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In recent years, the interdisciplinary exploration of combining traditional visual communication design with somatosensory
interaction technology has become a new form of artistic expression. In order to explore the feasibility of somatosensory in-
teraction technology in visual communication design, this study proposes a 2D dynamic graphic generation method based on
somatosensory interaction parameterisation and uses traditional Chinese elements as an example for speci�c applications in visual
communication design. Firstly, the motion parameters recognised using the Kinect somatosensory interaction device are bound to
the function variables used to generate the images in the development environment, thus enabling human somatosensory
interaction with di�erent characters in the scene. Secondly, a linear discriminant analysis based on kernel functions is used to
reduce the dimensionality of the vector space, thus solving the problem of real-time and accurate capture of human movements.
�en, using the skeletal parameter binding technique, the association between the motion parameters of the somatosensory
interaction and the two-dimensional dynamic graphics is achieved.�e experimental results show that the visual communication
technique based on somatosensory interaction has a high recognition accuracy. Distinguished from traditional digital video, the
proposed method can greatly enrich the visual representation of traditional Chinese elements.

1. Introduction

In recent years, there have beenmany points of convergence
between the rapidly developing digital economy and the
cultural industries. Science and art are beginning tomerge in
terms of technology and form. In today’s cultural commu-
nicationapplication scenarios, audiences increasinglyneeda
good liveexperience.However, in thecurrentpresentationof
design content, spatial interpretation is still usually done by
means of printed posters or by showing o�ine videos [1–5].
As the design content itself is independent, the audience
cannot communicate with the design content. To achieve
real-time interaction between the design content and the
audience, a fundamental change in the design approach is
required. �e interdisciplinary exploration of traditional

visual communication design in combination with so-
matosensory interaction is a new solution to these problems.

In the landscape of museum exhibitions and tourism
developments, designers prefer to use immersive interactive
experiences to attract foot tra�c. Unlike traditional interface
interaction, somatosensory interaction emphasises the use of
bodymovement responses to communicate with the product
[6–8]. As a representative of Human-Computer Nature
Interaction (HCI), somatosensory interaction is a new stage
of technological development. With good immersion, low
learning cost, and good user experience, somatosensory
interaction has won wide application prospects and has
received attention from scholars in various �elds at home
and abroad [9–12]. More advanced somatosensory inter-
action �rst appeared in 2007. During this period, Nintendo
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combined somatosensory with gaming and introduced the
concept of “health gaming.” In 2010, Microsoft launched
Kinect v1.0, which was released with the X-BOX console and
won high reputation and sales. At this stage, Kinect v1.0
began to be used in the medical, fitness, and retail industries,
with various leading-edge applications being attempted. As a
noncontact means of interaction, somatosensory interaction
has a natural advantage for scenario applications on
immersive and large digital spaces. Currently, rapid ad-
vances in science and art are leading to increasing demands
for spatial visual applications. )e use of interactively
updated visual information to improve spatial functionality
is a future area for joint development across media.

In order to explore the feasibility of somatosensory
interaction technology in visual communication design, this
study proposes a 2D dynamic graphics generation method
based on somatosensory interaction parameterisation and
uses traditional Chinese elements as an example for specific
applications in visual communication design. It is important
to note that somatosensory interaction technology requires
real-time and accurate capture and recognition of human
movements. )erefore, this paper employs the latest Kinect
v2.0 device and designs a method for action parameter
feature extraction based on linear discriminant analysis.

2. Related Studies

Humans sometimes do not always speak the truth, but body
language often expresses their truest emotions. )erefore,
the recognition of human body movements has been an
important research direction in the field of computer image
recognition [13–16]. Currently, popular algorithms for body
movement recognition include BP neural networks, decision
trees, and Support Vector Machine (SVM), among others.

At this stage, the most commonly used hardware device
for body movement recognition is the Kinect body sensor.
For example, Ying et al. [17] proposed a human motion
recognition method using the Kinect body sensor. Lai et al.
[18] proposed a DSP-based portable human gesture action
recognition system in real time, using a combination of
spectral analysis and linear discriminant analysis (LDA)
strategy. Although these two methods improve the accuracy
and efficiency of action recognition, respectively, there are
more types of actions in practical applications. At the same
time, human actions are more complex in Kinect-based
somatosensory interaction, resulting in real-time and high-
dimensional action data, so the dimensionality of the vector
space must be reduced as much as possible in order to
recognise more action types in real time.

)e main objective of this research is to visualise 2D
motion graphics using the Kinect v2.0 device and apply it to
visual communication design. When the body posture data
obtained from the Kinect v2.0 device is used as a “parameter”
in the 2D motion graphics, changes in body posture can
trigger changes in the 2D motion graphics, creating an
interaction between somatosensory and traditional Chinese
elements. When a person walks across the screen, the Kinect
sensor recognises the person’s x-coordinates and maps them
to the computer, which then projects the motion parameters

onto the screen via a projector, causing the traditional
Chinese elements in the 2D graphics to change dynamically
by panning. )e experimental results validate the effec-
tiveness and accuracy of the proposed method.

)e main innovations and contributions include the
following: (1) )is paper proposes an LDA-based feature
extraction method for motion parameters in order to im-
prove the recognition accuracy of the Kinect v2.0 device. (2)
Using the binding technique of skeletal parameters, the
association between somatosensory interaction motion
parameters and 2D dynamic graphics is achieved.

3. Kinect v2.0-Based Parameterisation of
Somatosensory Interaction

3.1. Key Technologies. Microsoft first announced Kinect in
June 2009 [19, 20] with the hope that the hardware would
merge motion with communication. )e device was offi-
cially launched in November 2010, and in May 2013,
Microsoft demonstrated the next generation Kinect v2.0,
which allows developers to design based on the voice,
gesture, and player sensory information sensed by Kinect
v2.0, bringing users an unprecedented interactive experi-
ence. In this paper, we decided to use the Kinect 2.0 device as
the base hardware for development.

)e colour resolution of Kinect v2.0 has been dramat-
ically increased from 640× 480 to 1920×1080, enabling very
beautiful images to be acquired. Kinect v2.0 can bone bind
all 6 of the maximum number of identified users and identify
25 keys. )e Kinect V2.0 will be able to bone bind all 6 users
and identify 25 key nodes. Also, because of the increased
resolution of the depth sensor, the user data can be separated
from the person with a simple cut, and the detection range
has been increased from 0.8–4m to 0.5–4.5m. It is im-
portant to note that the infrared sensor does not require
light, i.e., it can still be used in dark or dark environments.

Kinect consists of a colour camera, an IR camera, and an
IR projector with a microphone array underneath [21–23] as
shown in Figure 1. )e IR camera and IR projector work
together to achieve the depth image function. )e main
hardware features of Kinect v2.0 are shown in Table 1.

)e colour image is based on the data stream acquired by
the colour camera on the far left of Kinect v2.0. )e colour
camera sensor is shown in Figure 2.

Depth image and skeleton tracking technology is the
dominant technology in the Kinect device and is somewhat
representative. It contains information about the distance of
the current object from the camera’s point of view in ad-
dition to the grey scale value. Each pixel has its own in-
formation, and when there are enough of them, they can
form a point cloud that recreates the geometry of the object

Figure 1: Kinect v2.0.
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as well as its position and distance. )e closer the object is,
the darker the colour in the depth image, while the more
distant the object is, the more white it tends to be. )e TOF
technique allows infrared light to be emitted and the at-
tenuation of the light to be offset by phase detection, as
shown in Figure 3.

)e pixel information obtained from the depth image
contains two parts, where the higher order 13 bits of in-
formation is the detected object pixel distance depth in-
formation. )e Kinect sensor can detect the target human
depth information in the valid range of 0.6m to 4.5m. )e
depth image pixel information is shown in Figure 4.

3.2. Feature Extraction and Recognition of Action Parameters.
)e motion data captured in Kinect-based somatosensory
interaction is complex. In particular, when the types of ac-
tions to be recognised are large and variable, the action data
can contain a large number of high-dimensional nonlinear
features. )erefore, this paper uses linear discriminant
analysis based on kernel functions to reduce the dimen-
sionality of the vector space and thus solve the problem of
capturing human actions accurately and in real time.

Due to the complexity and variability of human actions
in VR scenes, it is not possible to extract some important
high-dimensional nonlinear feature information hidden in
the action data. )erefore, this paper introduces the kernel
function in the LDA algorithm for nonlinear projection to
extract the expression features.

In the Kinect captured human movement dataset, let A
be the action matrix and A be the full rank matrix with class
labels in the LDA algorithm [24, 25].

A � a1 . . . an  � B1 . . . Bk  ∈ Rm×n
, (1)

where each ai(1≤ i≤ n) is a data point in an m-dimensional
space. Each block matrix Bi ∈ Rm×n(1≤ i≤ k) is the set of

data items in class i. ni is the size of class i, and the total
number of data items in the data setA is n. Let Ni denote the
index of the columns belonging to class i. )e global centre c

of A and the local centre ci of each class Ai are denoted,
respectively, as follows:

c �
1
n

Ae,

Ci �
1
ni

Biei, i � 1, . . . , k.

(2)

Suppose that the following settings are met:

Sb � 

k

i�1
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T
,
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k

i�1


j∈Ni

aj − c  aj − c 
T
,

St � 
n

j�1
aj − c  aj − c 

T
,

(3)

where Sb, Sw, and St are referred to as the interclass scatter
matrix, intraclass scatter matrix, and total scatter matrix,
respectively.

St � Sb + Sw. (4)

)e standard LDA objective function can be shown as
follows:

Table 1: Kinect v2.0 key hardware features.

No. Kinect key
modules Brief description of functions

1 Colour camera Colour data streams are available and essentially all the functions of a normal camera can be achieved

2 IR projector Emits infrared light into the external environment. Infrared light waves are picked up by the IR camera through
scattering and provide a source of thermal energy

3 IR camera Receives scattered infrared light and performs depth processing of the information to draw a depth image of the
Kinect

4 Microphone array Sound is collected from multiple microphones, filtered for ambient noise, complementary to the user’s sound
source, and can determine the user’s location

Color camera sensor

Figure 2: Colour camera sensor.
Figure 3: Imaging principle of TOF technology.
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Depth information Depth information
User index information

Figure 4: Depth image pixel information.
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G � argmax trace
G∈Rm×1

G
T
StG 

− 1
G

T
SbG  . (5)

As the standard LDA algorithm uses a linear compu-
tational principle, it leads to less effective results in dealing
with nonlinear problems and has a singularity problem.
)erefore, kernel function-based LDA is used to reduce the
dimensionality of the vector space and thus effectively ex-
tract the nonlinear features in human action data.

Set the kernel matrix is K � ϕ(X)Tϕ(X) � [k1
1,

. . . , k
j
i , . . . , k

NC

C ], where k
j
i � ϕ(X)Tϕ(x

j
i ). )e Fisher cri-

terion functions in H can be expressed as follows [26]:

J(w) �
w

TSϕb w

w
TSϕt w

, (6)

where, w is the kernel space projection vector.
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,

(7)

where ui is the mean of the ith sample in H, u is the overall
mean, and Sϕw is the intraclass scatter matrix w .)is can be
expressed as follows:

w � ϕ(X)a, (8)

where a � [a1, . . . , aN]T. Equation (6) can be expressed as
follows:

J(a) �
aTKba
aTKta

, (9)

whereKt denotes the overall scatter matrix of kernels andKb

denotes the scatter matrix between kernel classes [27].
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(10)

where Kw is a kernel intraclass scattering matrix. For any
collected human action data point x, let Aopt denote a set of
feature vectors of the optimal solution; then, we obtain the
kernel space projection matrix [28, 29].

Wopt � ϕ(X)Aopt,

z � WT
optϕ(x) � AT

optϕ(X)ϕ(x).
(11)

Finally, an SVM classifier is used to implement the
recognition of human actions. Combined with a SVM
classifier, complex action classification recognition is finally
achieved.

4. Two-Dimensional Motion Graphics in
Visual Communication

4.1. Association of Movement Parameters with Two-Dimen-
sional Dynamic Chinese Traditional Elements.
Somatosensory is the perception of body posture, which can
be achieved through a variety of sensors. Sensors can capture
changes in our body posture, including the position of our
head and individual joints, the speed and direction of
movement, and even facial expressions, joint flexion of the
hands, gestures, and so on. Essentially, these changes in body
posture are changes in some data. Changes in the parameters
of the posture data then cause changes in the generated
graphics. When the body posture data obtained from so-
matosensory is used as a “parameter” in 2D dynamic
graphics, changes in body posture can naturally lead to
changes in 2D dynamic graphics. )is creates an interaction
between body sensing and 2D motion graphics, enabling the
association of body sensing with 2D motion graphics. From
a design and user experience perspective, this enables the
user’s behaviour to be involved in the design, resulting in a
better user experience.

As shown in Figure 5, the Cleveland Museum of Art has
developed a somatosensory interaction installation in Ohio,
USA. In this installation, when a person approaches the
screen, the image unfolds to form a Dunhuang fresco
containing traditional Chinese elements. )e Kinect body
sensing device captures the movement signals of the audi-
ence and maps the recognised movement parameters to the
traditional Chinese Figs on the mural. )is interactive ap-
proach allows the audience to control the movement of a
character in the image.

)e motion of the character’s arms, head, body, and legs
in the motion graphics are motion-bound to the viewer’s
captured bone points, allowing the viewer to directly ma-
nipulate the character on-screen. )is type of interaction

Figure 5: Live physical interaction in the Cleveland Museum of
Art.
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allows for a more fluid experience. )e characters in the
Dunhuang murals can be synchronised with the viewer’s
movements. By binding the motion parameters recognised
by the Kinect interaction device to the function variables

used to generate the images in the development environ-
ment, human interaction with the different characters in the
murals can be achieved. )e person can sense the motion
graphics in different screens when they are in different areas.

4.2. Binding of Skeletal Parameters. )e most resource-in-
tensive part of the Kinect hardware is the bone tracking
technology. )e bone coordinate system is the most im-
portant part of the Kinect hardware, accounting for 50% of
the resources of the entire Kinect system. Using this tech-
nology, 2D motion graphics applications based on so-
matosensory human-computer interaction can be
developed. Kinect v2.0 can simultaneously identify the
position information of six people and bind the user’s pose
to the coordinate information of key bone points. Bone data
is also one of the most commonly utilised parts of action
recognition based on Kinect hardware. )e correspondence
between the human skeleton recognised by Kinect and the
character’s bones in the mural is shown in Figure 6.

Each bone point is represented by a Joint. In Kinect v2.0,
5 new bone points have been added, as well as 20 bone points

Human bones recognized 
by Kinect Character bones in murals

Figure 6: Correspondence between human bones recognised by Kinect and characters’ bones in murals.

Table 2: Skeletal key point parameters.

Serial number Bone point
1 SpineMid
2 Neck
3 Head
4 ShoulderLeft
5 ElbowLeft
6 WristLeft
7 HandLeft
8 ShoulderRight
9 ElbowRight
10 WristRight
11 HandRight
12 HipLeft
13 KneeLeft
14 AnkleLeft
15 FootLeft
16 HipRight
17 KneeRight
18 AnkleRight
19 FootRight
20 SpineShoulder
21 HandTipLeft
22 )umbLeft
23 HandTipRight
24 )umbRight
25 SpineBase

Table 3: Experimental hardware configuration.

Configuration Parameters
Processor I9-9900 10 cores 20 threads
Memory 8GB DDR4 3000MHz
Video cards AMD radeon pro WX 8G
Operating systems Windows 10
USB interface USB 3.0

Scientific Programming 5



in the previous version, all of which have corresponding
names in the JointType, as shown in Table 2.

5. Experimental Results and Analysis

5.1. Experimental Setup. In order to implement the inter-
active features offered by the somatosensory device Kinect,
the Kinect Development Kit needs to be installed before
running the device. )e main development software cur-
rently available is the official Microsoft SDK, which manages
the colour images and depth information obtained by the
Kinect camera through the SDK 2.0, sharing it with Unity 3D
and writing language functions to control it. In the devel-
opment environment configuration, the Kinect forWindows
SDK 2.0 tool needs to be applied. )e Kinect v2.0 device has
a resolution of 1980×1080 and an FPS value of 30. )e
experiments were carried out using the official Kinect
wrapper plugin. )e experimental hardware configuration is
shown in Table 3.

During the experiment, when a person walks across the
screen, the Kinect sensor recognises the person’s x-coor-
dinates and maps them to the computer through arithmetic.
)e computer then projects the motion parameters onto the
screen through a projector, causing the two-dimensional
graphics in the mural to change dynamically in translation.
)e experimental environment for somatosensory interac-
tion is shown in Figure 7.

5.2. Visual Communication Effects Based on Somatosensory
Interaction. )e Kinect recognition range is: 0.5–4.5m,
without special circumstances the whole body bone is
generally selected for recognition and the full body sensory
interaction is selected through subsequent program control.
Kinect v2.0 device eliminates the generation of motors and
the capture angle needs to be set manually. )erefore, after
the capture angle has been determined, a horizontal plane

distance conversion is performed for the farthest interaction
distance threshold. )e closest distance threshold is the
horizontal plane distance at which the colour image just fully
accommodates the user’s entire body. In the absence of
special requirements, the threshold can be contracted by
10% to ensure tracking stability. After the interaction range
was set for the real environment, interaction capture de-
tection was performed and the experimental results are
shown in Table 4.

Using the test data recognised by Kinect, the results and
statistical analysis of the nine human movements were
derived as shown in Figures 8 and 9 respectively.

As can be seen in Figures 8 and 9, the visual commu-
nication technology based on somatosensory interaction
achieved 92.1% and 92.2% on the precision and accuracy
metric averages, respectively. )is indicates that the tech-
nology exhibits excellent performance across the nine action
types. Unlike traditional digital video that does not have an
interactive experience, somatosensory interaction associates
a relationship between the person and the digital landscape.
)e viewer can assume that they are in the space depicted in
the mural and canmove freely.)is allows the viewer and the
digital work to break out of the binary spatial relationship

Table 4: Interaction range test.

Distance (m) Number of tests Number of times lost
0.5–0.55 30 4
0.55–1.0 30 0
1.0–1.5 30 0
1.5–2.0 30 0
2.0–2.5 30 0
2.5–3.0 30 0
3.0–3.5 30 0
3.5–4.0 30 0
4.0–4.05 30 0
4.05–4.5 30 0

x

x
y

z

Computer

Kinect

Projector

Figure 7: Experimental environment for somatosensory interaction.
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and achieve a moremulti-dimensional spatial expansion.)e
application of somatosensory interaction to the visualisation
of two-dimensional motion graphics can greatly enrich the
visual representation of traditional Chinese elements.

6. Conclusion

In order to explore the feasibility of somatosensory inter-
action technology in visual communication design, this study
proposes a 2D motion graphics generation method based on
somatosensory interaction parameterisation and uses tradi-
tional Chinese elements as an example for specific applica-
tions in visual communication design. )e latest Kinect v2.0
device is used and an LDA-based feature extraction method
for action parameters is designed in order to improve the
recognition accuracy of the Kinect v2.0 device. Using the
skeletal parameter binding technique between the human
body and the characters in the graphics, the association
between physical interaction action parameters and 2D

dynamic graphics is realised, thus greatly enriching the visual
representation of traditional Chinese elements.
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[21] I. Ayed, A. Jaume-I-Capó, and P. Mart́ınez-Bueso, “Balance
measurement using Microsoft kinect v2: towards remote
evaluation of patient with the functional reach test,” Applied
Sciences, vol. 11, no. 13, pp. 89–97, 2021.

[22] N. . Al, “Measuring the effectiveness of exergames among gen
Z using kinect sensor and EEG,” Turkish Journal of Computer
and Mathematics Education, vol. 12, no. 3, pp. 1502–1508,
2021.

[23] M. Oudah, A. Al-Naji, and J. Chahl, “Elderly care based on
hand gestures using kinect sensor,” Computers, vol. 10, no. 1,
pp. 5–13, 2021.

[24] F. Zhang, T. Y. Wu, J. S. Pan, G. Ding, and Z. Li, “Human
motion recognition based on SVM in VR art media inter-
action environment,” Human-centric Computing and Infor-
mation Sciences, vol. 9, no. 1, pp. 40–48, 2019.

[25] L. Ding, W. Jiang, and Y. Zhou, “BIM-based task-level
planning for robotic brick assembly through image-based 3D
modeling,” Advanced Engineering Informatics, vol. 43, no. 13,
pp. 93–112, 2020.

[26] H. Huang, C. Lin, and D. Cai, “Enhancing the learning effect
of virtual reality 3Dmodeling: a newmodel of learner’s design
collaboration and a comparison of its field system usability,”
Universal Access in the Information Society, vol. 20, no. 3,
pp. 429–440, 2020.

[27] K Li, T. Wu, and Q. Liu, “Human contour extraction based on
depth map and improved Canny algorithm,” Computer
Technology and Development, vol. 31, no. 5, pp. 6–12, 2021.

[28] W. Zhang, D. Kong, S. Wang, and Z. Wang, “3D human pose
estimation from range images with depth difference and
geodesic distance,” Journal of Visual Communication and
Image Representation, vol. 59, no. 2, pp. 272–282, 2019.

[29] K. Zou, L Ma, Rong, and C. Xu, “Image-based non-contact
measurement method of human body parameters,” Computer
Engineering and Design, vol. 38, no. 2, pp. 6–11, 2017.

8 Scientific Programming


