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In order to e�ectively solve the problem that the radar detection system is di�cult to detect the “low, small, slow” UAV, the high-
performance computing early warning neural network is used to recognize the air UAV in real time and extract the target category
and image space location information; the PSO algorithm is used to optimize the parameters of the anti-UAV to ensure that the
anti-UAV not only relies on factors but also fully combines the dependence of the visual �eld factor to quickly obtain the optimal
solution through analyzing the high-performance computing early warning neural network in this paper.is algorithm is used to
initialize the anti-UAV resources and improve the global optimization capability of the algorithm proposed in this paper. Finally,
the experimental results show that the proposed PSO algorithm has better high-performance computing early warning per-
formance to meet the actual needs of network high-performance computing early-warning neural networks.

1. Introduction

With the continuous development of anti-UAV high-per-
formance computing early-warning analysis technology, the
ways for people to obtain anti-UAV high-performance
computing early warning information are also increasing.
Among them, relying on its huge information content, the
anti-UAV high-performance computing early warning
technology can be used to share resources. By using the
computer Internet, the anti-UAV high-performance com-
puting early warning information you need can be obtained.
Although users themselves can use the anti-UAV high-
performance computing early warning to quickly obtain
relevant data, the required data information cannot be
achieved by the general browsing and query methods due to
the huge amount of data information [1, 2]. In order to
e�ectively solve this problem, Anti-UAV high-performance
computing early warning technology came into being. is
technology can speed up the user’s access to data infor-
mation, although the required data information is still not
accurately obtained under such conditions. e conven-
tional recommendation method has greatly reduced the

accuracy of Anti-UAV high-performance computing early
warning when processing batch data information requests.
In the anti-UAV high-performance computing early
warning information environment, the target information
data can be obtained from the massive data information and
sent to the target user simultaneously to determine the
development direction of the anti-UAV high-performance
computing early warning.

Regarding the shortcomings of the traditional anti-UAV
testing method, the PSO algorithm calculation method in
the anti-UAV detection method is adopted, the code
characteristics in the detection method are compared with
the true characteristics of the noti�ed safety defects, and the
similarity matching degree is used to check the Anti-UAV
code for defects [3]. is method can be used to better
improve the accuracy and work e�ciency of detecting de-
fects, and deal with the situation that the current anti-UAV
detection method cannot quickly deal with the legacy anti-
UAV and the complex structure of the anti-UAV [4]. Real-
time analysis of the UAV �ight trajectory in the continuous
time domain is performed through the PSO algorithm to
obtain the predicted trajectory results of the corresponding
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UAV in the next stage and realize the full monitoring and
prediction of the �ight behavior of the UAV in the air. is
method has high computational real-time and accuracy and
can give anti-UAV capabilities to airports, military units, no-
�y zones, and other important venues in the �eld of machine
vision [5–8].

2. Method and Material

2.1. Mathematical Model of UAV Motion. In order to ac-
curately re�ect the motion state of the UAV and facilitate the
simulation calculation, the impact of the UAV’s elasticity is
not considered, and the Earth is assumed as an inertial
reference frame, ignoring the in�uence of the curvature of
the Earth in this paper [9]. Establish a three-degree-of-
freedom model of the UAV.

e motion equation of the UAV in the ground coor-
dinate system is as follows:

_x � V cos c cos β + ωx,

_y � V cos c sin β + ωy,

_z � V sin β + ωz.




(1)

emotion equation of the UAV in the track coordinate
system is as follows:
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(2)

where, (x, y, z) is the position of the UAV; V is the �ying
speed of the UAV; α is the angle of attack; ε is the roll angle; c
is the �ight path angle, and β is the course angle; Q is the
pitch angle; T Expressed as the UAV thrust; D is the drag
force; L is the lift force; m is the mass of the unmanned
position: g is the acceleration of gravity; ( _ωx, _ωy, _ωz) and
(ωx,ωy,ωz) are the components of wind acceleration and
wind, respectively, on the three coordinate axes.

In order to better adapt to the requirements of UAV
control stability, it is necessary to further consider the speed
and bandwidth constraints of state quantity and input
quantity in the control system design process. e di�culty

of this problem lies in how to mathematically describe the
speed and bandwidth constraints of the control commands
in the actual system. erefore, a second-order reference
model with nonlinear links is introduced to re�ect the re-
sponse characteristics of the actual system to control
commands. e second-order reference model structure
with amplitude, speed rate, and bandwidth constraints is
shown in Figure 1.where sat(·) is the saturation function; x0c
is the input commands; xc is the output command; xLc is the
upper limit amplitude constraints of the command, xUc is the
lower limit amplitude constraints of the command; ±Rx is
the speed constraints of the command; ζn and ωn are the
damping ratio and natural frequency of the second-order
reference model, respectively frequency, according to these
two parameters, the command bandwidth constraint is as
follows:

ωb � ωn
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When the second-order reference model is introduced
into the control system design process, the input of this link
is the input quantity to be designed c0c , α

0
c ,Q

0
c , and the output

of this link is the executable control quantity cc, αc,Qc. In the
meantime, the second-order reference model link can also
provide the derivative cc, _αc, _Qc} of the virtual control
variable, which can avoid the direct analytical calculation of
the virtual control variable. In addition, the introduction of
the second-order reference model link greatly improves the
autonomy of control-oriented modeling.

2.2.DesignofController. Assume that the dynamic system of
the UAV is a �rst-order nonlinear system:

_x � Ax + Bu, (7)

where
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Figure 1: Structure diagram of the second-order control system. e state expression force of the second-order reference model.
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x � x1(t), x2(t), . . . , xm(t)[ ]T ∈ Rm,

u � u1(t), u2(t), . . . , un(t)[ ]T ∈ Rn.
(8)

ey are the status of the �ight control system and the
input of the controlling quantity; A ∈ Rm×n is the system
matrix and B ∈ Rm×n is the input matrix simultaneously. e
purpose of the control system is to establish a suitable
control scheme to ensure that the state vector quality can
accurately track the constrained ideal xd ∈ Rm×n. De�ne the
tracking error as follows:

e � xd − x. (9)

In addition, the sliding form surface is expressed as
follows:

s(t) � e(t) + k∫
t

0
e(τ)dτ, (10)

where k � diag(k1, k2, . . . , km) ∈ Rm×m is a nonzero positive
de�nite matrix. If the UAV is under ideal conditions, the
various parameters of the system are known and constant.
e ideal controller can be designed as follows:

u∗ � B+ −Ax + _xd +Ke[ ]. (11)

Among them, B+ � (BTB)− 1BT, substituting equation
(11) into equation (S) to get the following equation:

_e +Ke � 0. (12)

In the above formula, if K satis�es the Huiwitza poly-
nomial when t tends to in�nity ‖e‖ � 0. However, the
mathematical model of the system cannot be accurately
obtained, and the UAV will be subject to parameter per-
turbation and external interference during �ight. e con-
troller based on sliding mode control cannot deal with the
in�uence of these uncertain factors well. erefore, it is
necessary to design an intelligent, Robust control system to
achieve accurate tracking of the �ight trajectory. At the same
time, the systemmust have a certain anti-interference ability.

e design of the intelligent control system is shown in
Figure 2.

e identi�cation of the system and the approximation
of the function can be realized through a pure wavelet neural
network, and this will also lead to other problems, such as
the expansion of the network structure. In addition, the
recurrent neural network can realize the identi�cation of
nonlinear systems, but it is not stable enough and the
learning algorithm is also more complicated. e controller
based on the PSO algorithm can not only solve the stability
problem but also approximate the ideal mathematical model
and reduce the dependence on the mathematical model.

e purpose of this paper is to reduce the high-per-
formance computing early warning neural network over-
head of the underlying network under the premise that the
underlying network resources are limited, and path seg-
mentation is not supported. A binary combinatorial opti-
mization model for the anti-UAV high-performance
computing early warning neural network problem is
established.

First, de�ne the remaining available CPU and memory
resources of the underlying node nS ∈ NS as cpu′(nS) and
memory′(nS), respectively, and the remaining available
bandwidth resources of the underlying link eS ∈ ES is b′(eS).

cpu′ nS( ) � cpu nS( ) − ∑
∀nV⊥nS

cpu nV( ),

memory′ nS( ) � memory nS( ) − ∑
∀nV⊥nS

memory nV( ),

b′ eS( ) � b eS( ) − ∑
∀eV⊥eS

b eV( ).

(13)

Among them, nV⊥nS is de�ned that the virtual node n is
allocated to the bottom node n, and eV⊥eS is de�ned that the
virtual link n is allocated to the bottom links.

e available bandwidth of any path P ∈ PS is expressed
as the minimum remaining bandwidth along the path be-
tween two lower-level nodes.

b(P) � min
eS(i,j)∈P

b eS(i, j)( ). (14)

Let MN be a binary m× n matrix, which represents the
high-performance computing early warning relationship of
the node. Each row vector and column vector represent a
virtual node and the underlying node, m � NV|, n � |NS|,
When the virtual node niV is assigned to the bottom node niS,
the value of MN(i, j) is 1. Otherwise, it is 0. For the same
anti-UAV request, each virtual node can only be assigned to
one bottom node, and two virtual nodes cannot be assigned
to the same bottom node simultaneously. e constraint
conditions are formalized as follows:

∑
m

i

MN(i, j)≤ 1, j ∈ 1, 2, . . . , n{ },

∑
n

j

MN(i, j)≤ 1, i ∈ 1, 2, . . . , m{ }.
(15)

e remaining available CPU and memory resources of
the underlying node njS need to be able to meet the needs of

UAV system
x = Ax + Bu
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Figure 2: Intelligent control system structure.
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the virtual node niV, and the node is within the constraint
range of the requested location of niV, before n

i
V can be

alerted to the underlying node njS by high-performance
computing. e distance between nodes niV and njS is rep-
resented by Euclidean distance dis (). e remaining
available CPU and memory resources of the underlying
nodes and the node constraints are, respectively,

MN(i, j) cpu′ n
j
S( ) − cpu niV( )( )≥ 0,

MN(i, j) memory′ njS( ) −memory niV( )( )≥ 0,

MN(i, j) × dis loc niV( ), loc njS( )( )≤Di
V,

(16)

where, MN(i, j) ∈ 0, 1{ }, i ∈ 1, 2, . . . , m{ }, j ∈ 1, 2, . . . n{ }.
e anti-UAV high-performance computing early

warning neural network model in this paper is shown in
Figure 3 [10].

(1) e system model includes a source node and K
(K> 2) receiving nodes are con�gured, and the packet
set needs to be broadcast to K receiving nodes. In this
paper, it is assumed that the source node is within a
period of time. Broadcast data packet within Δt

(2) e receiving node sends ACK or NAK information
to the source node, the source node receives and
maintains the feedback matrix table T, T� (K, N),
and the matrix element T (i, j) indicates whether the
receiving node correctly receives the data packet.
Here, RiPj1≤ i≤K, 1≤ j≤M.

(3) In short, here, it is assumed that all control messages
ACK or NAK are sent instantaneously and are not
lost.

(4) e node Ri data packet loss rate obeys the binomial
distribution with the parameter of pi(i � 1, 2,
. . . , K).

In this article, if it is considered that there are n packets of
the same size in the network, they need to be sent and to be
packeted and expressed X1, X2, . . . , Xn. e source node en-
codes the random linear asynchronous or the packet lost by the
receiving node, and the new packet Yi is expressed as follows:

Yi �∑
n

j�1
gijXj. (17)

e coding coe�cient gij(1≤ j≤ n) is a value randomly
selected from the de�ned area Fq. After each receiving node
receives n coded packets, it can decode the original packet
through the next linear equation.

X1

X2

⋮

Xn




�

g11 . . . g1n

⋮ ⋱ ⋮

gn1 . . . gnn




− 1 Y1

Y2

⋮

Yn




. (18)

e PSO algorithm introduced in this paper is divided
into a data broadcast stage and a retransmission stage. e
speci�c steps are as follows:

(1) e source node broadcasts N data packets to K
receiving nodes, and each data packet is sent at a
certain time interval. e source node establishes a
feedback matrix T through the received ACK or
NAK feedback information and maintains the
update.

(2) e source node enters the retransmission phase
after the timeMΔt after broadcasting N packets. All
lost data packets form a set D � X1, X2, X3,{
. . . , Xn}, and the largest coe�cient Mmax in
the coe�cient vector G � gi1, gi2, gi3, . . . , gin{ }
(1≤ i≤Mmax) (selected randomly from the limited
domain Fq) is used to encode all the lost data packets
to generate Mmax coded packet. Mmax is the maxi-
mum number of lost data packets in all receiving
nodes, which is determined by the following
formula:

Mmax � max
i∈ 1,2,...,K{ }

∑
K

j�1
T(i, j)





. (19)

(3) After resending the encoded data packet, each re-
ceiving node estimates and displays the arrangement
of its own encoding vector matrix G. Mmax ri If
ri ≠N means that G has not reached the full ar-
rangement for the node Ri, then the node Ri will
notify the source node how many coded packets
need to be retransmitted before G can reach the full
arrangement. e required coded packets are

Data packet M

Data packet flow

Data packet 2 Data packet 1

Receiver 1

Receiver 2

Receiver k

Figure 3: System model.
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expressed through Ni, the specific situation is shown
in the following formula [11]:

Ni �
N − ri, ri ≤N,

0, ri ≥N.
 (20)

In the formula, i � 1, 2, . . . , K

If the receiving node Ri receives a Mmax coded packet
in the data retransmission phase, Ni is 0. If the node
Ri loses 2 encoded packets, then Ni � 2.

(4) +e source node updates Mmax according to the Ni

value fed back by each receiving node and generates
Mmax coded packet in the new retransmission stage.
+e algorithm is shown in equation (4).

(5) (3) and (4) are repeated until the vector matrix of all
receiving nodes is equal to N. +at is Mmax � 0, if
there is no lost packet, the receiving node can use the
Gaussian elimination method to decode the original
data packet.

+e PSO algorithm is based on a complex adaptive
system and belongs to a random search algorithm. +is is
also collective intelligence; everyone works together to solve
problems. w belongs to the convolutional neural network
group algorithm, which is a more important and changeable
parameter and plays an important role in the improvement
of the algorithm. If w becomes larger, the speed will become
smaller, which is beneficial to the overall retrieval. If you use
w to reduce the time, the speed will be shortened, which is
good for local search. How to control the value of w and
effectively solve the problem is a hot spot in the research
process. Related research has proposed a linearly decreasing
inertia weight, namely LDW, which linearly changes w to
improve the convergence of the algorithm.

w � wmax −
t · wmax − wmin( 

tmax
. (21)

In the formula: the value of w is [wmin, wmax]; t is the
current iteration number; tmax is the maximum value
obtained.

When w decreases linearly, the initial convergence speed
decreases, and then as w decreases, the diversity of the al-
gorithm decreases, and the local optimum is achieved. In this
paper, we use a nonlinear weighting method to solve the
deficiencies in the convolutional neural network group
algorithm.

w � wmax − wmax − wmin(  · arcsin
t

tmax
·
π
4

 . (22)

According to the above formula, when the value of t is
small, the approximate value of w is equal, and when the
value of w is large, it is very advantageous for global search.
In the process of increasing t, w decreases nonlinearly, and
the value of w is relatively small, so the good local search
ability of the algorithm is ensured, and the global search and
local search can be adjusted flexibly. Generally speaking, the
best design problem can be solved by using a three-layer
structure network.+erefore, a three-layer neural network is
used, namely input and output and implicit layers.

(1) Network initialization: Each level has a corre-
sponding right coefficient, and a random small
nonzero number is given to realize the threshold
initialization of each level and determine the learning
speed and neuron excitation function.

(2) Output calculation of each layer. First, realize the
input of the sample X � (x1, x2, . . . , xn) and realize
the output of Y � (y1, y2, . . . , yn), and calculate the
neuron output by the following formula:

Hi � f 
m

j�1
wij − ai

⎛⎝ ⎞⎠, i � 1, 2, . . . , q,

Ok � 

q

i�1
Hiwki − bk, k � 1, 2, . . . , L.

(23)

In the formula:H belongs to the hidden layer output.
Number of nodes; a is the threshold activation
function; the connection weight of the input layer
and the implicit layer. O refers to the output of the
output layer. B is the connection weight between the
hidden layer and the output layer representing the
threshold.

(3) Calculate the error e between the network output O
and the expected output O1.

ek � O1k − Ok, k � 1, 2, . . . , L. (24)

(4) Update network connection and threshold:

wij � wij + μHi 1 − Hi( x(j) 
L

k�1
wkiei, j � 1, 2, . . . , m; i � 1, 2, . . . , q,

wki � wki + μHiek, i � 1, 2, . . . , q; k � 1, 2, . . . , L,

ai � ai + μHi 1 − Hi( x(j) 
L

k�1
wkiei, j � 1, 2, . . . , M; k � 1, 2, . . . , L,

bk � bk + ek.

(25)
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e values of wki and wij can be adjusted by the network
error e and the above formula, and the values of a and b can
also be adjusted by e.

2.3. Composition of System. e designed anti-UAV rec-
ognition and trajectory prediction neural network, AUNN).
(AUNN) is composed of 4 links of UAV feature extraction,
UAV type recognition, UAV image space position recog-
nition, andUAV image space trajectory prediction, as shown
in Figure 4.

First, the algorithm can obtain the multiscale deep se-
mantic feature information of the UAV from the aerial UAV
image captured by the imaging system through the feature
extraction network; Subsequently, the obtained multiscale
and high-dimensional feature maps are sent to the UAV type
recognition network and the UAV image space position
recognition network, to �gure out the target UAV category
and image space position. According to the change trend of
the corresponding UAV’s image space position center in a
certain time domain, the historical movement trajectory of
the UAV in the changed time domain is constructed. Finally,
combined with the historical motion trajectory, the pre-
dicted motion trajectory of the target UAV in the future time
domain is analyzed and output with the PSO algorithm, and
the real-time recognition and tracking of the UAV in the
current time domain and the trajectory prediction in the
future time domain are completed.

Anticipating in the anti-UAV defect inspection, usually
based on the behavior of other users in the community, your
own participation behavior can be adjusted. According to
the above-mentioned user behavior characteristics, the anti-
UAV defect detection manager uses incentive guidelines and
other methods to reasonably check the anti-UAV defects to
improve the user’s participation. is kind of management
scheme manages the anti-UAV defect detection information
resources intelligently. Anti-UAV high-performance com-
puting early warning intelligent management:e anti-UAV
defect inspection manager analyzes the user’s behavior data
and browsing history, and other user resources, explores the

needs of users, predicts the user’s behavior tendency, and
provides users with personalized services that meet their
needs, and ultimately realizes the added value of service
experience through the organization and regeneration of
information.

is article refers to the interactive mechanism model of
enterprise knowledge management and service innovation
and summarizes the anti-UAV high-performance comput-
ing early warning platformmodel (see Figure 5) to clarify the
shortcomings of the anti-UAV, how to con�gure infor-
mation, and use data to improve community environment
and improve the viscosity of user participation.

e management of any information resource is a
process, and the detection of the defects of the anti-UAV
consists of several related ordered rings, which constitute the
entire organic ring. Intelligent management refers to the
analysis of information resources in anti-UAV high-per-
formance computing early warning based on the above three
links of resource accumulation, resource arrangement, and
resource utilization. Please refer to Figure 6 for the speci�c
process.

It can be seen from Figure 6 that the resource storage
ring contains information storage and information collec-
tion. In the resource storage link, the anti-UAV system
detects the collected anti-UAV defects. e data sorting link
includes the sorting of the results of information organi-
zation, information analysis, and information data analysis.
For target user data, the system data of the mobile phone is
analyzed and compared, and in-depth, intelligent operations
are taken to make it e�ective and reasonable. Resource
utilization includes a system recommendation link, which
classi�es and organizes target users through the analyzed
data, provides e�ective and systematic data to corresponding
users, and improves resource utilization e�ciency.

2.4. Algorithm Implementation. In order to quickly and
intuitively obtain the category and location information of
aerial UAV, it is �rst necessary to identify and locate the
UAV in the image or video stream data captured by the
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UAV image

Feature map 1 size:
13×13×255 pixels

Multi-scale
feature map group Output result

UAV category
information

UAV predicted
trajectory

UAV image
space position

Long and short
term memory
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26×26×255 pixels

Feature map 3 size:
52×52×255 pixels
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recognition
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recognition
network

Compose historical motion trajectory in continuous
time domain draw prediction results

Figure 4: AUNN network structure.
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camera. Orienting at ground-based computing platforms, in
view of multiscale and multitarget UAV recognition tasks in
the air environment, a UAV Feature Extraction Network
(UFEN) is designed as the backbone of AUNN to extract
deep semantic information of aerial UAV and use the YOLO
V3 (you only look once) target recognition network as the
middle layer (neck) and top layer (head) of the AUNN
network to complete the target category and image space
recognition calculations.

2.4.1. UAV Feature Extraction Network. eUFEN network
is a deep residual network, which is composed of a standard
convolutional layer, an expanded convolutional layer, and a
stack of cyclic residual modules. e network structure of
UFEN is shown in Figure 7.

Since the ground-based platform is shooting aerial
UAVs, the distance from the UAV to the ground-based
detection unit is generally 45m. At this time, the amount of
semantic information in the foreground of the UAV in the
image is much smaller than the amount of background
semantic information, and the whole colored sky dominates
the background. When using the same e�ective size con-
volution kernel, the receptive �eld of standard convolution
and the receptive �eld of expanded convolution is shown in
the following equations:

rn � rn−1 + kn − 1( )∏
n−1

i�1
si, (26)

rn � rn−1 + d kn − 1( )∏
n−1

i�1
si, (27)

where rn is the receptive �eld of each unit in the nth
convolutional layer; i is the �rst n− 1 layer of convolution,
the index value of each layer of convolution; kn and Si are the
size and step size of the convolution kernel of the nth
convolutional layer, respectively; d is the expansion con-
volution coe�cient.

By comparing equations (26) with (27), it can be seen
that under the premise that the moving step of the con-
volution kernel is the same as the input image size, the
receptive �eld of expanded convolution in the same layer
network is larger than that of standard convolution. For
images of aerial UAV, expansion convolution can more
e�ectively obtain the deep semantic features of the image
and reduce the multiple redundant calculations of the
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Figure 5: Anti-UAV high-performance computing early warning platform.
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background environment in the standard convolution it-
eration process. However, due to the discontinuous sam-
pling of the convolution kernel during the calculation
process of the expansion convolution, for small aerial UAV
targets, the sky dominates loss of spatial hierarchical in-
formation, and the inability to reconstruct small object
information are prone to occur, as shown in Figure 8(a). In
order to solve the above problems, the expanded convolu-
tion module with a zigzag structure is used to replace the
standard convolution [12, 13] to avoid the expansion con-
volution kernel with no spatial structure connection to skip
or dilute the semantic information points of the UAV. e
calculation method of the expanded convolution module
with a saw tooth structure is shown in the following formula:

Feature � conv5dil conv
2
dil conv

1
dil ∗ input( )[ ]. (28)

In formula (28): input is the input data; Feature is the
feature map obtained after calculation; convdil is the ex-
pansion convolution calculation; 1, 2, and 5 are the ex-
pansion coe�cients. Meanwhile, the expansion coe�cient of
the high-dimensional expansion convolution is controlled,
and the maximum expansion coe�cientMi in the expansion
convolution is as follows:

Mi � max Mi+1 − 2ri,Mi+1 − 2 Mi+1 − ri( ), ri[ ]. (29)

In formula (29): ri is the receptive �eld of the i-th ex-
panded convolution. e expanded convolution module
structure of the sawtooth structure is shown in Figure 9 and
Table 1.

After the above mixing and matching, the zigzag
structure is fused and convolved, and the full coverage
calculation of the feature map information points, as shown
in Figure 8(b), is realized. at is, the larger receptive �eld
can be used to extract global semantic information, which
also prevents ignorance of target feature information.

When performing deep semantic feature extraction on
multiscale UAV targets, due to the continuous deepening of
the network and the increase in the number of loop itera-
tions, the size of the feature map will be reduced after each
convolution calculation. e small-scale UAV target with
less semantic information has a smaller feature map area in
each layer. When the network depth is too large, the feature
information of the small target will be di�cult to be dis-
tinguished, and the internal detail texture in the deep se-
mantic information will be weakened. In order to improve
the recognition e�ciency of small targets, it is necessary to
condense deep semantic information and retain shallow
feature information [14, 15]. UFEN uses a residual model.
Each residual module is composed of two residual units. Each
residual unit is shown in Figure 10 including convolutional

Residual
module 5

Expansion
module 5

Residual
module 4

Number of cycles: 8Number of cycles: 4 Number of cycles: 8

Number of cycles: 2

Expansion
module 4

Residual
module 3

Expansion
module 3

Expansion
module 1

Convolution
module 1 Splicing

Up-sample

Feature map 3

Output size:
13×13×255 pixels

Residual
module 1.

Expansion
module 2

Residual
module 2

Convolution
unit

Number of
channels: 1024
Convolution
kernel: 3×3

Convolution unit
Number of

channels: 32
Convolution
kernel: 3×3

Input size:
416X416X3 pixels

Convolution
unit

Number of
channels: 255
Convolution
kernel: 1×1

Convolution
unit

Number of
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Number of
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kernel: 1×1

Figure 7: NFEN network structure.
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layer, batchnormalization layer, and activation function layer.
Among them, the activation function uses Leaky ReLU. Each
residual module can integrate the shallow semantic infor-
mation and deep semantic information inside the module,

connect each subsegment network with a shortcut method,
integrate large-size, low-dimensional features and small-size,
high-dimensional features to improve the accuracy of mul-
tiscale target recognition, control gradient propagation, and
prevent gradient dispersion or gradient explosion. e re-
sidualmodule structure inUFENis shown inFigure 11.UFEN
has a total of 5 residual modules, which are, respectively,
connected to the 5 expansion convolution modules. e �rst

Expansion coefficient: 1 Expansion coefficient: 2 Expansion coefficient: 5

(a)

Expansion coefficient: 1 Expansion coefficient: 2 Expansion coefficient: 5

(b)

Figure 8: Feature extraction of the expanded convolution module with a sawtooth structure. (a) Standard dilated convolution feature
extraction. (b) Zigzag structure fusion convolution feature extraction.

Dilated convolution n
Convolution kernel: 3×3; step size: 1;

expansion coefficient: 1

Expansion convolution n,
Convolution kernel: 3×3; step size: 1;

expansion coefficient: 5

Expansion convolution n,
Convolution kernel: 3×3; step size: 1;

expansion coefficient: 2

Expansion module n

Figure 9: e structural diagram of the expanded convolution
module with a sawtooth structure.

Table 1: e number of convolution kernels in each layer of the
zigzag structure expansion convolution module.

Number of modules
Level number

n1 n2 n3
1 32 32 64
2 128 64 128
3 256 128 256
4 512 256 512
5 1024 512 1024

Convolution
layer

Batch
normalization

layer

Convolution unit

Activation
function

layer

Figure 10: Convolution unit structure diagram.
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residual unit of the residual module will downsample the
picture once and will predict the picture in the last 3 times of
downsampling. e cycle times of the 5 residual modules of
UFEN are 1, 2, 8, 8, and 4, respectively.e speci�c number of
convolution kernels is shown in Table 2.

2.4.2. UAV Target Recognition Network. After UFEN
completes the feature extraction of the UAV target and
generates 3 feature maps with scales of 13×13, 26× 26,
52× 52, respectively, AUNN will use the YOLO V3 target
recognition network to identify the feature map group.

e YOLO V3 target recognition network will mesh the
recognition area on the input feature map, and the number
of grid divisions corresponds to the size of the input feature
map. e anchor box in each grid in the feature map is
responsible for identi�cation and detection, and the infor-
mation N contained in each grid is expressed as follows:

N � bx, by, bw, bh, p0, p1, . . . , pc[ ] × B, (30)

where bx, by, bw, bh are the coordinates and size information
of the central point of the current prediction frame; p0 is
whether the target is included in the current grid and the
accuracy of the target location; p0, p1, . . . , pc is the proba-
bility that the target in the frame belong to the type to be
identi�ed. If the target center falls in the semantic infor-
mation pixel point of a certain feature map, the grid will
detect the target in this area, B is the number of anchor
boxes, and the con�dence value Po is the product of the
probability of detecting the target and IOU (intersection
over union), which is shown in the following formula:

confidence � P(object) × IOUtruth
pred , (31)

where P (object) is whether there is a target in the grid. If it
exists, the value is 1, and the value is 0 if it does not exist;

IOU is the occurring simultaneous ratio, that is, the truth
frame truth generated by the target and the range frame pred
generated by the target recognition, the expression is shown
in the following formula:

IOU �
DR∩GT
DR∪GT

. (32)

In the formula: DR is the detection result; GT is the
ground truth, and the result of the intersection of the de-
tection target and the ground truth is shown in Figure 12.

By calculating the IOU between the detection target
range frame and the ground truth, the network can dis-
tinguish the foreground target from the background target.

For feature maps at di�erent scales, when each divided
grid classi�es internal targets, it needs to predict the class
probability of the internal c targets, that is, the probability of
the i-th target falling in the grid P(Classi|object):

P Classi|object( ) � P(object) × IOUtruth
pred

� P Classi( ) × IOUtruth
pred .

(33)

Each grid in the YOLO V3 network must �rst calculate
whether there is a target inside. When it is determined that a
target exists, the classi�cation of the target will be judged
according to its category prediction probability. When the
target’s prediction probability of a certain category exceeds
the threshold and is greater than other classi�cation pre-
diction values, the target is considered as the current category.

Convolution unit n,
Convolution kernel:

3×3; step size: 1

Residual module n

Convolution unit n,
Convolution kernel:

3×3; step size: 1

Sum

Figure 11: Structure diagram of residual convolution module.

Table 2: e number of convolution kernels in each layer of the
residual convolution module.

Number of modules
Level number

n1 n2
1 32 64
2 64 128
3 128 256
4 256 512
5 512 1024

Test results

IOU

True range

Figure 12: Schematic diagram of IOU.
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For the judgment of the target’s position information, YOLO
V3 will continuously learn and correct the size of the anchor
box through �ne-tuning iteratively so that the result of the
prediction frame is close to the truth frame. e adjustment
process is shown in the formula:

bx � σ tx( ) + cx,

by � σ ty( ) + cy,

bw � pwe
tw ,

bh � phe
th .




(34)

In formula (34): cx and cy are the coordinates of the
upper left corner of the corresponding grid on di�erent scale
feature maps; tx, ty, tw and th are the deviation between the
prediction box and the truth frame; pw and ph are the length
and width dimensions of the anchor box, and �nally, the
coordinates bx and by of the upper left corner of the pre-
diction frame and the corresponding length and width bw
and bh of the prediction box are obtained.

e UAV trajectory prediction network will take the
UAV space historical time domain motion trajectory as
input data, use the long and short term memory network
PSO algorithm to learn the �ight behavior characteristics of
the UAV, and use the image space position in the existing
time domain to predict the iteratively, position of the image
space in the future time domain.

Long and short term memory network is an RNN op-
timized network that overcomes the problems of gradient
explosion and gradient disappearance. Compared with the
traditional recurrent neural network (RNN), LSTM has an
additional “forget gate” mechanism, which determines
whether to forget the content of the moment through the
correlation between the input and output at a certain mo-
ment and the previous moment, so that only important
information is retained in all periods [15]. e structure of
the PSO algorithm unit is shown in Figure 13.

xt is the current UAV image space motion trajectory of
input in the time domain; ht is the UAV image space
prediction motion trajectory of output in the next time
domain; A is the calculation unit in the PSO algorithm. Each

unit is connected from beginning to end, the calculating unit
in the same layer will use the output of the previous layer as
the input of the next layer; σ (sigmoid) and tanh are the
activation functions.

A reshaped trajectory matrix C will be introduced from
left to right in the LSTM unit. For the input information at
time t, the matrix passed in from the left end in the LSTM
unit is Ct−1, and the matrix passed out from the right end is
Ct. Among them, the Ct−1 matrix is multiplied by a coef-
�cient by the multiplier, and then linearly superposed by the
adder, and �nally Ct is obtained.

e ht−1 matrix on the left is connected with the input ht
matrix, and the coe�cient ft is calculated by the sigmoid
function through a linear unit. e coe�cient is the mul-
tiplier coe�cient in the x matrix transfer process. e ex-
pression is shown in the following equation:

ft � σ Wf ht−1, xt[ ] + bf( ), (35)

where Wf and bf are the undetermined coe�cients to be
learned during the training process. In the “forget gate” of
LSTM, if the output of the sigmoid function is 1, the input
will be completely remembered; if the output is 0, the input
will be completely forgotten; if it is the intermediate value of
0∼1, the input will be remembered in proportion.

Finally, LSTM passes the input information through a
“forget gate” again to generate an output ht. ht generated has
two parts. One part is passed to the same layer unit, and the
other is passed to the next layer unit. en the �nal output
predicted trajectory at time t of the LSTM unit is as follows:

ht � σ Wt ht−1, xt[ ] + bt( ) × tan hCt. (36)

rough the above calculations, AUNN has been able to
obtain the category information and location information of
the target UAV, and project the center point of the con-
tinuous frame recognition position of the target UAV to the
time domain coordinates to obtain the historical time do-
main motion trajectory of the UAV image space, and use the
PSO algorithm to predict the position of the UAV in the
future time domain. e feedback �ow of the calculation
process is shown in Figure 14.

ht

Xt-1

σ σ σtanh

tanh
+

ht+1

Xt-1

σ σ σtanh

tanh
+

ht-1

Xt-1

σ σ σtanh

tanh
+

σ σ σtanh

tanh
+

σ σ σtanh

tanh
+

A A

Figure 13: PSO algorithm structure.
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3. Experimental Results and Analysis

e initial learning rate in the training phase is set to 0.001,
and the learning rate is gradually increased in the �rst two
generations. When the number of iterations is 380 times, the
learning rate is reduced until the learning rate reaches
0.000001, which will not decrease, by which the loss function
is further converged, and the learning rate curve is shown in
Figure 15.

In order to verify the computing power of AUNN, an
image data set for aerial UAV recognition was constructed
based on the military and civilian �elds. ere are a total of
760 images in the data set, which are classi�ed into re-
connaissance, payload/control, and o�ensive targets
according to the UAV’s structure, functions, and executable
tasks. e data components of each type of UAV are shown
in Table 3.

e veri�cation platform is DELLZ840, the CPU con-
�guration of the central processing unit is Intel Xeon E5-
2643 V3, the main frequency is 3. 4 GHz, the GPU is Quadro
P5000, and the running memory is 32GB, and the com-
puting environment is Ubuntu 18.04. During the test, the
IVFNN programming language was Python 3.7, with Ten-
sor�ow 2.0 and Opencv 3.2 as auxiliary high-level APIs.

After AUNN completes training, the total loss curve of
the network is shown in Figure 16. After about 40,000 it-
erations, the �nal loss stabilizes at about 0. From the loss
curve, it can be seen that the results of AUNN network
training are relatively ideal.

AUNN’s network training curve has a good convergence
state, without gradient explosion, dispersion, disappearance,
etc., which proves that the network designed by this research
has a good feature learning ability. e average target rec-
ognition rate of AUNN is 82%, the average trajectory pre-
diction rate is 80%, and the calculation speed is 24 frames/s.
e network’s UAV recognition and trajectory prediction
e�ects are shown in Figure 17. Figures 17(a)∼17(c) recog-
nition e�ect of the 17 Figure network on command
UAV, scout UAV, and attack UAV; Figures 17(d)∼17(f )

t1Continuous time domain
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t2 tn

initial position

Image space

Trajectory

True trajectory.
True trajectory.

Predict trajectory,

Figure 14: UAV image space history and time domain motion trajectory mapping method.
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Figure 15: AUNN network learning rate curve.

Table 3: UAV data set structure.

Category Number of pictures
Attack UAV 373
Payload/Command UAV 190
Scout UAV 197
Total 760
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Figure 16: AUNN network loss curve.
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correspond to the attacca trajectory prediction e�ect of 3
types of UAVs.

According to the results shown in Figure 17, AUNN can
accurately identify and locate multitarget UAVs in the air
under a ground-based platform. In the meantime, it can
predict the UAV image space in the future time domain
based on the current UAV image space trajectory to achieve
rapid and accurate early warning for the “low, small, slow”
UAV target, and provides machine vision support for the
anti-UAV system.

4. Conclusion

e imbalance, turbidity, and instability of the high-per-
formance computing early warning neural network in the
use process are more important in the daily use process. e
PSO algorithm in this paper can realize the optimization
processing of the support vector regression model. While
constructing the network high-performance computing
early warning model, it uses three sets of di�erent time
granular data in the MAWI data set to carry out a detailed
analysis with sample analysis. Finally, the experimental
results show that the method proposed in this paper has
better early warning performance for high-performance
computing and can e�ectively solve the early warning
problem of network high-performance computing. Finally,
the �ight state curve of the UAV is obtained through
simulation, which veri�es the e�ectiveness of the control law
design. erefore, this method can solve the �ight control
problem of UAV in complex situations.
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