1, the low-rank approximation (LRA) of the
matrix, and both MC and RPCA use the mask matrix
Wop € {0, 11N as input parameters. In Figure 2, by in-
tentionally introducing artificial outliers, @ transforms the
objective function into a typical RPCA problem in order to
decompose it to obtain a low-rank EDM, whereas ® re-
places all outliers with unknown entries, thus transforming
the objective function into a typical matrix completion
problem. In addition, NMDS () in step 3 denotes the non-
classical MDS algorithm.

3.1. Outlier Detection. Ideally, the Euclidean distances be-
tween any three nodes in a sensor network satisfy the tri-
angle inequality, but if there are several NLOS links in the
network, outliers with larger amplitudes will be introduced
into the ranging data, and then the triangle inequality will be
broken. As shown in Figure 3, the measured distance be-
tween nodes A and G, i.e., dy¢ = dup + dpe, is greater than
the true distance d,., and may even be likely greater than
d g + dpyc; therefore, the triangle inequality no longer holds.

Recently, Blouvshtein and Cohen-Or [6] proposed an
outlier detection method based on the histogram of broken
triangles, and the problem we face is slightly different from
[6] in that, first, the network is not fully connected, and
second, we do not consider inlier edges because NLOS
propagation can only lead to outlier edges. In Algorithm 2,
we designed a different approach that does not require
generating histograms of broken triangles or artificially
determining decision threshold.

In Algorithm 2, first, the incomplete graph & = (V,E)
with the vertex set V =1,2,...,N and the edge set E =
{(i, il dij >0,i,j € V} is generated based on the observed
EDM, and the one-hop neighbour set U; of the i — th node is
defined, and each node in U; has a one-hop ranging link with
node i. For efficiency purposes, U; contains only nodes with
index IDs larger than i. The nodes in the intersection of U;
and U, defined as Set;;, can form triangles with node (i, j).
After finding all the triangles contained in the incomplete
graph @, in the last step, we use the function Outlier Det (-)
to determine whether a triangle is broken or not; specifically,
the three edges of the triangle are defined as d,, d,, and d;
without loss of generality, assuming that d; >d, >d,, the
result of the decision can be characterized using b:
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FIGURe 2: Existing robust localization schemes, where the shaded part is the work of this paper.

TaBLE 1: Comparison of robust localization solutions.

Solutions Outlier filtering Matrix completion Low-rank constraint
@ X v X
® x v v
® x y v
® v v v
® v v v
® v X X

Input: observed EDM D, = P, (D).
Output: the estimated coordinates X.
Stepl: use Algorithm 2 to determine the index set of outliers and generate the masking matrix Wq.
Step2: implementing low-rank matrix approximation.
L=LRA(DyoWqp).
Step3: using non-classical MDS to calculate the relative coordinates of the nodes.
X = NMDS (L).

ALGORITHM 1: Low-rank approximation-based localization.

FIGURE 3: An illustration of the scenario where the triangular inequality is broken; in this scenario, d 4 > d 5 + dpe, a result that defies
common sense and implies that outliers are introduced, at least on the edge AC.

1, dy>d,+d,, 3.2. Matrix Completion. Recently, a considerable number of

= ‘[ (3)  MCalgorithms have been proposed, and they can be roughly
classified into two categories. When the rank » = Rank (L) of

Moreover, OutlierIndex is an index that represents the  the matrix is unknown, the algorithms that can be used for
position of the corresponding entry in the matrix for the = matrix completion include nuclear norm minimization
detected outliers. (NNM) via convex optimization [20], singular value

0, otherwise.
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Input: observed EDM D,.
Output: masking matrix Wgp,.
Initialize: W, = ones(N, N).
Based on graph @ =
for i=1;i<N;i++ do
for allj € U; do
Set;; = U;nU,.
for k=1: 1ength(Set,-j) do
Triset (k) =
[b, Outlier Index]
if (b ==1) then
Wop (Outlier Index) =
else
Wop = Wop.
end if
end for
end for
end for

(V, E), generate the set of one-hop neighbours for all nodes: U = UY U.,.

(node (i), node (j), node (Setij (k).
= Qutlier Det (Triset (k)).

ALGoriTHM 2: Outlier detection.

thresholding (SVT) [21] and iteratively reweighted least
squares (IRLS) [22]. When the rank is known or can be
estimated,  can be utilized as a priori information, and in
general, as verified by the compressed sensing problem, the
introduction of priori information can improve the per-
formance of matrix completion algorithms; for example, the
performance of truncated NNM (TNNR) [23] is significantly
improved over NNM, and similar examples can be found in
[24, 25].

The matrix completion problem can be formulated
mathematically as

min; || L ||, s.t. P (L) = Py (D), (4)
where || L ||, = Y, 0;(L) is the nuclear norm of L and o (L)
is the i —th largest singular value of L. Since the nuclear
norm minimization is equivalent to semidefinite pro-
gramming [16], which is computationally burdensome and,
in addition, when the condition number of the matrix is
large, it is not easy to obtain the optimal result. Using a non-
convex regularization (e.g. Schatten-g norm) can achieve
better results than the nuclear norm, but there is a risk of
convergence to a local minimum [26].

In this paper, we apply various MC algorithms to
LRADbL, among which MatrixIRLS [27], a recently proposed
algorithm, has attracted our special attention. MatrixIRLS
constructs a surrogate function f,(0):

log|al, ifo>e,

felo) = X 5 (5)
log (e) +<2>(<02) - l), ifo<e.
€

To approximate the rank of the matrix, the objective
function F,: RNN — R can be defined as

N
F.(L):= ) f.(0:(1)), (6)
i=1

where F,(L) is apparently a continuously differentiable
function with &*-Lipschitz gradient and VF, (L) can be
calculated as (using the threshold parameter €;,)

N
VF, (L) = Udiag<%) v, (7)
! > i=1

where U and V can be obtained by the SVD of L.
Inspired by the modified Newton’s method, a relatively
easy to solve quadratic convex function Q, (L|L(k)) is de-
fined which allows us to compute L(k“) from the known L
using an iterative style. Q,, (L L®) can be defined as

A argminLQek(LIL(k))

) +(VE,(LO)L-1T) ()

1
+(L-1OwO(L-1D)).

= Fsk(L(

In fact, Q, (LIL(k)) can be viewed as replacing the

Hessian by an operator Wk RN*N , RNXN " which is
defined as
k T T
W (L) = Uy [Hgy 0 (ULV ) Vi, ©)
where
k -1
(H(k)) (max( ®, ek)max((f](- ), sk)) , (10)
and U(k)S(k)ka) = SVD(L™®) and ai(k) is the i — th singular
value of L™®). Tt should be noted that the original purpose of



designing H is to ensure that Q, (LIL™) >F, (L) and to
maintain the convexity of the objective function; therefore,
the global minima of F, (L) can be approximated by solving
for Q, (LIL™®).

The working process of MatrixIRLS can be summarized
as shown in Algorithm 3, where Q) is a new version of the
observable subset. In each update of A, ,, its value should be
gradually decreasing, and depending on the specific prob-
lem, different update strategies can be chosen, e.g,
A = Ae ™, where B =1In(1,/A;)/ (K - 1). The objective
function of Algorithm 3 consists of two parts, namely, the
low-rank constraint and the data fidelity term, and we have

R(L) = (L,w* (1)) (11)

It can be seen that R(L) comes precisely from the
minimization of Q. (LIL®). If the presence of noise is not
considered, the final problem we need to solve can be
expressed as

LY = argmin (L, w* (1)), (12)
L: Pg (L)=Lg

where Ly, is the matrix obtained by sampling from a subset Q)
of L.

We obtained the objective function of Algorithm 3 based
on the modified Newton’s method (which brings the benefit
of saddle point escape), and a question that naturally arises is
whether this approximated objective function can achieve
the low-rank constraint? Here we give Theorem 2, which
aims to establish an intuitive connection between the ob-
jective function of Algorithm 3 and the low-rank constraint
commonly used in the literature.

Theorem 2. Suppose R(L), H (L) are defined as in (11) and
(10); when Algorithm 3 reaches the convergence state, the
equation
L= argmin R(L)
L: Py (L)=L
Q Q (13)
= argmin Rank(L)
L: Py (L)=Lg

holds. This means that R(L) is essentially a low-rank
constraint.

Proof. For completeness of presentation, rewrite W ¥ (L) as
follows:

WM = Uy [Hpo(UplVe) Vi 04

Assume that Algorithm 3 reaches convergence when
k = K, at which point the operator W ) can be expressed as

WOLE) = U g [Hgy 0 (U LV ) Vi (15)

By definition, H x, can be expressed as

Hll HIZ]
HZI H22

H :[ (16)
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where H,; € R with (H,,);;= /0,0, , H;, € R*N79
with (Hy,);; = 1/0;,,6x , Hy € RV s similar to H,
with (H,,);; = 1/eg0j,,, and Hy, € RN g glightly
different in that all its entries are &;”.

Considering the low-rank property of L, it is not difficult
to obtain

S(K) _ U’{K)L(K)V(K)’ (17)

where $ is a diagonal matrix composed of singular values
of L™ whose last N — r entries take the value 0. It can be
deduced that ~ = H 1, © (U{K)L(K)V(K)) is also a diagonal
matrix and can be expressed as

s = diag(07,...,0,,0,...,0). (18)

r

This means that X is essentially the Moore-Penrose
pseudo-inverse of §X); therefore, we get

W) =0z, =(19) ), a9)

where (L))" = V(K)ZU{K) is the Moore-Penrose pseudo-
inverse of L™,

For a matrix A of non-full rank, it is easy to prove that
P:= (ATA)T is an idempotent matrix; furthermore, we can
prove that

Trace(P) = Rank (P) = Rank (A). (20)

Returning to our problem, when the algorithm con-
verges, it is not hard to see that

R(L(K)) — <L(K), W(K)(L(K))>,

= Trace( (L(K) )TW (K) (L(K) )),

- Trace<<(L(K))TL(K))T>,

= Rank(L(K)).

(21)

The proof is accomplished at this point.

Theorem 2 shows that by continuously updating the
weighting operator WX, MatrixIRLS eventually achieves
the minimization of the matrix rank, thereby recovering the
missing entries in the EDM. O

3.3. Robust Principal Component Analysis and Non-Classical
MDS. RPCA has achieved remarkable success in the field of
image processing, such as foreground extraction and video
denoising. In this section, we use RPCA to implement the
second step of Algorithm 1. Mathematically, RPCA can be
expressed in a canonical form:

1
min L+ = DIl + AL+ 7Sl (22)

By solving (22), it is possible to decompose the obser-
vation matrix D into three components:

D=L+S+N, (23)
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Output: restructured EDM L.

for K=1toK do
Solve optimization problem:

Update smoothing parameter:
&y = Min (g, 0,4y (L),

Uy Higys V-
Update A, ;.
end for
L=1%,

Input: observed EDM P, (D) = D, 0 W, p.

Initialize: k =1, K =100, A, = 0.1, ¢, = 10, r = 4.

L% = argmin, R(L) + 1,/2 || P (L) — Po(D)|.

Generate the matrices needed for the weighting operator W ® (L),

ALGORITHM 3: MatrixIRLS.

where N is the Gaussian additive noise generated during
ranging. Pay attention to @ in Figure 2; although both use
the shortest distance algorithm to reconstruct the matrix,
LRADBL-RPCA is superior to MDS-MAP in that it not only
filters outliers but also exploits the low-rank property of
EDM.

It should also be noted that in the final step of Algo-
rithm 1, we use non-classical MDS, namely, Sammon
mapping (SM), to calculate the coordinates of the nodes. The
objective function to be solved is

Stress(X) = ) <Dij _Hii ~ Xj“)
i#] ij

(24)

2
>

and the SM was chosen because Blouvshtein and Cohen-Or
[6] have demonstrated that it has the ability to suppress
outliers.

4. Numerical Evaluation

In this section, we use numerical simulations to verify the
effectiveness of the proposed localization framework. In all
simulations, we consider a sensor network containing N =
50 nodes randomly deployed in a 20m x 20 m = 400 m?
square area. Given that the performance of SM and the
sensitivity of classical MDS to outliers have been demon-
strated in [6], we do not show it again. The simulation results
show that the value of A has little impact on the performance
if it is relatively small, so we fix A = 0.1.

4.1. Incomplete Matrix-Based Localization. To confirm the
effectiveness of the proposed strategy, we compared the
performance of MDS-MAP with that of LRAbL (using
MatrixIRLS to complete the matrix). The EDM used is an
incomplete EDM containing 413 observable entries, and the
simulation results are presented in the Shepard diagram in
Figure 4, where the X-axis represents the real distance be-
tween the nodes and the Y-axis represents the estimated
value, and ideally the two should agree, i.e., all the scatter
points lie on the ideal curve.

Figure 4 shows that LRAbL-MatrixIRLS displays a no-
ticeable superiority over MDS-MAP in that it is able to
accurately estimate the distance between nodes, whereas
MDS-MAP has poorer performance due to the limited
accuracy of the estimated EDM used.

4.2. The Necessity of Outlier Filtering. In the previous section,
we did not consider the presence of outliers in the in-
complete EDM; in this part, we will demonstrate the ne-
cessity of outlier filtering, the first step of LRADbL, through
simulation. We set up two scenarios for simulation, and the
parameters involved are listed in Table 2, where Sy denotes
the sampling rate parameter, based on which
m = [rSg (2N —r)] observable entries can be generated;
moreover, |-] is actually the floor function, i.e., it will output
the largest integer that is not greater than the input.

We use MatrixIRLS for matrix completion and generate
outliers by sampling Gaussian white noise, more specifically,
Gaussian white noise with variance Var, of which the signals
with absolute values greater than T, are selected as outliers
to be added to the incomplete EDM. Using each set of
parameters, we run 500 Monte Carlo simulations to evaluate
the localization performance, and the result of the i—th
simulation is defined as

L [X-X|<Ts,
(25)
0, otherwise,

where X and X are the real and estimated coordinates of all
nodes, respectively, and the localization success rate is
expressed as Sg = Y Vs,;/500.

In Figure 5, we consider adding outliers of small am-
plitude, setting Var = [3,6,9,12] and T, = 13 and seeking
a high-accuracy localization performance, ie., Ts = 3. We
compare two strategies, that is, low-rank approximation
with and without outlier filtering, and it can be seen that
when Var is small, the advantage of outlier filtering is not
very obvious because the number of outliers added is small,
but as Var becomes larger and the number of outliers added
increases, the gain from filtering becomes very obvious.
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FIGURE 4: Shepard diagram of localization results using MDS-MAP and LRAbL-MatrixIRLS.
TaBLE 2: Description of the parameters used in the numerical simulation.
Parameters Description
Sr Sampling rate parameter
Var Variance of outlier
To Threshold for outlier generation
T Threshold for successful localization
MSE Mean square error of matrix completion

Rate of success

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
Sampling rate parameter

—— Var=3,Filtered -.x.. Var=3,Unfiltered
—o— Var=6,Filtered o-- Var=6,Unfiltered

Var=9,Filtered Var=9,Unfiltered
—— Var=12,Filtered o-- Var=12,Unfiltered

FIGURE 5: Localization success ratio versus sampling parameters for small-amplitude outliers (T, = 13) and high localization accuracy
constraint (Ts = 3). The dashed lines represent the localization performance of MatrixIRLS without filtering outliers and the solid lines
represent the proposed framework.
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Rate of success
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0§ ——%
08 1 12 14

—»— Var=20,Filtered
—e— Var=24,Filtered

Var=30,Filtered
—o— Var=36,Filtered

1.6 1.8 2 2.2 2.4
Sampling rate parameter

x-- Var=20,Unfiltered
o Var=24,Unfiltered

Var=30,Unfiltered
¢+ Var=36,Unfiltered

FIGURE 6: Localization success ratio versus sampling parameters for large magnitude outliers (T, = 36) and low localization accuracy
constraint (T's = 6). The dashed lines represent the localization performance of MatrixIRLS without filtering outliers and the solid lines

represent the proposed framework.

TaBLE 3: Matrix completion methods used in the simulation.

Algorithms Description
MatrixIRLS An iterative weighted least squares (IRLS) algorithm, which can be interpreted as smoothing Newton’s method applied
[27] on a non-convex rank surrogate cost function, has the ability of escaping saddle points.
MDS-MAP [13] The shortest path algorithm, i.e., Dijkstra, is used to estimate the missing ranging data.
AD [15] An alternating coordinate descent method, where a single coordinate of a particular point is updated each time and the
optimal solution is obtained iteratively.

An efficient non-linear successive relaxation strategy is used, where only one linear least squares problem needs to be

Lmafit [28] . . . o
solved per iteration instead of singular value decomposition (SVD).
TNNR [23] Using truncated nuclear norm (TNN) regularization, where TNN is defined as the nuclear norm subtracted by the sum of
the largest few singular values.

The low-rank matrix completion is transformed into an unconstrained minimization problem in Riemannian manifolds.

LRM-CG [17] The definition of differentiability is also given, and the modified conjugate gradient algorithm is used to solve the

problem.

The simulation setup in Figure 6 is similar to Figure 5,
except that it uses a larger Var, ie., Var = [20, 24, 30, 36],
T = 36, and the localization accuracy is suitably reduced by
setting T'g = 6, which is also acceptable in practice. As
expected, LRAbL using outlier filtering performs better than
direct MC without filtering.

4.3. Comparison of the Performance of Different Matrix
Completion Algorithms. Having confirmed the effectiveness
of the proposed framework, in this section, we compare the
performance of different matrix completion algorithms, and
the algorithms involved are shown in Table 3.

We considered two scenarios, Var = 12 and Var = 9,
and the performances of the six algorithms are shown in
Figure 7. It can be seen that MatrixIRLS shows a significant
advantage in both scenarios, especially when the network
links are very sparse. For example, when S, = 0.8 and
Var =9, there are only almost 300 entries that can be

observed in the network. MatrixIRLS still maintains an 80%
success rate of localization, which is unachievable by other
algorithms.
To further analyze the performance of each algorithm,
we defined the mean square error (MSE) as
1 -
MSE = JIL - L. (26)
The MSE is then used to evaluate the accuracy of the
matrix completion algorithms, and the simulation results
are shown in Figure 8. In this simulation, we added the
alternating rank (AR) [15] algorithm for comparison, and
the reason why AR was not used in the previous com-
parison of localization performance is that the matrix
reconstructed by the AR algorithm is sometimes not an
EDM and therefore cannot be used directly to calculate the
coordinates of the nodes. It should also be noted that for
MDS-MAP, the MSE is infinite when S; = 0.8 and cannot
be shown in the figure.
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The simulation results in Figure 8 confirm the conclu-
sions of Figure 7. In all scenarios, MatrixIRLS has the highest
accuracy for matrix completion, and thus it achieves the best
localization results.

4.4. Robust Localization Based on RPCA. In this part, we
investigate LRAbL-RPCA using numerical experiments, i.e.,
LRADbL using robust principal component analysis (RPCA)
as a means of low-rank approximation (LRA). Figure 9
compares the localization performance using three strate-
gies, i.e., the classical MDS-MAP and RPCA with (LRADbL-
RPCA) and without (shortest path-RPCA) outlier filtering,

and here we used the classical singular value thresholding
(SVT) algorithm [21].

As shown in Figure 9, the classical MDS-MAP has the
worst performance and the LRAbL-RPCA shows the best
performance, which is not difficult to understand because
the LRAbL-RPCA first filters out the outliers with large
amplitudes and then subsequently completes EDM using
Dijkstra and thus suffers the least interference. Nevertheless,
it should be noted that the performance of LRAbL-RPCA is
much inferior to that of LRAbL-MC when the observation
matrix is very sparse, and one possible reason is that we use
the rank information of EDM in LRAbL-MC, while LRAbL-
RPCA does not make use of this a priori information.
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4.5. Computational Complexity. In practical application
scenarios, in addition to performance, we need to balance
the complexity of the algorithms, especially in IoT systems
where nodes have limited battery capacity and computing
power, and we should aim to use a light computational
burden to achieve high performance.

We compared the runtimes of several mainstream MC
algorithms, some of which we used in our localization
performance analysis and some of which we did not use
because they could not consistently generate EDM; all al-
gorithms follow the parameter settings suggested by the
authors, and the simulation results are shown in Figure 10.
All the experiments are conducted on a PC running Win-
dows 10 64 bit operating system with Intel Core i5-9500 @

3.0GHz CPU and 8.0 GB RAM. Because some algorithms,
such as AD and SDR [29], do not have stable operation
times, 500 Monte Carlo experiments are performed to
calculate the average running time for each sampling rate
parameter.

It can be seen that despite the different convergence
conditions set by the algorithms, MatrixIRLS shows a clear
advantage, with only MDS-MAP (uses the shortest path
algorithm) having a slight computational advantage over it
among all the algorithms, but the performance gap between
the two is very significant. The main reason, as pointed out in
Theorem 3.1 of [27], is that MatrixIRLS only needs to operate
on N X r matrices, while its competitors need to store and
update N x N matrices.
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5. Conclusion and Discussion

To meet the needs of future smart cities, this paper presents a
robust localization framework LRAbL, with low-rank matrix
approximation as the main technique. Specifically, the
proposed LRADL consists of three steps: (1) outliers in the
incomplete EDM are detected and filtered out to obtain a
new observed EDM; (2) the complete EDM is obtained using
a low-rank matrix approximation algorithm; and (3) the
coordinates of the nodes are calculated using non-classical
MDS. Extensive numerical simulations confirm that the
proposed framework is effective in improving localization
performance, especially when the IoT network works in a
very complex environment; when the ranging links are
sparse and contain a large number of outliers, LRAbL-
MatrixIRLS can achieve localization with sufficient accuracy
with a high probability.

In this paper, we use a centralized approach to detect
outliers, and in the follow-up work, we will design a dis-
tributed outlier detection scheme in order to improve the
efficiency of detection and make LRAbL more applicable to
IoT systems. In summary, our work provides a promising
solution for future ubiquitous IoT localization needs.
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