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Music curriculum fusion and super-resolution reconstruction based on musical elements have gradually attracted the attention of
researchers.+e traditional music element fusion and reconstruction algorithm is based on the fusion and reconstruction of all the
pixel information of the source music element, which has the problem of high time and space complexity. Based on the advanced
iterative reconstruction theory, this paper uses the measurement matrix to measure the dimensionality of the music signal,
compresses the music element data while acquiring the music elements, reduces the sampling frequency, reduces the sampling
amount of the music element data, and greatly reduces the data. It solves the problem of spatial resolution reduction caused by
degradation and the problem of music element feature extraction, classification, and identification and can obtain more music
element features and detailed parameters. Aiming at the back-projection algorithm of musical symbol filtering, the advanced
iterative reconstruction algorithm of musical symbol filtering of a triangular line array is simulated.+e experimental results show
that the feasibility analysis factor of the scheme reaches 0.917, and the running time of the reconstruction algorithm is reduced to
0.131 s, which promotes a large amount of data in music curriculum element fusion and super-resolution reconstruction.

1. Introduction

In recent years, with the development of internet technology,
intelligent identification technology, wireless network, micro-
sensor, and music signal recording equipment, product or
system design based on music signal has moved from tradi-
tional scientific research to people’s daily life and has a broad
market [1]. +e advanced iterative reconstruction theory
proves that a signal that can be sparsely represented on a certain
transformation basis can be measured by dimensionality re-
duction through the measurement matrix to obtain a small
amount of data, and a nonlinear optimization algorithm can be
used to effectively reconstruct the dimensionality-reduced
measurement data to restore the original signal. As a new
sampling coding theory, advanced iterative reconstruction has
received great attention and extensive research in academia.
+e advanced iterative reconstruction theory breaks through
the requirements of the traditional Nyquist sampling theorem
and samples the signal at a much lower sampling rate than
Nyquist. +e amount of sampled data of the signal greatly
reduces the requirements for data transmission, processing,

and storage and has been widely used in music element
processing, radar imaging, satellite remote sensing, informa-
tion engineering, and other fields [2–6].

In order to further improve the reconstruction speed of
SART, the CUDA development environment launched by
NVIDIA is used in this paper. It is relatively convenient to
convert the serial running program into a parallel program
running on the GPU and can simply improve the perfor-
mance of the hardware, which accelerates parallel com-
puting without modifying code for new hardware. It is
foreseeable that the intelligent product design based on
music signals has important application value and practical
significance [7–9]. +e speed of the SART algorithm based
on CUDA acceleration in this paper is 20 to 30 times faster
than that of the serial S-household algorithm running on the
CPU, and the quality of the music elements is basically the
same as the original image so that the SART reconstruction
has the same performance as the traditional analytical FDK
algorithm. Based on the K-singular value decomposition
algorithm, the improved algorithm constructs multicom-
ponent dictionaries such as smoothness, edge contour, and
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texture structure according to the geometric characteristics
of music elements and then classifies and updates the
multicomponent dictionaries one by one to achieve sparse
representations of images. +e music element sparse
representation algorithm based on improved K-SVD
breaks through the limitation of standard orthonormal
basis. Different standard orthonormal bases are used for
different characteristic regions of music elements, and the
standard orthonormal bases of different regions are
combined to form a frame, and the full bases are used to
represent music elements. Compared with the SVD al-
gorithm, the dictionary constructed by the improved al-
gorithm is more compact, and the obtained sparse factor is
smaller, which has a better effect on the sparse repre-
sentation of multifeature music elements [10–13].

+is paper studies the music element fusion and super-
resolution reconstruction algorithm based on advanced
iterative reconstruction theory, applies the realized algo-
rithm to remote sensing music element fusion and super-
resolution reconstruction, and achieves good application
results. +e paper firstly analyzes and researches the main
theoretical achievements of advanced iterative recon-
struction, proposes a sparse representation method of
music elements based on the improved K-SVD algorithm,
and proposes a music element measurement and recon-
struction algorithm based on the improved Hadamard
matrix. A music element fusion method based on advanced
iterative reconstruction theory, a music element fusion
algorithm based on wavelet transform and Fourier random
measurement matrix, and an improved music element
fusion algorithm based on SVD and Hadamard measure-
ment matrix are expounded; finally, a single-frame music
element super-resolution reconstruction algorithm based
on advanced iterative reconstruction and learning dictio-
nary is proposed. +e improved Hadamard measurement
matrix has fewer independent random variables, and the
construction of the measurement matrix can be realized by
fast cyclic shift transformation. At the same time, the
constructed measurement matrix has better sparsity and
avoids the existence of a quadratic matrix in the mea-
surement matrix. In the reconstruction algorithm OMP,
the improved and optimized Hadamard measurement
matrix is used to obtain a better reconstruction effect. +e
advanced iterative reconstruction theory proves that a
signal that can be sparsely represented on a certain
transformation basis can be measured by dimensionality
reduction through the measurement matrix to obtain a
small amount of data, and a nonlinear optimization al-
gorithm can be used to effectively reconstruct the di-
mensionality-reduced measurement data to restore the
original signal. +e advanced iterative reconstruction
theory breaks through the requirements of the traditional
Nyquist sampling theorem and samples the signal at a
much lower sampling rate than Nyquist. +e amount of
sampled data of the signal greatly reduces the requirements
for data transmission, processing, and storage and has been
widely used in music element processing, radar imaging,
satellite remote sensing, information engineering, and
other fields. +e reconstruction algorithm has achieved

satisfactory experimental results in terms of PSNR value,
reconstruction iteration times, and reconstruction algo-
rithm execution time.

2. Related Work

+e reconstruction-based super-resolution algorithm mainly
includes four parts: music element preprocessing (correction,
normalization, etc.), music element registration, establishment
of degradation model, and reconstruction. +e representative
algorithms are algebraic interpolation method, convex set
projection method, iterative back-projection method, blind
super-resolution reconstruction algorithm, regularization al-
gorithm, and so on. +e super-resolution reconstruction al-
gorithm based on the integration of music courses obtains
prior knowledge through training samples, establishes the
corresponding relationship between low- and high-resolution
music elements, supplements low-resolution music elements,
and obtains higher-resolution music elements. +e repre-
sentative algorithms include maximum a posterior probability
(MAP), local indirect maximum posterior probability method,
global indirect maximum posterior probability method, and
hybrid MAP-POCS algorithm [14–16].

Stanković [17] introduced and compared the collaborative
filtering algorithm and the content similarity algorithm and
combined the two algorithms to propose a content similarity
recommendation algorithmbased on user clustering.+e long-
and short-term interest model is used to modify the midvector
weights of the algorithm.When the user sparseness is relatively
low, the user similarity is the dominant factor, which is used to
predict the potential characteristics of the user. When the user
data set is relatively dense, the content similarity occupies a
greater weight, which can ensure that the personal charac-
teristics are preserved; this algorithm fully takes into account
the sparse data problem when new users join the system and
gives full play to the advantages of each algorithm. Regardless
of whether the thresholdmethod is used or not, the error of the
reconstruction results decreases with the increase of M. +e
above variation law shows that the more components of the
observation vector, that is, the more the number of observa-
tions, the greater the accuracy of reconstruction.+is is because
the existing signal that gets to 0 contains more information.
+e easier it is to reconstruct the target signal. Gómez et al. [18]
believe that whenN� 200 and whenM is constant, the error of
the reconstruction result increases with the increase of L, re-
gardless of whether the threshold method is combined or not.
+is is because the increase of sparse points will make the
location difficult to judge, and then the reconstruction will be
more difficult. In a previous study, Ji [19] found an expression
to determine the size of the threshold, which is a function that
decays as the independent variable increases. When the in-
dependent variable increases by one value with the program
loop, we can get a corresponding specific threshold number.
+e reconstructed error can be further obtained according to
the algorithm.+e threshold value and the error both decrease
with the increase of the independent variable and decrease
nonlinearly until the error reaches a specific threshold value. At
this time, the corresponding threshold value is the threshold
value determined by the adaptive method.
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Many super-resolution reconstruction algorithms pro-
posed so far have solved the problems in practical applications
to a certain extent, but these methods still have major defects
and deficiencies. Some methods, such as interpolation
methods, are very limited in scope. In addition, somemethods,
such as convex set projection method, iterative back-projec-
tion method, statistical restoration method, and so on, al-
though they are applicable to a wide range, have a large
amount of computation, which seriously limits the use of these
methods, especially in some computing speed requirements.
In a word, there is still a lot of research work to be done in
terms of super-resolution reconstruction algorithms. Recon-
struction based on multiframe music elements refers to re-
covering or generating a frame of high-resolution music
elements from a slightly different sequence of low-resolution
music elements, also known as super-resolution (SR) tech-
nology, which is a single-frame music element. Element-wise
interpolation is not possible. Shi et al. [20] found that there are
many ways to obtain low-resolution music elements in the
sequence, such as using a half-pixel shift, a little camera
displacement, lens plus mask, and so on. +e latter is the
development of the former. Since the provided sequencemusic
elements are not the same, they have mutual movement or
displacement. +e information provided by these music ele-
ments is complementary, so the obtained music elements can
be used to restore super-resolution music elements. Methods
with information complementarity have more information
than previous methods, so its recovery effect is also much
better than the first method. Alkadhi and Euler [21] analyzed
that the collaborative filtering algorithm is a good algorithm,
but it also has the problems of cold start and data sparseness.
In this case, the accuracy will be relatively low. In order to solve
such problems, this paper proposes a concept that integrates
the user’s long- and short-term interest matrix, which com-
bines the user’s behavior data and item attributes to establish a
user’s topic interest information model, generates a user-topic
interest matrix, and calculates the user’s similarity on different
topics. +ings are clustered together, and people are divided
into groups. +rough this step, the initial recommendation
information pool can be obtained. In recommender systems,
there are two criteria for accuracy evaluation: one is classifi-
cation accuracy, and the other is prediction accuracy [22–25].
+e classification accuracy compares the probability that the
item recommended by the system is the same as the item that
the user actually likes. +e measurement standards include
precision, recall, and so on. +e prediction accuracy is mainly
to compare the degree of error between the predicted score of
the item recommended by the recommendation system and
the user’s actual score for the item. +e indicators to measure
the error include mean absolute error (MAE), root mean
square error (RMSE), and so on.

3. Advanced Iterative Reconstruction
Algorithm Integration

3.1. Advanced Iterative Gradient Projection. +e advanced
iterative gradient uses the Gaussian operator to perform the
convolution operation with the original music elements,
performs downsampling to obtain the Gaussian pyramid

music elements, then filters the music elements of each layer
of the Gaussian pyramid, and uses the expansion operator to
downsample the original two-sampled elements. Small-sized
music elements are interpolated and amplified to obtain
Laplace pyramidmusic elements. According to the set fusion
strategy, each layer of music elements is fused. Finally, the
inverse Laplace transform is performed on the fused system
number to get reconstructed musical elements. If the optical
flow field is smooth enough, the motion parameters can be
estimated accurately through the noisy downsampled mu-
sical elements. Commonly used motion estimation methods
are not robust to noise, downscaling, and downsampling.

x(1, 2, 3, . . . , t) ∈ X(N + 1),

y(1, 2, 3, . . . , t) ∈ T(N + 1),

z(1, 2, 3, . . . , t) ∈ Z(N + 1).

⎧⎪⎪⎨

⎪⎪⎩
(1)

+e core problem of product design and user experience
evaluation based on music signals is to find the relationship
pattern between users’ emotions and changes in music sig-
nals, that is, how to obtain emotion-related feature sets from
the original music signals and perform data mining based on
these features. We establish corresponding music mental
models for product design or user experience evaluation to
contrast and analyze the existing models of product design
and user experience, introduce the emotional computing
method based on music signal, and propose a closed-loop
model of product design and user experience based on music
signal, which lays a theoretical foundation for future product
design, user experience, and service based on themusic signal.
+e model should have rich knowledge expression ability,
generalization ability, and reasoning ability.

Argmin g(x)∪g(t)􏼈 􏼉 � ∅,

max g(x)∩g(t)􏼈 􏼉 � C.
(2)

Each 10 s music signal is decomposed by six layers of Db5.
First, the denoised raw data is processed into two separate
signals through high pass and low pass; then the detail co-
efficients are obtained through the high pass signal; and the
approximation coefficients are obtained through the low pass
signal. +e decomposition of each layer is accompanied by a
halving of the sample rate. +e filtered back-projection al-
gorithm is used to reconstruct the projection data, and the
reconstruction formulas and algorithm implementation steps
of the parallel beam, fan beam, and triangular linear array
filtered back-projection algorithms are deduced; the influence
of the number of probes and the projection angle on the
imaging quality is analyzed. +e iterative reconstruction al-
gorithm is used to reconstruct the music elements, and the
ARTalgorithm, the improved SARTalgorithm, and the SIRT
algorithm are introduced, and the algorithm steps are given,
and the efficiency and imaging quality of the different al-
gorithms are analyzed by theoretical calculation.

3.2. Algorithm Overcomplete Sparse Representation.
Algorithmic imaging requires projection from all angles and
all positions. Due to cost considerations, it is not possible to
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place transmit or receive transducers in all locations outside
the structure under test. +erefore, it is necessary to move
the transducer through the music device to realize the
omnidirectional projection process, such as the axial pre-
cession, the translation of the algorithm plane, and the 360°
rotation of the algorithm plane. Controller mainly refers to
the front-end controller. After receiving the command, it
controls the transceiver selection and timing of the trans-
ducer, drives the music device to the designated position,
and performs parameter extraction. Here, FPGA, which has
superiority in sequential logic control, is used as the con-
troller. It can be seen that in order to reconstruct high-
resolution images from low-resolution music elements, we
must first determine the form of the degenerate matrix and
the system noise E and then select an appropriate recon-
struction algorithm to obtain the optimal high-resolution
music elements. +e music element super-resolution re-
construction is decomposed into three modules with in-
dependent functions.

Θ(t, t − 1, t + 1) ×[Θ(t, t − 1, t + 1)]
− 1

� 1 − f(x) 2 − f(x) ... y − f(x)􏼂 􏼃.
(3)

+e algorithm uses the spectral dealiasing method to
achieve super-resolution reconstruction of music elements
and expounds the algorithm formula for reconstructing
high-resolution music elements from a series of under-
sampled music element data. Later, on the basis of this
theory, researchers proposed a weighted iterative method
and a regularized iterative method for spectral antialiasing to
perform high-resolution reconstruction of degraded mul-
tiframe undersampled music elements mixed with noise. At
present, the frequency domain-based super-resolution re-
construction algorithm is still limited to global translational
motion, and the established motion model and degradation
model also have some shortcomings. +e algorithm relies on
the linear space invariant degradation model, and the ob-
tained spatial domain prior knowledge is limited. In the
actual engineering realization process of Fourier recon-
struction, the accuracy of the interpolation conversion be-
tween the Cartesian coordinate system and the polar
coordinate in Table 1 is the key to the reconstruction effect. If
an inaccurate interpolation method is used, the existence of
artifacts will limit the application of the Fourier recon-
struction algorithm.

Music elements are equally spaced and evenly distributed
on the ring surrounding the structure to be tested, and each
music element can be used as both a transmittingmusic element
and a receiving music element. At the same time, only one
music element is in the transmitting state, other music elements
are in the receiving state, and eachmusic element is transmitted
in sequence. +is probe configuration does not require musical
rotation and can achieve omnidirectional scanning within the
algorithm by electronic scanning but also relies on axial pre-
cession to reach other algorithms for scanning.+e configurable
parameters of this scheme are the radius of the ring and the
number of musical elements on the ring. +erefore, it is the-
oretically and conceptually impossible to recover information
beyond the cutoff frequency.

h(min .(s − 1, x), min .(x), min .(s), min .(x − s))
t,x⟶ 1,1

⟶ s, s − 1, s − 2, . . . , 1|s<x − 1{ }.

(4)

+e above conclusion is equivalent to treating the im-
aging system as a Fourier filter, which restricts the solution
of v(u). But, in fact, there are many methods to estimate
F(S), and these methods do not have the properties of a
Fourier filter, and these methods can successfully achieve the
recovery of information beyond the cutoff frequency. High-
resolution information reconstruction can be achieved,
which is mainly based on analytical continuation theory and
information superposition theory. +e property of an an-
alytic function is that if it is known over a finite interval, it is
known everywhere. Reconstructing the whole of a function
according to the value of a given analytic function in a
certain interval is called analytic continuation.

When the simulated data is used for testing, since the
exact parameters of the simulated data in Figure 1 are
known, the reconstructed data can be compared with the
original data in an accurate numerical value to make an
objective evaluation of the reconstruction quality. Com-
monly used analog data models such as the standard head
model consist of many ellipses of varying sizes and densities.
+e four measurements above highlight different aspects of
the quality of musical elements. +e musical element sim-
ilarity coefficient E reflects the similarity between the
reconstructed image and the simulated musical elements.
+e larger E is, the more similar the two musical elements
are, and when E is 1, the twomusical elements are exactly the
same. +e normalized RMS distance measurement value d is
more sensitive to the error of the local situation, and if there
is a large deviation in individual pixels, it will lead to a large
d. +e normalized average absolute distance measurement
value r is more sensitive to reflect the small errors of most
points. +e signal-to-noise ratio is a measure of the ratio of
the music element signal to the noise signal, often expressed
in decibels.

3.3. Numerical Super-Resolution Reconstruction. In order to
obtain high-resolution musical elements, more than 2,000
independent musical elements must be arranged on the ring
sensor, which increases the difficulty of data processing and
the complexity of system control. In contrast, the linear array
has been widely used in the field of ultrasound imaging; its
technology is mature; the processing is simple; the cost is
low; and it is easy to integrate into the ultrasound tomog-
raphy system. However, due to the limitation of the
transmitting aperture and the limited receiving angle of the
ultrasonic signal by the linear array, the tomographic

Table 1: Algorithm spectral antialiasing data.

Index case 0.1 0.2 0.3 0.4
Row frequency 19.622 47.743 21.084 10.942
Sequential similarity 19.645 47.771 21.070 48.931
Column frequency 19.253 47.297 21.298 9.641
Spatial frequency 18.270 46.107 21.869 13.950
Cross-correlation 52.648 32.078 28.676 18.311
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reconstruction of the cross-sectional image of the structure
cannot be completed in all directions. +e parallel beam
filtered back-projection algorithm needs the projection data
of all parallel beams at all different distances from the
symmetry center at all angles from 0 to 180, that is, the
projection data of all rays passing through the area to be
measured. Although it is impossible to collect projection ray
data at every angle and every distance through discretization,
the quality of musical elements can be guaranteed by nar-
rowing the sampling interval.

x(p(t, x − 1))

x(p(t))
+

y(p(t, x − 1))

y(p(t))
+

z(p(t, x − 1))

z(p(t))
� 0. (5)

+erefore, this method has high requirements for the
completeness of the collected data. At the same time, because
its core algorithm is an integral process, the algorithm
complexity is not high, and the running speed is relatively fast.
+e multiresolution analysis method is to decompose the
original music elements, obtain the detailed information on
the music elements at different resolutions, and reflect the
local characteristics and physical structure of the music ele-
ments through the detailed information of different resolu-
tions. +e multiresolution analysis algorithm decomposes the
original music elements into music element signals of dif-
ferent resolutions, performs fusion processing at different
resolutions, and finally inversely transforms and reconstructs
the fusion result music elements. +e fusion rule is the focus
of the current multiscale analysis algorithm. +ere are two
types of fusion rules: pixel-based and region-based.+e pixel-
based fusion rule determines the value according to the
transformation coefficient of the corresponding position. +e
region-based fusion rule mainly changes the position
according to the original music element.

W (1 − x)(1 − y)􏼈 􏼉 � 1,

W margin − margout􏼈 􏼉 � 0.
􏼨 (6)

+e corresponding transform is determined by performing
arithmetic operations. An independent variable increases with
the number of iterations, and both the threshold size and the
error of the reconstructed signal are nonlinearly decreasing
functions. When the error of the reconstructed signal reaches a
certain threshold value, the corresponding threshold value is
the required threshold value. +e advantage is that the cal-
culation time is reduced and the efficiency of the algorithm is
improved. Experiments show that the threshold obtained by
the adaptive method is approximately equal to the empirical
threshold, which verifies the IF accuracy of the algorithm.

+e symmetrical diameter of these parallel rays needs to be
found, onto which the musical elements on one side are
projected. Since the central angle of each musical element in
Figure 2 can be obtained by calculation, the position of this
musical element on this diameter can also be easily obtained.
+en we divide the length of the diameter into 185 equal parts
and use the cubic spline interpolation method to obtain new
projection data according to the previous 128 projection data.
When the number of projection angles is 30, the quality of
music elements is extremely poor; the resolution is extremely
low; and the tissues are completely indistinguishable; when the
number of projection angles is 90, the quality ofmusic elements
is significantly higher than when the number of projection
angles is 30. However, the three adjacent structures below are
turbid and indistinguishable, and the entire music element has
serious stripe artifacts; when the number of projection angles is
180, the music element is better recognizable. A clearer dis-
tinction is obtained; there are only tiny artifacts in the entire
music element; and the overall imaging effect is better.

3.4. Algorithm Advanced Iterative Reconstruction. +e al-
gorithm will generate errors in the process of use, such as the
inherent error of the algorithm itself, the grid processing of
the imaging area, the accuracy of the data filling operation,
the error of the interpolation operation, and so on. Some of
the errors can be reduced by optimizing the system structure
and so on. For the annular array, in order to improve the
system accuracy, the methods that can be used include
increasing the number of probes and increasing the imaging
angle; for the triangular array, because the imaging angle is
fixed, the method to improve the system accuracy is mainly
to increase the number of probes.+is paper then establishes
the observation model of super-resolution music element
imaging; introduces the principle, classification, and specific
methods of music element registration in detail; and con-
ducts image registration and Fourier music based on music
element grayscale on the MATLAB 6.1 platform.

􏽙 z s, t
∗

( 􏼁 (1 − t)(1 + t){ } −􏽙 z s
∗
, t( 􏼁 (1 − s)(1 + s){ } � 0.

(7)

Experiments were carried out on the element registra-
tion method, and the advantages and disadvantages of the
two methods were compared and analyzed. +ree
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Figure 1: +e distribution of the music curriculum integration
simulation data test.
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commonly used interpolation methods (nearest-neighbor
interpolation, linear interpolation, and cubic interpolation)
are discussed, and the reconstruction results of their cor-
responding MATLAB simulations are compared, and it is
concluded that the quality of the reconstruction results
obtained by the cubic interpolationmethod is better than the
other two methods. +e idea of a music element fusion
algorithm based on independent component analysis (ICA)
is to transform the original music elements by training the
ICA base to obtain the transformed coefficients and then
adopt the fusion rules to fuse the transformed coefficients.
+e coefficients are inversely transformed to reconstruct the
fusion result musical elements. +e description and
implementation steps of the music element fusion algorithm
based on the ICA method are shown in the algorithm.

〈
∩
i+j

i�2,j�2
max(i − 2, j − 2) + max(i, j) � 0,

∩
i+j

i�1,j�1
max(i − 1, j − 1) + max(i, j) � 1.

(8)

In a parallel projection with an angle of it, the musical
element numbers between the musical elements at both ends
of the projection path move closer to the middle from both
sides, reducing two musical elements each time, and the
obtained rays are all parallel to each other. +e norm cannot

maintain the sparsity of the original signal, and the sparsity
of the reconstructed signal cannot reach the sparsity of the
true noise-free signal, so the coefficient amplitude of the
reconstructed signal cannot reach the coefficient amplitude
of the original signal.

From the general view of Figure 3, the calculation ef-
ficiency of the projection matrix based on ray drive is much
higher. And when there are more voxels in the recon-
struction region, this advantage is more obvious. +erefore,
the ray-driven SART algorithm is more suitable for the
subsequent higher-resolution reconstruction scenes.
+erefore, in the following experiments, the SART recon-
struction experiments are carried out with the projection
matrix calculated by the ray-driven calculation. After the
projection matrix is calculated, the reconstruction can be
performed according to the projection matrix of each
projection angle. +e flow chart of one iteration of cone-
beam SART reconstruction is shown in the text. After one
iteration is completed, the next iteration is performed with
the result of one iteration as the initial value, until the
number of iterations reaches the preset value. +e steps of
the SIRT algorithm are roughly similar to the SART algo-
rithm, except that the calculation of the correction value in
the SARTalgorithm involves the multiplication and division
of some constant terms. In this algorithm, the correction
value of each pixel is the accumulation of the correction

musical element
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cubic spline

symmetrical diameter 

three adjacent structures belowprojection angles

projection angles

 interpolation 

X X X

+ + +
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the quality of
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Figure 2: Schematic diagram of inverse transformation of music curriculum elements.
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values of all rays passing through the pixel point; some
random errors can be averaged; and the influence of noise in
the measurement data on the final solution can be effectively
avoided based on the least-squares method.

It can be seen from Table 2 that the reconstruction speed
is very slow, and as the resolution of the reconstruction area
and the number of projected rays increase, the recon-
struction time increases exponentially and the memory
space required for the reconstruction also increases greatly.
In practical applications, when the resolution of the pro-
jection equipment is high or the reconstruction area requires
a high resolution, iterative reconstruction algorithms such as
SART will not be able to meet the needs of practical engi-
neering applications. Since the reconstructed object is
usually located in the area with the origin as the center and
the annular radius of the ultrasound probe as the radius, this
area is usually defined as the imaging area, and the space
outside the circle is discarded. +e algorithm for solving the
coefficient matrix is as follows: first, we convert the coor-
dinates of the transmitted and received musical elements
into the coordinates of the square area to be measured.
According to the different directions of the ray, it is divided
into four cases (relative to the coordinate system) in the
simulation.+e four cases are (1) the ray is horizontal; (2) the
ray is perpendicular to the x-axis; (3) the slope is greater
than 0; and (4) the slope is less than 0.

4. Music Curriculum Integration and
ReconstructionModelConstructionBasedon
Advanced Iterative
Reconstruction Algorithm

4.1. Course Iterative Measurement Matrix Optimization.
First, a Gaussian random matrix with dimension
M×N� 100× 256 is generated as a measurement matrix,
and then the sparsity seven is continuously changed to
randomly generate a sparse signal of length N� 256. +e

number of iterations is the same as the sparsity k. Each
sparsity degree repeats the experiment 1,000 times under k.
It can be seen that the reason why these four algorithms
show different characteristics and performance is because of
the different methods of selecting atoms and the conditions
for stopping iteration. +is section takes the previous ex-
periments as the research basis and analyzes and compares
the reconstruction performance of several algorithms from
the four aspects of reconstruction power, relative error,
reconstruction time and peak signal-to-noise ratio (PSNR),
and further draws the differences between them.

Tij 1

−1 −Tij

⎡⎣ ⎤⎦ ×
Yij log a

−log a −Yij

⎡⎣ ⎤⎦ −
e(i, j) 0

0 e(i, j)
􏼢 􏼣 � 0. (9)

In practical engineering applications, the sparsity k of the
signal is often not known in advance, and k needs to be
estimated, which greatly restricts the practical application of
these algorithms. If the estimation of k is too small, it will
reduce the reconstruction accuracy of the algorithm and
even make it difficult for the algorithm to converge; if the
estimation of k is too large, the reconstruction quality and
robustness of the algorithm will be poor and even lead to the
reconstructed signal distortion occurs. Based on this, in the
following chapters, this paper focuses on the algorithm that
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Figure 3: Matrix calculation efficiency distribution of advanced iterative reconstruction algorithm.

Table 2: Example analysis of measurement data.

Complex
ratio 1

Complex
ratio 2

Complex
ratio 3

Information degree 2.77 2.87 2.97
Relative error 1.84 1.9 1.96
Maximum
correlation 0.91 0.93 0.95

Balance error 0.02 0.04 0.06
Average correlation 0.95 1.01 1.07
Minimum
correlation 1.88 1.98 2.08

Confidence error 2.81 2.95 3.09
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can reconstruct blind sparse (i.e., unknown sparsity) signals
with high probability. Since the music signal is an unstable
random signal and the signal is weak, it is easy to be in-
terfered by the signals during the acquisition process, as well
as the noise of the external power supply, the noise of the
instrument itself, space radio frequency interference, and
other noises.

􏽐 Y⌊i|i � 0, 1, 2, 3, j − 1, j⌋i

􏽐
N
i�1 Y · Xi

−
􏽐 Y[j|j � 0, 1, 2, 3, i − 1, i]j

􏽐
N
j�1 Y/Xj

� 0.

(10)

+erefore, the elimination of noise is crucial. Discrete
wavelet transform (DWT) is an effective time-frequency
analysis method, which can effectively extract the char-
acteristics of signals. Because discrete wavelet transform
(DWT) has a good performance in discrete music signal
analysis, wavelet transform is generally used to preprocess
the collected music signal in the research to remove noise
and baseline drift. +e first-order difference can reflect the
change trend and speed of the signal, and it is used to
detect the local extreme point of the signal, and the
second-order difference can detect the local inflection
point of the signal. Table 3 includes features such as mean,
median, standard deviation, minimum, maximum, dif-
ference between minimum and maximum, ratio of min-
imum, and ratio of maximum.

+e discrete wavelet transform can decompose the signal
into different scales through low- and high-pass filtering.
After high-pass filtering, the detail coefficient D is obtained,
and after low-pass filtering, the approximate coefficient A is
obtained. +e consistent Daubechies 5 wavelet is used as the
basis function to decompose the denoised EMG signal layer
by layer. Among them, the approximate coefficient A can
continue to be subjected to high- and low-pass filtering and
then decomposed to the next layer to get a more original
feature combination including statistics such as median,
mean, standard deviation, range, and locally maximized
ratios. In the frequency domain, the spectral power of the
respiratory signal is in the range of 0–0.1 Hz, 0.1–0.2 Hz,
0.2–0.3 Hz, and 0–0.4 Hz. +e energy ratio includes the
energy ratio of the low frequency band (0.05–0.25 Hz) and
the energy ratio of the high frequency band (0.25–5 Hz).

4.2. Evaluation Criteria for Advanced Iterative Algorithms.
Feature selection is an important dimension reduction
technique in the evaluation of algorithm pattern recog-
nition. It is used for data vector spaces or high-dimensional
data sets containing redundant features. On the premise of
not affecting the calculation effect, the feature set is defined.
It eliminates irrelevant and redundant information, ef-
fectively reduces the data dimension of original features,
reduces computational cost and storage space, and speeds
up the data mining process. In addition, the performance of
the post-classification learning algorithm is improved, the
accuracy of emotion recognition is improved, and the
performance of the model is improved. It also borrows a
back-off screening strategy, that is, each cycle selects k (the

sparsity of the signal) atoms with the greatest correlation
with the signal residual into the atomic set, ensuring that
the number of atoms in the candidate set does not exceed 2
at most.

lim􏽘
n

zij(m, n) · zij(i + m, j + n) � 1,

lim􏽘
m

􏽘
n

zij(m, n) � 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(11)

At the same time, some unsuitable atoms are eliminated.
After the iteration is completed, seven optimal atoms are
finally selected to solve the best approximate solution of the
original signal.+is idea of back-screening atoms can greatly
reduce the error caused by the ROMP algorithm processing
multiple atoms in one iteration by selecting and eliminating
atoms multiple times. It represents the high-resolution full-
color music element; m, n are the high and low frequency
components of low-resolutionmultispectral music elements,
respectively; and R, G, and screen represent the R, G, and B
components of the fused music element, respectively. After
fusion, in order to be consistent with the grayscale of the
multispectral music elements, it is necessary to do grayscale
stretching of the R, G, and B component music elements.
+is algorithm is suitable for information fusion of music
elements collected by different sensors. Brovey transform
can only process true color or pseudocolor music elements
in three bands and is not suitable for the fusion of pan-
chromatic music elements and multispectral music elements
with inconsistent spectral ranges.

I x1, x2, x3( 􏼁, J x1, x2, x3( 􏼁, K x1, x2, x3( 􏼁􏼂 􏼃 × P

�〈
max(i, j, k|i + j + k< 1),

min(1, x).

(12)

According to the specific personalized music recom-
mendation scenarios, a relatively complete and objective
music emotion database is established, and music signals
are collected, and then the conventional features and
nonlinear features are extracted from these music signals,
and the music signal feature set is obtained. +e optimal
feature set is established through feature selection and
feature dimensionality reduction, and the pattern recog-
nition of various machine learning algorithms is carried out
on the characteristics of music objects and music signals. A
music emotion cognition model based on the NuSVR al-
gorithm is proposed and applied to a personalized music
emotion recommendation system. It provides a case ref-
erence for researchers designing products or systems based
on music signals.

+e improved algorithm shown in Figure 4 inherits the
advantages of the SAMP algorithm, organically combines
the optimized regularization method with the backtracking
idea, optimizes the atomic matching strategy, and further
improves the accuracy of atomic selection and self-adaptive,
thereby reducing the reconstruction error and completing
the effective recovery of blind sparse signals. +e simulation
results show that the improved algorithm is better than the
original algorithm in terms of reconstruction success rate
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and reconstruction quality, and the operation time is also
slightly lower than the original algorithm due to the regu-
larization process. +e first problem is that R� IV cannot be
assumed. In fact, in most applications, it is redundant IV.
Sometimes, it is possible to force R� IV by using an in-
terpolation algorithm on the projected musical elements.
+e least squares method can be used to solve linear
equations when brother> IV, but the computational com-
plexity is greater when IV is relatively large. In a more
general case, the equation Wz� p has many sets of solutions
when IV>R. So the goal of the ART reconstruction

algorithm is to obtain the closest estimate of the recon-
structed area by projecting musical elements.

4.3. Music Curriculum Integration Factor Analysis. +e joint
iteration method (SIRT) is a parallel computing form of the
ART algorithm. In this method, all the pixels of a certain
projection p are calculated first, and then the voxels of the
entire reconstruction area are updated. Before the updated
value is added to the voxel value, it needs to be weighted and
normalized with the weighted value. +erefore, the SIRT

Table 3: Description of the advanced iterative reconstruction algorithm.

Code number Reconstruction algorithm description Content text
1 Jsin θ dimension Case “+”:cout<< x<<“+”<<y<<“�”<<x+ y<< endl
2 +e respiration rate Q(on) For(int i� 1; i≤ 10; i++)
3 +e elimination of t − 1 Case “−”:cout<< x<<“−”<<y<<“�”<<x-y<< endl
4 3πd(I, J) includes features For(float x1� 0; x1≤1.0 + 0.1/2; x1� x1 + 0.1)
5 Respiration amplitude Gau(ss) Case “∗ ”:cout<< x<<“∗ ”<<y<<“�”<<x ∗ y<< endl
6 Discrete wavelet q(i) Cout<<“sizeof(st)�”<<sizeof(st)<<endl
7 Discrete music signal Cout<<“sizeof(student1)�”<<sizeof(student1)<<endl
8 +e local inflection X(on) If (n≥ 0&&; n≤ 100 &&n%2��0)
9 It is used to t2 Cout<<“n�”<<n<< endl
10 Such as mean max(t, t − 1) Cout<<“sum�”<<sum<< endl
11 Matrix(on) can continue Cout<<“+e ”<<n<<“ is out of range!”<<endl
12 Ratio of minimum a2 + b2 Cout<<“t”<<i<<“∗ ”<<j<<“�”<<i∗ j
13 +e approximate Z′(q(i)) L2: cout<<“sum�”<<sum<< endl
14 Coefficient min(t, t − 1) Cout<<a[0]<<a [1]<<a [2]<<a [3]<<a [4]<<endl
15 Difference between minimum 3πd Cout<<“sizeof(int)�”<<sizeof(int)<<endl
16 High-pass filtering Cout<<“sizeof(float)�”<<sizeof(float)<<endl
17 +e signal into Matrix(ide) Cout<<“sizeof(double)�”<<sizeof(double)<<endl
18 +e consistent Z(i) Cout<<“sizeof(char)�”<<sizeof(char)<<endl
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Figure 4: Design distribution of music signal course system.
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algorithm converges slowly and is not widely used.+e SIRT
algorithm is proposed to make the reconstruction insensitive
to measurement errors. As mentioned in the previous
section, the ray sum (or ray projection) of only one ray is
used in each iteration of the AI staring algorithm. If this ray
projection contains errors, then the resulting solution also
introduces errors. In the method based on compressive
sensing, sampling and compression are carried out at the
same time, and the original signal x is directly nonlinearly
projected to obtain M, and M contains enough recon-
struction information.

〈cos Zj(i, j) + Zj(i − 1, j − 1)􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌 � 〈cos(i + j)|,

〈sin Zj(i, j) + Zj(i − 1, j − 1)􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌 � 〈sin(i + j)|.

⎧⎪⎨

⎪⎩
(13)

At present, the super-resolution reconstruction
technology of music elements is divided into two cate-
gories based on the spatial domain and the frequency
domain. +e frequency domain-based super-resolution
reconstruction algorithm is mainly based on the shift
characteristics of the Fourier transform. +e idea of the
frequency-domain music element super-resolution re-
construction algorithm is to perform discrete Fourier
DFT transform on the registered undersampled music
elements, according to the spectral aliasing relationship
between DFT and CFT, the relationship between the
undersampled music element and the super-resolution
reconstructed music element is solved, and the super-
resolution music element is reconstructed according to
the registration parameters and the existing under-
sampled music element signal data. Similarly, in order to
describe the reconstruction performance of the CoSaMP
algorithm more vividly, this paper uses the MATLAB
7.10.0 program to reconstruct the one-dimensional
sparse signal. Under the condition that the number of
measurements M is fixed, the simulation in Figure 5
shows the reconstruction.

+e algorithm can accurately restore all sensing
matrices that satisfy the RIP characteristics and signals
with known sparsity, and the reconstruction time is very
short. +e core idea is: for the reconstruction of the July 1
sparse signal, the ROMP algorithm uses the inner product
method to select atoms for the first time. +e correlation
coefficient is the signal residual and the absolute value of
the inner product of each column vector of the sensing
matrix. +en select the k atoms with the largest amplitude
from u and put them into the candidate set A; secondly,
according to the regularization method in it, the atoms
corresponding to A are processed, and the group with the
largest energy is selected. Enter the set A0 to complete the
secondary screening of atoms; finally, complete the up-
date of the support set F, the least squares method obtains
the approximate solution of the original signal, and the
residual is updated. +e local Fourier matrix is obtained

by randomly selecting M rows from the Fourier matrix
and then uniting the columns.

5. Application and Analysis of Music Course
Integration and Reconstruction Model
Based on Advanced Iterative
Reconstruction Algorithm

5.1. Iterative Reconstruction Algorithm Data Preprocessing.
In this chapter, the CUDA development environment will be
used to accelerate the GPU acceleration of the SART re-
construction algorithm after a certain optimization so that
the iterative reconstruction using the SART algorithm has
the feasibility of a practical application. In this chapter, the
basic concepts of the CUDA development environment are
first introduced, and then the SART algorithm is improved
to meet the development requirements of CUDA programs.
Finally, the serial CPU code is changed to parallel CUDA
code, and according to some characteristics of CUDA, to
optimize the task division of parallel computing to achieve
the greatest possible speedup. In each iteration, the atoms
most relevant to the current signal or the iterative residual
are selected from the atomic library (i.e., the measurement
matrix) using the correlation principle for sparse approxi-
mation so that after several iterations, the original sparse
signal is approximately linearly represented.
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When the sampling rate of the OMP algorithm is small,
the operation time is short, but the relative reconstruction
error is large, and when the sampling rate is large, the re-
construction relative error is small, but the operation time is
long. In general, the OMP algorithm can reconstruct the
original music elements better when the sampling rate is
different. However, the OMP algorithm also has two defects:
(1) the computational complexity is greatly increased due to
the introduction of the most d multiplication and (2) only
one atom is selected for each iteration to update the support
set, resulting in a long-running time, which makes the OMP
algorithm very limited in the application of some large-scale
signal reconstruction.

Taking the projection value p as the initial value of back
projection, in the seventh + 1 iteration, Figure 6 uses the
seventh iteration result z7 plus the correction value to obtain
z7 + l, the correction value, and the seventh estimated error
vector, so the correction value for each voxel is the sum of
the error values for all rays passing through that voxel, not
just one ray. +erefore, the correction process of SIRT is
called point-by-point correction. +is is the biggest differ-
ence from the ART algorithm and the fundamental reason
why the SIRT algorithm can suppress noise: some random
errors are averaged out by the common contribution of all
rays passing through the voxel. After one iteration, all voxels
are updated at one time, which can effectively eliminate
stripe artifacts. However, as shown in the previous chapter,
the problem with the SIRTalgorithm is that the convergence
speed is slow, and more iterations are required to achieve
better results.

5.2. Realization of Music Course Integration Reconstruction
Simulation. A CUDA program consists of host code and
device code. +e NVIDIA C compiler (nvcc) separates the
two parts of the code during the compilation phase. +e
host-side code is ordinary ANIS C code, which can be
compiled into ordinary host-side threads by a standard C
compiler. +e device-side code written in the ANIS C

extension tag requires special processing. +ese codes
mainly define the functions of data-parallel computing and
related data structures, and these functions are called seven.
+e device code is further compiled by nvcc into code ex-
ecutable on the GPU. +e runtime of a CUDA program
includes several different operating states: executing on the
host side (such as CPU) and executing on the device side
(such as GPU). A system can contain one host and several
devices.+e essence is a greedy iterative algorithm, that is, in
each iteration, a certain atomic matching criterion is used to
select one or more atoms most relevant to the signal to
gradually approximate the sparse solution of the signal and
realize the final reconstruction of the original signal. It can
be seen that in this type of algorithm, how to select the
appropriate atom is very critical. If the appropriate atom can
be selected, the original signal can be accurately recon-
structed with a high probability.

I x1( 􏼁 × y x1( 􏼁, I x2( 􏼁 × y x2( 􏼁, I x3( 􏼁

×y x3( 􏼁, . . . , I xn−1( 􏼁 × y xn−1( 􏼁, I xn( 􏼁 × y xn( 􏼁
􏼢 􏼣 � I × Y.

(14)

Each pixel value in itself contributes to the correction
value of each voxel, and the updated value of each voxel is
obtained by accumulating these contributions on each voxel.
If the correction terms are simply added, the noise that may
exist in the projected musical elements will be added to the
reconstructed musical elements to produce artifacts, so
weighting needs to be performed when updating. It can be
seen that the convergence speed of ART and SART recon-
struction is faster, and the optimal solution can basically be
obtained in 5 iterations, while the convergence speed of the
sIIu reconstruction algorithm is slower, and it still needs 10
when using a larger relaxation coefficient. It takes more than
one iterations to converge, which also proves the above
theoretical research.

At the same time, as shown in the text, with the increase
in the number of iterations, the reconstruction result of
the ART reconstruction algorithm gradually deviates with
the increase in the number of iterations after reaching the
optimal result. +e SIRT reconstruction algorithm has a
slower convergence rate. After reaching the optimal solu-
tion, the reconstruction results in Figure 7 do not signifi-
cantly deteriorate with the increase of the number of
iterations. +e SARTreconstruction algorithm combines the
advantages of the above two algorithms, which not only can
converge quickly to obtain the optimal solution but also can
reconstruct the results after convergence without deterio-
rating the quality with the increase of the number of
iterations.

In the signal decomposition process, the denoised
original signal is first filtered into high pass and low pass,
respectively, and then the corresponding coefficients of the
detailed coefficients of the high- and low-pass signals are
used as signal features. +en, the DSP and DSAMP algo-
rithms are applied to the reconstruction of one-dimensional
time-domain signals and two-dimensional music elements,
and compared with SP and SAMP, respectively; the simu-
lation results show that the two improved algorithms DSP
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Figure 6: 3D distribution of signal error of advanced iterative
reconstruction algorithm.
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and DSAMP can improve the reconstruction quality of
sparse signals. Both are better than the original algorithm,
which further verifies that the dice coefficient atommatching
criterion can better select the atoms most related to the
residual from the sparse dictionary and has better recon-
struction quality.

��������
f t − t

2
􏼐 􏼑

􏽱
max(t, t − 1) 1

min(t, t − 1)
�����������
f t − t

2
− 1􏼐 􏼑

􏽱
min(t, t − 1)

1 max(t, t − 1)
�����������
f t − t

2
+ 1􏼐 􏼑

􏽱

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

�

log t 1 0

1 log t + 1 1

0 1 log t + n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

.

(15)

Each decomposition level produces different coefficients.
+e mechanism of decomposition is that the sampling rate of
each layer is reduced by half so that the value of the coefficient
is different between layers 1 and 6, but the difference between
layers 1 and 6 changes gradually, so in this experiment, only
the coefficients of layers 1 and 6 are selected to represent

signal information. After DwT processing, we first use sta-
tistical analysis methods to analyze the raw signals, including
the detailed signals of layers 1 and 6 (DET1 and DET 6), the
approximate signals of layers 1 and 6 (APP1 and APP6), and
the coefficients of DET1, DET6, and APP1. +e statistical
eigenvalues obtained from the original signal and the
decomposed signal include the maximum value.

5.3. Example Application and Analysis. Based on the feature
database, we analyzed and compared the recognition of LR,
RR, SVR (1inear kernel), SVR (rbf kernel), SVR (poly
kernel), MLP, and NuSVR and other regression algorithms.
NuSVR achieved the best recognition effect. In all data
fusion comparisons, the data set with all features (all
musical features and all musical features) performed best in
modeling. In the second case, we used multilayer per-
ceptron, Kstar, and SVM to model and analyze the music
diameter change data and found that SVM achieved the
best results. In case 3, we used repeated measures ANOVA
and correlation analysis and concluded that music signals
such as electrical skin can be used as objective indicators of
user emotion measurement. Finally, we present three cases

x1=18+20*rand (500, 1);
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Figure 7: Signal decomposition process of advanced iterative reconstruction algorithm.
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of music signal-based product or system design and user
experience evaluation.

BT(i, j)didj � lim i, j| Pi(i, j)( 􏼁
2

+ Pi(i, j)( 􏼁
2

􏽨 􏽩
1/3

,

BS(i, j)didj � lim i, j| Pi(i, j)( 􏼁
2

− Pi(i, j)( 􏼁
2

􏽨 􏽩
1/3

.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(16)

MPl50 series music signal amplifier modules are single-
channel, differential input, linear amplifier modules with ad-
justable gain compensation. +ese modules are used to amplify
small voltage signals collected from electrodes or sensors and
convert them to output. In addition, in addition to amplifying
the signal, MPl50 series modules can also filter or convert the
data into the required form. It will be read in the shared
memory at the beginning of each 6fDc operation. When cal-
culating the rotation matrix later, the speed of reading the data
in the shared memory directly is greatly improved compared to
reading from the global memory (G10bal Memo). +erefore,
the basis for calculating the rotation matrix task division is the
size of each 620c seven shared memory. +e operation of ro-
tating the volume data through the rotation matrix is similar to
the above process, but it is not necessary to read the content of
the rotation matrix into the shared memory, because the data is
only used once during the rotation process, and there is no need
to read it multiple times. So this operation is meaningless.

At present, the research of transform basis mainly focuses
on the intersection basis, but in the face of somemore complex
signals, such as high-dimensional music element signals and
sound signals, it is difficult to make them very sparse with the
intersection basis. Figure 8 is more efficient to sparsely express
complex signals with atoms in an overcomplete redundant
dictionary. However, there are too many atoms in the dic-
tionary, and musical elements with complex geometric fea-
tures and sound signals with complex compositions must be
represented by many atoms. In this experiment, we still use
musical emotional clips as stimulus materials.

Matrix(ide) � β × X(on) × Y(off) ×
λ × α

3πd(I, J)
􏼠 􏼡

2

,

Matrix(on) � X(coordinate) × Y(coordinate).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(17)

+en select a 10 s piece of music with the main emotion
to generate a piece of music. +ese extracted fragments are
saved as WAV format; the sampling rate is 16KHz, in order
to retain the maximummusic information to ensure the best
listening experience.+e 360 pieces of music are divided into
6 groups. In order to balance the emotions of the 4 quadrants
to the greatest extent, each group contains 15 happy pieces
(high-valence, high-arousal music, such as Spring Festival
Overture), 15 calm music fragments (high-valence, low-
arousal music, such as Jasmine), 15 sad music fragments
(low-valence, low-arousal music, such as Erquan Yingyue),
and 15 tense music fragments (low-valence, high-arousal
music, such as music describing war).

6. Conclusion

In this paper, by comparing the accuracy with the other two
algorithms on the basis of controlling the sparsity of the
integrated data of music courses as a variable, the research
on the three algorithms shows that the joint algebraic re-
construction algorithm (SART) has the advantages of both
reconstruction quality and reconstruction speed. +ere are
certain advantages, and the calculation methods of projec-
tion matrix based on ray-driven and voxel-driven are dis-
cussed and their influence on SART reconstruction results.
Finally, the SART reconstruction algorithm based on ray-
driven projection is selected for further optimization. In this
paper, the rotation of the projection system is mapped to the
rotation of the reconstruction area data, which avoids the
calculation of the projection matrix at each angle. Fur-
thermore, by using the symmetry of the projection system, it
is only necessary to calculate the projection matrix corre-
sponding to 1/4 of the number of rays, and the remaining 3/4
can be calculated by symmetry. After these improvements,
the SART algorithm has a certain improvement in the re-
construction speed. At the same time, using the super-
resolution reconstruction algorithm proposed in this paper,
the super-resolution reconstruction of a single music ele-
ment is realized, and a good reconstruction effect is
achieved. Finally, a single-frame music element super-res-
olution reconstruction algorithm based on advanced itera-
tive reconstruction and learning dictionary is proposed, and
the self-similarity of music elements and the training
method of learning dictionary are described. +e improved
local Hadamard matrix is selected as the measurement
matrix to ensure that the reconstruction of musical elements
complies with the RIP criterion of advanced iterative re-
construction theory; the super-resolution reconstruction of
single musical elements is achieved through an iterative
algorithm. Experiments show that the reconstructed music
elements obtained by the advanced iterative gradient re-
construction algorithm have better visual effects, and the
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Figure 8: High-dimensional music element signal sampling
analysis.
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PSNR value is improved compared with the bilinear in-
terpolation and SRSR algorithms.

Data Availability

+e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

+e author declares that there are no conflicts of interest.

Acknowledgments

+is work was supported by the College of Music and Dance,
Chengdu University.

References

[1] Y. Tian, X. Chai, Z. Gan, Y. Lu, Y. Zhang, and S. Song,
“SWDGAN: GAN-based sampling and whole image
denoising network for compressed sensing image recon-
struction,” Journal of Electronic Imaging, vol. 30, no. 6, Article
ID 63017, 2021.

[2] H. Akbari, B. Khalighinejad, J. L. Herrero, A. D. Mehta, and
N. Mesgarani, “Towards reconstructing intelligible speech
from the human auditory cortex,” Scientific Reports, vol. 9,
no. 1, pp. 874–912, 2019, doi: 10.1038/s41598-018-37359-z.

[3] Z. Zheng, Y. Zheng, W.-Q. Wang, and H. Zhang, “Covariance
matrix reconstruction with interference steering vector and
power estimation for robust adaptive beamforming,” IEEE
Transactions on Vehicular Technology, vol. 67, no. 9,
pp. 8495–8503, 2018.

[4] R. Orjesek, R. Jarina, and M. Chmulik, “End-to-end music
emotion variation detection using iteratively reconstructed
deep features,” Multimedia Tools and Applications, vol. 81,
pp. 11–15, 2022.

[5] H. Wang, H. Zhang, and Q. Ma, “Sparse spectrum fitting
algorithm using signal covariance matrix reconstruction and
weighted sparse constraint,” Multidimensional Systems and
Signal Processing, pp. 10-11, 2022, doi: 10.1007/s11045-021-
00811-x.

[6] T. Konno, K. Nishida, K. Itoyama, and K. Nakadai, “Audio-
visual 3D reconstruction framework for dynamic scenes,” in
Proceedings of the 2020 IEEE/SICE International Symposium
on System Integration (SII), pp. 802–807, IEEE, Honolulu, HI,
USA, January 2020.

[7] H. Liu, C. Tan, S. Zhao, and F. Dong, “Nonlinear ultrasonic
transmissive tomography for low-contrast biphasic medium
imaging using continuous-wave excitation,” IEEE Transac-
tions on Industrial Electronics, vol. 67, no. 10, pp. 8878–8888,
2019.

[8] V. Upadhyaya, G. Sharma, A. Kumar, S. Vyas, and M. Salim,
“Quality parameter index estimation for compressive sensing
based sparse audio signal reconstruction,” IOP Conference
Series: Materials Science and Engineering, IOP Publishing,
vol. 1119, no. 1, Article ID 12005, 2021.

[9] M. Luo, X. Yang, X. Huang et al., “Self context and shape prior
for sensorless freehand 3D ultrasound reconstruction,” in
Proceedings of the International Conference on Medical Image
Computing and Computer-Assisted Intervention, pp. 201–210,
Springer, Strasbourg, France, October 2021.

[10] Y. Lai, Y. Xue, C. Y. Côté et al., “Single-shot compressed
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