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To characterize the real dynamic process of delay propagation between airports and to understand the mechanism of delay
propagation from a global perspective, this paper establishes a network of delay propagation relationships between airports based
on causal analysis and conducts an example analysis. First, the flight operating status data processing is used to obtain the arrival
delay time series of each airport. +en, the delay propagation relationship between airports is analyzed in pairs through the causal
analysis method to obtain the delay propagation relationship network between all airports. Finally, the complex network theory
and related indicators are used. +e network is analyzed, and these analysis results can provide theoretical support for the
formulation of delay propagation mitigation measures.

1. Introduction

With the rapid development of today’s air transport industry
[1], the number of flights operated by airlines has increased
significantly. +e problem of declining punctuality has fol-
lowed, and flight delays have gradually emerged. As a result, the
air transport industry will suffer substantial economic losses
every year [2] and even endanger the safety of passengers,
aircraft, and airports [3].+erefore, flight delays have become a
significant challenge facing the air transportation system [4].
+e upstream and downstream flights share aviation resources,
such as aircraft, crew, and airport ground resources. +erefore,
when the upstream flight is delayed, the downstream flight will
also be delayed with significant probability. +is phenomenon
is called delay propagation [5, 6]. If there is no reasonable
method to control the propagation of delays, the spread of
delays will continue to expand [7, 8]. At the same time, due to
the current development of the air transportation industry, the
aviation operation scene has become very complicated, and
flights will be delayed due to varying degrees of influence from
different sources at the same time. +erefore, the research on
the propagation mechanism of flight delays is essential and
challenging.

So far, there has been a lot of research in flight delay
propagation. For example, Beatty et al. [9] put forward the

concept of delay multiplier to quantify delay propagation by
analyzing an airline’s flight status table. +e delay propa-
gation analysis of multiple flights at a single airport is carried
out.+ese methods mainly study the local dynamics of some
flights, a single airport, or an airline [10–14]. Only a small
number of people research the air transportation system
level from the perspective of the entire aviation network.
+erefore, in the field of flight delay propagation, there is still
a lack of away from the perspective of the whole aviation
network that can accurately dig out the causal relationship of
flight delays from the current highly complex data: the delay
propagation relationship between airports. Obtaining the
flight delay propagation relationship is helpful to understand
the delay propagation mode and law between airports,
provide theoretical support for formulating control delay
propagation measures, and have guiding significance for the
improvement of flight delays.

2. Related Work

+e academic literature on flight delays can be divided into
three categories:

(1) Statistical models that explore the impact of various
components of travel time
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(2) Econometric models that analyze the economic
drivers of flight delays

(3) Operational management models

Among them, the impact of air transportation delays on
operations is investigated. Due to the highly random nature
of air transportation, different aspects of flight scheduling
problems have been explored in the past. Some researchers
have developed statistical models for predicting the other
components of air travel time. In the econometric model, the
influence of various factors on the onset and progress of
propagation delay is quantified. Either way, it is necessary to
analyze the delay propagation process from a broader and
network-based perspective because the flight schedules
operated by airlines and airports are oriented towards
network performance optimization. Although progress has
been made in understanding the spread of flight delays
[15–20], few studies have investigated the space of delays by
considering the interdependence of delays. With the con-
tinuous development of time-series analysis, much progress
has been made in various fields. +e time-series dependency
analysis [21] and medical applications of complex human
body systems (such as brain-computer interface [22–26],
epilepsy [27, 28], sleep staging [29–34]). Since the air
transportation system is also typically large and complex, the
mechanism of delay propagation has not been fully un-
derstood, especially the interdependence between different
airports.+erefore, understanding the spread of flight delays
is a complex problem, and few studies have studied the space
of delays by considering the interdependence of delay time
series. Based on the dependence of delays and using network
graph theory similar to [35–40], we evaluate and analyze the
airport flight delay network.

3. Network Analysis Evaluation Index

We use a flight delay propagation relationship discovery
algorithm based on transfer entropy. +is algorithm is used
to discover the delay propagation relationship between two
airports. Due to the large number of airports and complex
interactions, the characteristics of delayed propagation
cannot be understood from only the information at the level
of a single airport. +e complex network theory and related
indicators provide a suitable method for studying air
transportation systems. +erefore, network-level analysis is
used to capture the global structure of functional interaction.

Aij�(aij)N∗N is the adjacency matrix of the sample
network. aij � 1 if and only if there is an edge from one node
i to another node j; otherwise, aij � 0. In this sample net-
work, the total number of airports is N, and the total number
of edges is M � 􏽐

N
i,j�1 aij � 12. Later, some practical topo-

logical structures were introduced to help analyze the delay
propagation.

3.1. Degree. +e degree of an airport reflects the number of
airports with which it has a delayed propagation relation-
ship. In the directed network, the in-degree kin

i � 􏽐
N
j�1 aji

and the out-degree kout
i � 􏽐

N
j�1 aij of airport i, respectively,

represent the delay from airport j propagate to airport i and

delays propagate from airport i to airport j. +e total degree
of airport i is ki � kin

i + kout
i .

3.2. Reciprocity Parameter. +e reciprocity parameter re-
flects the two-way nature of delay propagation between
airport pairs. Reciprocity means that airport i affects airport
j, and airport j also affects airport i (aij � aji � 1). +e
parameter R is used to evaluate the symmetry of the directed
network. It is defined as follows:

R �
􏽐

N
i≠j aij − a􏼐 􏼑 aji − a􏼐 􏼑

􏽐
N
i≠j aij − a􏼐 􏼑

2 . (1)

Here, a � 􏽐
N
i≠j aij/N(N − 1). +e maximum R is 1,

which means that the links between all airport pairs are
bidirectional. +e larger the R value, the more symmetrical
the network.

3.3. Link Density. Link density reflects the proportion of
active links in the total number of potential links, that is, the
proportion of airport pairs that influence all airport pairs.
+e calculation formula is as follows:

ld �
􏽐

N
i≠j aij

N
2 �

M

N
2.

(2)

+e higher the ld, the tighter the network connection, the
easier it is for the delay to spread through it and the less likely
it is to stop the delay from spreading.

3.4. Transitivity. Transitivity measures the existence of tri-
angles in the network. Mathematically defined as the rela-
tionship between the number of triangles (3 nodes, each pair
of nodes have edges) N_Δ and the number of connected
triples N_3 in the network, the formula is as follows:

T �
3NΔ
N3

. (3)

Here, NΔ � 􏽐k>i>jaijaikajk, N3 � 􏽐k>i>j(aijaik+

ajiajk + akiakj). +e existence of a large number of triangles
indicates that the groups of three airports are closely con-
nected, so the delay generated in any one of them can easily
spread to other airports.

3.5. Assortativity. +e coordination coefficient reflects
whether nodes with similar degree values tend to be con-
nected. It can be expressed by the conditional probability,
that is, the probability of an airport with degree k and an
airport with the degree of influence. +e formula is as
follows:

1
M

􏽘
j>i

1
2

ki + kj􏼐 􏼑aij. (4)

A positive co-match coefficient value indicates that
airports with large degrees, in general, tend to airports with
high connectivity, and the network is said to be co-matched;
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a negative co-match coefficient value indicates that airports
with large degrees, in general, tend to airports with low
connectivity, which is said that the network is
heterogeneous.

3.6. Efficiency. +e efficiency of the network reflects how
easy the delay is to spread between the two airports, that is,
how many intermediate nodes the delay has to pass from a
node to reach the target node. +e formula is as follows:

E �
1

n(n − 1)
􏽘
i≠j

1
dij

. (5)

Here, dij is the distance (or the number of hops) between
nodes i and j.

3.7. Clustering Coefficient. +e clustering coefficient reflects
the inherent clustering trend of airports. +e aggregation
coefficient of an airport is the proportion of adjacent airports
(airports with delayed propagation links with other airports)
that have direct delay propagation links (that is, the number
of triangles in the network). For the network, the overall
clustering coefficient is calculated as follows:

C
D

�
1
n

􏽘

n

i�1

(1/2)􏽐j􏽐h aij + aji􏼐 􏼑 aih + ahi( 􏼁 ajh + ahj􏼐 􏼑

d
dot
i d

dot
i − 1􏼐 􏼑 − 2d

↔
i􏽨 􏽩

. (6)

Here, ddot
i � 􏽐j≠iaji + 􏽐j≠iaij and d↔i � 􏽐j≠iaijaji.

3.8. Largest ConnectedCluster. +e largest connected cluster
reflects the degree of delayed propagation.+e largest related
group is through a set of interconnected airports. To rep-
resent the area of delayed propagation, we set a baseline for
the connected cluster. Only if an airport affects enough
airports will it be added to the connected group; it is greater
than a certain threshold.

To measure the similarity of the largest connected
clusters of different networks, the Jaccard index is intro-
duced, which is defined as J � |A∩B|/|A∪B|, where A and B
are both finite sets composed of airport members in the
largest connected cluster. If the airport sets are the same,
then J� 1; if they are completely different, then J� 0.

3.9. Community. +e community assesses whether airport
delay propagation can be divided into multiple subregions.
Each subregion has dense delay propagation links inside the
airport and sparse delay propagation links with airports
outside the subregion. In addition, the modular Qd is used to
measure the strength of dividing the network into multiple
communities. +e calculation formula of Qd is as follows:

Qd �
1

M
􏽘
ij

Aij −
k
out
i k

in
j

M
⎛⎝ ⎞⎠δ ci, cj􏼐 􏼑. (7)

Here, if airport i and airport j are in the same com-
munity, the δ function outputs 1; otherwise, it outputs 0.M
represents the total number of edges.

3.10. Network Motifs. +e network motif reflects the local
relationship pattern between any three airports. +e three
airport clusters have similar relationship patterns. An es-
sential tool for evaluating the significance level of the motif is
Z-score, which is defined as follows:

Z G′( 􏼁 �
FG G′( 􏼁 − μR G′( 􏼁

σR G′( 􏼁
, (8)

where FG(G′) represents the frequency of G′ in the network
G. μR(G′) and σR(G′), respectively, represent the frequency
average and standard deviation of N random networks.

3.11. Network Randomization. Network randomization is
used to generate a random network for network comparison.
During the randomization process, self-connection and
duplication of edges are prohibited.

4. Data Description and Processing

4.1. Data Description. +is dataset contains information on
the operation status of all flights departing and arriving in
China from December 1st to 31st 2000. +e calculation
method of the flight arrival delay in this article is the dif-
ference between the actual arrival time and the planned
arrival time, representing the actual delay perceived by the
passengers, rather than starting to calculate the arrival delay
more than 15minutes after the scheduled arrival time. We
obtained the average daily arrival delay time for all flights in
December 2000 across the country based on this calculation
method. +e results showed that the delay time on De-
cember 4, 8, 20, and 21 was relatively high, while on the 11th
and 17th, the delays on the day and the 31st are relatively low
as shown in Figure 1.

4.2. Data Preprocessing

4.2.1. Data Cleaning. Specific strong values need to be
calculated based on the original data, such as flight arrival
delay, departure delay, ground transit, and air flight. At the
same time, there is a certain percentage of dirty data in the
original dataset, which needs to be predicted. +e detailed
steps of preprocessing are as follows:

Step 1: delete 11 pieces of data whose planned arrival
times are empty.
Step 2: 1649 entries.
Step 3: the original data only have the planned de-
parture date and the actual departure date but not
the planned arrival date and actual arrival date. To
facilitate subsequent processing, the scheduled ar-
rival date and actual arrival date need to be added to
the data.
Step 4: for the convenience of subsequent processing,
splice the two fields of date and time into one area.
Step 5: the original data are not the data of the flight
segment level, so it is necessary to set whether each data
are the tag of the flight segment, which is seg_count. It
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is not a flight segment level. For example, there is an
aircraft flying from A to B and from B to C, but there is
another piece of data in the data that will pass fromA to
C. +erefore, the seg_count field corresponding to the
data flying from A to C is set to 2. +e seg_count flying
from A to B and from B to C are both set to 1. After the
final setting is completed, there are 54891 data with
seg_count>1.
Step 6: delete the data of seg_count>1, these data are
not of the flight segment level, so they are useless.
Step 7: the flight registration number is the same, the
departure airport is the same, the planned departure
time is the same, and the arrival airport may have the
same or different data. Only one of these data need to be
deleted, but which one do you choose to delete? or
delete one randomly (currently select the one with the
smallest id), about 180.
Step 8: calculate the planned flight time and actual flight
time (flight time� arrival time-departure time) in
minutes.
Step 9: calculate the planned passing time and the actual
passing time.+is month, this task needs to find the flight
chain based on the aircraft registration number. +e
transit time� the departure time of the next flight in the
flight chain-the departure time of the previous flight in the
flight chain, in minutes. Although this calculation does
not consider the midway rest of some aircraft, there may
be some very long transit times, but this does not affect the
subsequent operations, so there is no need to worry.
Step 10: calculate take-off delay and arrival delay.
Departure delay� actual departure time-planned de-
parture time, and arrival delay� actual arrival time-
planned arrival time, in minutes.
Step 11: delete the data with the larger absolute value of
the difference between the actual flight time and the
planned flight time (currently take the data with the
total value greater than 5 hours). From practical con-
siderations, the flight time between the two places
should not fluctuate toomuch, so the data that fluctuate
more than 5 hours are deleted, 108 pieces. Of course, it
is not necessarily correct if it is less than 5 hours, but
there is no way.
Step 12: delete the data whose planned and actual
transit time and flight time are less than zero, 3810
items.
Step 13: complete data preprocessing.

From the above 13 steps, all the fundamental values that
need to be used can be obtained, the dirty data can be re-
moved, and finally, 256758 flight operating status data can be
obtained.

4.2.2. Construction of Airport Delay Data. +e input for
transferring entropy needs to be time-series data, so after
data calculation and data cleaning, they still need further
processing.

Step 1. Aggregate the arrival delays of all flights at all air-
ports at the hourly level to obtain the arrival delay time series
of all airports.

Precisely, the average arrival delay time of all flights is
calculated whose planned arrival time is within the h hour on
day d at the i-th airport.

D
i
(d, h) �

􏽐 Tact − Tsch d( 􏼁

N
i
(d, h)

, i ∈ 1, 2{ }, (9)

where Tact represents the actual arrival time of all flights
whose scheduled arrival time is within the h hour on day d
of the i-th airport and Tschd represents the actual arrival
time of all flights whose scheduled arrival time is within the
h hour on day d of the i-th airport. Planned arrival time,
Ni(d, h), represents the number of all flights whose
planned arrival time is within the h hour on the d day of the
i-th airport.

+en, the i-th airport arrival delay time-series set can be
expressed as

S
i

� D
i
(1, 1), D

i
(1, 2), . . . , D

i
(2, 1), D

i
(2, 2), . . . , D

i
(d, h)􏽮 􏽯.

(10)

Here, the length of the airport arrival delay time series is
n � d∗ h.

Step 2. Use Z-score standardization to process the arrival
delay time series, and the processing method is as follows:

D
i′(d, h) �

D
i
(d, h) − <D

i
(·, h)>

σ D
i
(·, h)􏼐 􏼑

, i ∈ 1, 2{ } . (11)

where D
i′(d, h) represents the normalized average arrival

delay time of all planned arrival times at the hth hour at the
dth day of the i-th airport, Di(d, h) represents the original
average arrival delay time of all planned arrival times at the
hth hour of the i-th airport on the d day, <Di(·, h)> rep-
resents the average value of all sample points at the h-th hour
of the i-th airport, and σ(Di(·, H)) represents the standard
deviation of all sample points at the h-th hour of the i-th
airport.

+en, the preprocessed set of the i-th airport arrival delay
time series can be expressed as
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Figure 1: National average daily delay time.
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S
i′ � D

i′(1, 1), D
i′(1, 2), . . . , D

i′(2, 1), D
i′(2, 2), . . . , D

i′(d, h)􏼚 􏼛.

(12)

Here, the length of the preprocessed airport arrival delay
time series is n � d∗ h.

From the above two steps, the final required transfer
entropy input time-series data can be obtained. +e pro-
cessing of the original data is completed.

5. Experiment Analysis

5.1. Global Characteristics of the Airport Delay Propagation
Relationship Network. To analyze the delay propagation
relationship, we need to transfer entropy between the paired
computer field delay time series and build a network of delay
propagation. We aggregate flight data hourly so that each
airport corresponds to a time series every day. +en, we
build a network of delay propagation relationships every
day, and we get a total of 31 networks. December 4th is the
day with the most serious flight delays. We use the com-
munication network on this day to analyze the character-
istics of delayed propagation. After removing the
unconnected airports, it is found that there are 169 airport
nodes and 1381 edges, as shown in Figure 2, which means
that about three-quarters of the airports have a delayed
propagation relationship with other airports that day. +is
delayed propagation relationship network includes 17 4F-
class airports, 35 4E-class airports, 38 4D-class airports, 71
4C airports, and eight 3C airports. It can be seen that larger
airports such as 4F, 4E, and 4D are almost all caught in the
spread of delays. Although small airports such as 4C and 3C
occupy a large proportion of the entire civil aviation net-
work, only half of them are involved in the spread of flight
delays.

For this communication network, we will use network
analysis tools to answer the following questions about
delayed communication:

How many airports are affected or affected by each
airport? For a certain airport i in the network, kout

i is the
number of airports affected by airport i, and kin

i is the
number of airports affected by airport i. In this net-
work, <kin > � < kout > � 8.17, which means that each
airport affects about 8 airports and is affected by about 8
airports.
Is the delayed propagation connection between airport
pairs bidirectional? +e reciprocity parameter of this
network is R� 0.77. Randomly, 1000 networks with the
same number of nodes and edges are generated, and
their average reciprocity coefficient is found to be 0.049,
which is much lower than 0.77. +erefore, the network
is more symmetrical. One possible reason is that delays
caused by two-way flights between airports are prone to
two-way propagation.
How big is the aggregation trend between airports?+e
average aggregation coefficient of the entire network is
0.42, which is much larger than the average aggregation
coefficient of the random network (�0.048), indicating

that the airport network has a strong aggregation
tendency.
Can the delay propagation between airports be divided
into multiple subareas? +e community detection al-
gorithm is used to analyze it. Modularity is used to
evaluate the strength of the network divided into
communities. +e greater the modularity value, the
more obvious the community structure. +e modu-
larity value of this network is 0.168, and the average
modulus value of 1000 random networks is 0.205.
+erefore, there is no evidence that the delayed
propagation on December 4 can clearly delineate the
subregions.
What is the possible range of delay propagation? We
use the largest connected cluster to represent the range
of possible delay propagation. +e member airports of
the largest connected cluster are selected by the kout

threshold so that the largest connected cluster contains
a set of airports that have more influence on other
airports. We define the threshold kout to be greater than
the average out-degree of the network kout � 8.17,
which means that the impact of the airport is greater
than or equal to the other five airports. +e largest
connected cluster of the network contains the number
of airports Md � 50, indicating that the delay may
spread among 50 airports.

5.2. Time Characteristics of the Delay Propagation Relation-
ship Network. As time changes, the daily delay situation is
different; how will the delay propagation network change?
To answer this question, we evaluated the Pearson corre-
lation coefficient between the daily network topology in-
dicators of the delay propagation relationship network and
the average daily arrival delays of all flights in December. It
can be seen from Table 1 that the number of edges, average
clustering coefficient, average degree, link density, and co-
match coefficient are all highly correlated with the average
daily arrival delay. At the same time, the correlations of other
indicators are relatively low. According to the formula of
average degree and link density, it can be said that these two
indicators are directly proportional to the number of sides,
so the number of sides, average degree, and link density can
be analyzed together. +is result means that the longer the
national average daily delay to Hong Kong, the more edges
in the delay propagation network, and vice versa.

+e higher the clustering coefficient of the node, it means
that the neighboring nodes of the node are more likely to be
connected. It is easier to form a local area with the node as
the starting point so that the delay will spread in it; on the
contrary, if the clustering coefficient of the node is lower, the
node’s neighbor nodes are more inclined to connect to other
nodes except their neighbors. +e formed network is closer
to a tree so that the delay will spread quickly in a larger area.
+erefore, due to the large degree and the low aggregation
coefficient, the large airport will produce a more extensive
range of delay propagation. In contrast, in the small airport,
the delay generated can only spread in a local area due to the
low degree and the high aggregation coefficient.
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+e co-match coefficient has an inverse relationship with
the average daily arrival delay time, which means that the
more serious the delay, the more nodes with higher degrees
tend to nodes with lower degrees of connectivity, because the
degree is proportional to the number of flights, and the
number of flights is larger. +e daily operation of the airport
has approached saturation, so the more serious the delay, the
greater the tendency of large airports to spread the delay to
various small airports and try to avoid affecting other larger
airports and reduce losses.

6. Discussion and Conclusion

From the perspective of the entire aviation network, this
study established a delay propagation relationship network
based on the time-series relationship of each airport arrival
delay. It used network analysis and evaluation indicators to
reveal the macro performance of delay propagation. Spe-
cifically, we have constructed 31 flight delay propagation

relationship networks using the information on the oper-
ation status of all flights departing and arriving in China.
Selecting the day with the most serious delays in the 31 days
as the analysis object, we found that the larger airports of 4F,
4E, and 4D are almost all caught in the spread of delays,
although small airports such as 4C and 3C occupy a large
proportion of the entire civil aviation network. But only half
of them are involved in the spread of flight delays. +e
average degree shows that, on average, each airport affects
about eight airports and is also affected by about eight
airports. +e very high reciprocity parameter indicates that
the two-way delay spread between the airport pairs is more
serious. It may be because a plane performs round-trip
flights between the two airports a day, but there is no suitable
buffer absorption mechanism between the airports to cause
the delay. +e high clustering coefficient of the airport in-
dicates that the network has a strong trend of clustering, and
the airport nodes tend to form a denser network cluster. We
have also found the largest connected cluster in the network,
where each airport node has more influence.+e ingress and
egress of airport nodes are directly proportional to the
number of flights at the airport. +e intensive flight of large
airports has made the airport capacity close to saturation.
Once an accident occurs, the delay will happen and spread,
but because large airports generally have better-delayed
handling measures may reduce some of the delays.

Next, we analyzed the time characteristics of the delay
propagation relationship network, compared 31 indicators
of the delay propagation relationship network, and calcu-
lated the Pearson correlation coefficient between each in-
dicator and the average daily arrival delay of all flights in
December. +e results obtained show that the aggregation
coefficient strongly correlates positively with the average
daily arrival delay. +is explains that large airports have a

Figure 2: Delayed dissemination network on December 4.

Table 1: Correlation analysis between network topology indicators
and average daily arrival delays.

Network topology indicators Pearson correlation coefficient
Number of nodes 0.396
Number of sides 0.634
Reciprocity coefficient 0.550
Average clustering coefficient 0.652
Average degree 0.627
Link density 0.704
Transitivity 0.522
Coefficient of coordination −0.632
Largest connected cluster 0.327
Modularity −0.448
Efficient 0.457
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larger degree and a low aggregation coefficient, which will
cause a larger range of delay propagation, while small air-
ports have a higher degree of delay. Small and high ag-
gregation coefficients and the resulting delay can only spread
in a local area. +e co-match coefficient has an inverse
relationship with the average daily arrival delay time. +is
means that the more serious the delay, the more nodes with
higher degrees tend to nodes with lower degrees of con-
nectivity. +erefore, the more serious the delay, the greater
the tendency for large airports to spread the delay. Delays
can be dispersed to various small airports to avoid affecting
other larger airports and reduce losses. +e proposed
method is a general causal analysis method. In the future, we
will use this method on other types of time-series data, such
as physiological time series and financial time series.

Data Availability

+e dataset can be accessed upon request to the corre-
sponding author.
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