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�e number of hearing-impaired people is increasing year by year; robotic cochlear drilling surgery is one of the safest methods to
treat deafness. Looking at the issue of low e�ciency of temporal bone posture positioning in cochlear implantation robotic
drilling, a novel auxiliary ring marker temporal bone positioning method was proposed to improve temporal bone posture
positioning e�ciency, optimize the operation time, and reduce auxiliary injuries caused by the surgery. First, the temporal bone
visual positioning assistant ring was designed based on the requirements for cochlear robotic drilling surgery.�e target detection
was conducted on the auxiliary ring and image processing and feature point extraction methods were designed. �en, the three-
dimensional coordinates of the measured feature points were obtained by binocular vision, and the auxiliary ring and temporal
bone postures were estimated. Finally, the auxiliary ring and temporal bone localization methods were validated. �e experiment
results indicated that the temporal bone was located quickly and e�ectively in a total time of about 33ms, which was faster and
more accurate than traditional visual localization methods and could satisfy real-time temporal bone localization during surgery.
�is study can reduce the time of temporal bone visual positioning in cochlear implant drilling operations, greatly improving the
robot’s capabilities to extract visual information during the operation, which has a better auxiliary role for future research and
applications of the cochlear implant drilling operation.

1. Introduction

Cochlear implant drilling is a new surgical procedure that
optimizes the surgical method and reduces surgical trauma
[1, 2]. As robot technology has developed, robot drilling
surgery has gradually become more acceptable [3, 4].
Compared with human-performed operations, robotic op-
erations for cochlear drilling have shown far more advan-
tages than the former, which is conducive to an e�ective,
quick, and safe methodology for cochlear drilling [5]. Hu-
man beings have innate advantages in visual information
perception and can quickly extract and identify information
and content during surgery; however, there is no perfect
computer model in this �eld, and the weak visual

information processing ability is the key to the challenges
facing robotic surgery for cochlear implant drilling [6]. In
recent years, temporal bone visual localization as the core
technology for robotic drilling surgery has garnered an
increasing amount of attention. �e goal is to map the
positions of key tissue structures in the ear and plan the
drilling path of surgery by using the postures of human
temporal bones [7].

Currently, many scholars are studying the rapid tem-
poral bone localization method, but most of them still abide
by the traditional image detection marker method. Cho et al.
proposed registering the locations of surgical wounds using
a tripod visual calibration rod as a marker [8]. �e cali-
bration rod could provide reliable geometric feature
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information and facilitate calculating wound location, but
the registration method for implanting the calibration rod
was cumbersome and would easily affect the operating space.
Dillon et al. used titanium screw implantation on temporal
bones to simplify the challenges inherent to marker im-
plantation [9], but the locations where the titanium screws
were implanted were random and riddled with uncertainties,
and it is difficult for computers to obtain such random
information. Jia et al. proposed a short-flow visual regis-
tration method of the malleus, which can effectively improve
registration accuracy for intra-aural structures and reduce
any damage caused by the registration process [10], but this
method requires a surgeon to have a lot of clinical
experience.

In conclusion, the temporal bone localization markers
used now cannot satisfy the requirements for rapid detection
in computer vision. To solve the aforementioned problems,
this paper proposed a temporal bone localization method
based on an auxiliary ring, named the Deep (DL-M), and
functions based on a combination of deep learning target
detection, computer vision, and medical requirements of
cochlear implant drilling surgery. )e DL-M reduces ex-
traction time for feature points and matching calculation of
irrelevant features through image processing. Compared
with BM, SGBM, and other methods, DL-M is faster, and its
overall duration is about 40ms, which meets the require-
ment for real-time detection of more than 20FPS. )e av-
erage detection accuracy of the auxiliary ring is less than
±0.63°.

2. Principles of Auxiliary Temporal Ring
Bone Localization

In the robotic drilling operation for a cochlear implant, a
surgical approach from the mastoid surface of the temporal
bone to the tympanic step needs to be drilled, so it is
necessary to locate the temporal bone in the body to de-
termine the drilling point and the direction of approach [11].
Since there is no fixed and easily identifiable feature in-
formation for the temporal bone, it is difficult to calculate its
pose through vision. )erefore, it is necessary to plant ex-
ternal markers to establish the spatial relationship between
the markers and the temporal bone and to detect and cal-
culate the pose information for external markers to obtain
the current pose information for the temporal bone.
)erefore, during robotic cochlear implant drilling surgery,
temporal bone position and pose information detection are
obtained by detecting temporal bone visual markers.

2.1. Temporal Bone Positioning Auxiliary Ring. During co-
chlear implant drilling, the temporal bone with implant
markers was initially scanned with high-precision CT, and
its three-dimensional image was reconstructed. )en, the
relative position of the tissue structure in the ear was cal-
culated to plan the drilling path based on the surgical
conditions, and the relative postural relationship between
the path and markers was calculated. Finally, the robot drills
the planned surgical approach through the relative postural

relationship between the postural information from the
markers and the path [12, 13]. )erefore, temporal bone
markers should not only have a clear shadow in a CT scan
but also visual features that can be detected by machine
vision. )e traditional locating method with external
markers is random and subjective, and the irregular pattern
is not conducive to machine vision detection and analysis.
)ere are three main effects of robotic drilling. First, the
spatial location of marker planting is too single, which will
affect the calculation of depth information, which will lead to
a large relative position error between marker and tissue
structure. Second, too many marker points will cause sec-
ondary damage to the temporal bone. )ird, it is difficult for
robots to detect and analyze the traditional irregular
planting location distribution. To resolve these issues, a
robotic drilling auxiliary ring for cochlear implantation was
proposed and designed, as shown in Figure 1.

)e auxiliary ring is structurally divided into three parts:
the inner ring, the outer ring, and the attached titanium
sphere. )e inner ring is nested in the outer ring, and the
titanium sphere is attached to the torus of the outer ring and
is sequentially mapped. )e effects of traditional markers
and auxiliary ring implantation are shown in Table 1. By
using the auxiliary ring as the temporal bone visual regis-
tration marker, up to three wounds on the temporal bone
can be fixed, thus reducing temporal bone injuries in the
implanting process. )e use of a circular structure is more in
line with human engineering properties. )e titanium
spheres attached to the outer ring can be used as markers in
CT scan reconstruction instead of titanium nails. )e inner
and outer ring structure adds visual features that are easy to
detect on the auxiliary ring surface. )e feature points of
colors, fixed shapes, and distribution laws are beneficial to
computer vision processing and analysis.

2.2. BinocularVisionMeasurements. In the cochlear implant
drilling operation, the auxiliary ring spatial position should
be calculated, and real-time feedback of image information
during the operation is needed. Binocular vision was used to
locate the auxiliary ring. Based on the parallax principle,
binocular vision reconstructs the three-dimensional coor-
dinates of the target in space according to the two-di-
mensional coordinates of the measured target in the left and
right images combined with the transformation relationship
between each coordinate [14]. Binocular ranging needs to
calibrate the binocular camera, determine the transforma-
tion relationship between the world coordinate system, pixel
coordinate system, and camera coordinate system, and fi-
nally calculate the rotation matrix and translation vector
between the internal and external camera parameters and
the left and right cameras. )e calibration tool for the
STEREO Camera Calibrator in MATLAB was adopted, and
Chang’s calibration method was employed to calibrate the
internal and external parameters of the left and right
cameras. )e calibration results are shown in Figure 2.

According to the mapping relationship between the
projections, external parameters, and internal parameters,
the distortion coefficients were obtained after the left and
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right cameras were calibrated, and the projection matrices of
the cameras were Ml Mr, respectively, allowing the world
coordinates of any point in space to be (X, Y, Z), then the
following formula can be obtained:
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In the above formula, Zcr Zclis the distance from the
projection of a point in space on the optical axis to the

optical center; Mr Ml is the projection matrix of the camera;
and (X, Y, Z) is the world coordinate of a point in space.

3. Auxiliary Ring Positioning Method

)e temporal bone auxiliary ring positioning method DL-M
proposed in this paper for cochlear implant drilling surgery
can generally be divided into three parts: target region
detection, feature point extraction, and position and pose a
solution. )e specific realization process is shown in Fig-
ure 3. First, the outer ring of the input image and the target
region of the characteristic titanium spheres are detected by
the trained deep learning model. Next, the feature points in
the boundary box are extracted quickly, and the image
coordinates are calculated. )en, binocular vision measures
the three-dimensional coordinates of the feature points.
Finally, the pose information for the auxiliary ring is solved
according to the three-dimensional coordinates of the fea-
ture points.

Table 1: Statistics of auxiliary ring model test results.

Target object identification Real quantities Quantity checks Missed checks Error checks
Outer ring 130 131 1 2
Titanium spheres 650 664 5 19
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Figure 1: Auxiliary ring 3D model.
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3.1. Auxiliary Ring Target Detection. How to efficiently
identify an object to be measured is always one of the most
important challenges for machine vision. Due to the in-
fluence of light, blood stains, instruments, and other factors,
it is difficult to obtain the characteristic information of the
auxiliary ring quickly and accurately through traditional
detection methods in cochlear implant drilling surgery. Due
to the development of the Convolutional Neural Network,
deep learning algorithms based on the Convolutional Neural
Network, it has gradually become the main method of target
detection. Compared with traditional detection methods,
deep learning algorithms are more advantageous in terms of
speed, precision, and structure [15, 16]. In drilling surgery,
the deep learning target detection algorithm can quickly and
accurately identify the characteristic information of the
auxiliary ring in complex surgical environments and ac-
celerate auxiliary ring positioning.

To accurately and quickly detect the target auxiliary ring
in a complex surgical environment, the YOLOV3 method
was employed in this paper to detect the target related to the
auxiliary ring [17]. )e outer ring and titanium spheres were
used as detection models for training auxiliary rings to
obtain the boundary information of the outer ring and ti-
tanium spheres. )e K-means clustering algorithm was used
to calculate the prior parameters of anchor points in the data
set, and the method for initiating random numbers in the
clustering algorithm was changed. By analyzing the data set,
9 anchor points are given for the initial calculation, which
can help the network better adjust the size of the bounding
box while learning. In this experiment, the outer ring region
and titanium sphere regions from about 650 images of the
auxiliary rings with a different attitude in different envi-
ronments were labeled, and the PASCAL VOC2007 dataset
was established.

3.2. Feature Extraction. After the target features of the outer
ring and titanium spheres were obtained by target detection,
the target feature information in the boundary box should be
further extracted, as shown in Figure 4. Firstly, the image of
the attitude auxiliary ring was preprocessed by filtration and
equalization. Secondly, the contour information in the
boundary box of the outer ring was detected, screened, and
fitted, and the fitted contour dataset was reconstructed by
using relevant mathematical functions. )en, the

reconstructed ellipse dataset was matched with the original
contour dataset to determine whether the contour was the
target contour that met the conditions. Finally, the center of
the fitted ellipse was calculated, which was the two-di-
mensional coordinate of the center of the auxiliary ring.

To reduce the image processing duration, RoI seg-
mentation was conducted on the original image in the range
of the bounding box information output after target de-
tection, and image pre-processing was conducted within RoI
to reduce the amount of image pre-processing calculations.
Bilateral filtering removed the noise in images in the region
of interest and the image edge information was retained.
)en the target feature points were extracted by ellipse
detection and a region growing algorithm. Finally, the
feature points of the left and right cameras are matched to
provide reliable matching points for binocular vision
calculation.

3.3. Posture Calculating. After the matching target feature
points were obtained, the characteristic coordinates of the
auxiliary ring were obtained through the principles of
binocular vision, and the auxiliary ring position and pose
information were further calculated. )e specific process is
shown in Figure 5.

)e feature points matched by the left and right images
were substituted into (1), and irrelevant variables were
eliminated. )e least square fitting method solved the three-
dimensional coordinates for the feature
points.(xi, yi, zi)i ∈ (1, 5), (qx, qy, qz) represented the co-
ordinates of the centers of the corresponding 1–5 titanium
spheres and the corresponding inner ring. )e obtained
coordinates were the three-dimensional space coordinates
for the auxiliary ring from the image plane coordinates.
Given the world coordinates of the camera, the coordinate
values of the auxiliary ring in the world coordinates can be
obtained through coordinate transformation. To coordinate
with each serial number corresponding to an individual
sphere, this paper combined with the distribution rules of
auxiliary ring attached titanium ball, and designed the co-
ordinate collation of feature points by considering the in-
tensive degree of space points. )e intensive degree ρi of the
coordinate distribution concerning the titanium cue ball was
calculated by using the formula (5), the feature points were
ordered by relative intension of ρi, and, thus, the titanium
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Figure 3: Auxiliary ring positioning method flow.
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spherical coordinate in the image corresponded with the
actual serial number of the ball. It can provide accurate
characteristic correspondence information for the ring at-
titude solution.

According to the regular distribution of titanium
spheres, a virtual average point of titanium spheres is:

pavg �
sum pj 

j
. (2)

Find the square of the absolute distance between each
point and the average point.

ρ �
1
d
2 � p

j
− p

avg
 

2
, (3)

(2) and (3) are simultaneously established, and the ir-
relevant variables are eliminated to obtain:

ρi �
1


k

pik − 
5

j�1
pjk⎛⎝ ⎞⎠

2 k � (x, y, z) ,

(4)

Setting the auxiliary ring attitude as the initial attitude
when the width coordinate of the line between the No. 1
titanium sphere and the ring center is perpendicular to the
image.)e rotation angles around theX, Y, and Z coordinate
axes are defined as θx, θy, θz, respectively. )e initial angle is
defined as when the No. 2 titanium ball and the No. 3 ti-
tanium ball are parallel to the X-axis of the spatial coor-
dinates. )e connection between the center of the No. 2
titanium ball and No. 3 titanium ball is parallel to X, so the
rotation angle around the z-axis can be obtained only by
calculating the tangent value of the connection and X, so θz

can be expressed as:

θz � tan−1 y3 − y2
x3 − x2

 . (5)

To reduce errors in angle calculation caused by visual
detection and feature extraction, the three-dimensional
coordinates of the spherical center were substituted into the
spatial plane equation to fit the auxiliary ring plane by the
spatial multipoint SVD plane fitting method to reduce the
errors caused by binocular vision measurements and opti-
mize the attitude calculation results.
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Taking the residual difference between the selected
feature points and the fitting plane as the goal of minimi-
zation optimization, the fitting objective function is
min‖AX‖, with constraint ‖X‖ � 1through a singular value
decomposition A � UDVT. )e feature vector corre-
sponding to the minimum singular value was the coefficient
vector of the fitting plane. )e geometric meaning of a, b, c

was the coordinate component values of the normal plan
vector, so θx, θy can be expressed as:

θx � tan−1 a
c

 

θy � tan−1 b
c

 

.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(7)

)rough the aforementioned coordinate calculation of
feature points and plane fitting operation, the spatial co-
ordinate position of the auxiliary ring under the camera
plane was obtained. Since the spatial relationship between
the temporal bone and the auxiliary ring was obtained by
preoperative CT scanning, the spatial position of the tem-
poral bone and structural tissue in the ear could be obtained
by coordinate transformation.

4. Rapid Extraction of Auxiliary Ring Features

In the temporal bone auxiliary ring visual positioning
method, the key to pose detection is to extract the set features
quickly and accurately. )e more traditional BM or SGBM
needs to calculate the pixel points of an entire image, and the
algorithm takes a long time and is prone to producing
parallax holes, which is not conducive to extracting specific
feature points. In this paper, the DL-M feature point ex-
traction scheme can quickly and accurately extract target
features and, through improved ellipse matching, regional
growth point selection and matching methods, accelerate
target feature extraction.

4.1. Ellipse Matching Based on Image Moments. While
detecting contour ellipse in the auxiliary ring, because the
input contour was not screened in the Hough ellipse fitting,
it is impossible to judge whether the original contours before
fitting are an elliptic contour. To solve this problem, based
on the concept behind the Hu moments image moment, this
paper calculated the Hu-moment for the fitting contour and
the original contour and judged it, which greatly eliminated
any interference from nonelliptical contours. On this basis, a
contour screening mechanism was added to reduce the
computational burdens for ellipse recognition. After fitting
the selected contour, the mathematical expression for the

fitting ellipse was established by using the rotation matrix
information returned by the fitting, and the fitting ellipse
pixel group was reconstructed. )e calculation formula is:
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)e geometric moments for the reconstructed elliptic
contour and the original image contour were calculated, and
the reciprocal deviations of the geometric moments were
calculated to accumulate the moment errors in the original
contour and reconstructed contours.)e specific calculation
formula is:

Mx � 
M

i�1


N

j�1
ipjqf(i, j),

I(A,B) � 
7

i�1

1
mA

i
−

1
mB

i




.

(9)

)e accumulated error function was then normalized.
When the fitted ellipse contour was similar to the original
contour, I(A, B) approached 0; otherwise, it approached 1.
)e maximum threshold was set to limit the errors between
its geometric moments, and then the similarities between the
two were judged.

4.2. Obtaining the Planar Center of the Titanium Spheres.
While calculating the titanium sphere centers by the angle of
view, part of the titanium sphere boundaries will be blocked
by the outer ring plane, so they cannot be completely de-
tected in the image. In this paper, the region-growing al-
gorithm [18] and circle compensation were used to calculate
the image coordinates of the titanium sphere centers. )e
challenge for the regional growth algorithmwas selecting the
seed starting point. Usually, the seed point is judged arti-
ficially, or the starting point of the seed is obtained by using a
clustering algorithm adhering to a certain set of rules. )is
method was difficult to apply to the seed point selection for
the titanium spheres because of their small size and indis-
tinct features.

To solve the aforementioned problem, the region growth
algorithm was designed in combination with the titanium
sphere boundary box information obtained from YOLOV3
target detection. )e specific process is shown in Figure 6.
)e midpoints of the titanium sphere beam boxes were
utilized as the growth starting points, and the shape of the
visible portions of the titanium spheres were described, and
the field pixel values and growth sizes at the midpoints of the
titanium sphere beam boxes was limited to exclude any
incorrectly detected targets during target detection. )e
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minimum circumferential circle was used to complete the
spherical surfaces of the titanium spheres, and their centers
were calculated.

4.3. Feature Point Matching Based on Polar Constraints.
After the feature points on the auxiliary rings from the left
and right images were obtained through the aforementioned
calculation, the order of the titanium spheres in the left and
right images was different. Based on the concept of polar
constraints, this paper matches the feature points of the
titanium spheres, and the main process is:

(1) Calculated the polar equation on the right image
plane through the coordinates of the characteristic
points of the centers of the titanium spheres on the
left image plane.

(2) Calculated the distances between the feature points
in the right image and the polar line, and found the
right feature points with the smallest distances after
feature traversal. )e smallest point was the
matching point of the left image in the right image.

(3) )e matching feature information was stored, and
the distance error was analyzed. If the error was
greater than the set value, the point was brought into
the region again for growth calculation.

With this method, the target feature points for the
centers of the titanium spheres could be accurately matched.
When compared with the traditional matching methods BM
or SGBM based on polar line constraints, the calculation of
useless coordinates during feature matching can be reduced.
In addition to accelerating the matching speed, the precision
of regional growth feature points was also calculated and
analyzed.

5. Results and Discussion

In this paper, the method that calls for drilling an auxiliary
ring for cochlear implants was used as the test object to
detect features and calculate position and pose information.
Firstly, the trained auxiliary ringmodel was tested on the test
set, and the average detection rate, the missed detection rate,

and the false detection rate were calculated, and the effect of
the model was evaluated by comparing it with the detection
method. )en, the method of extracting feature points is
verified to evaluate its reliability. Finally, the pose infor-
mation of the auxiliary ring under different positions and
postures is measured and the error is analyzed.

In the target detection experiment, 130 test pictures were
tested, and some of the test results are shown in Figure 7.
Among them, the number of auxiliary rings was 130, and the
number of titanium spheres was 650. )e number of de-
tections, missed detections, and false detections for the
model was statistically analyzed, and the results are shown in
Table 1. It can be observed that the model presented in this
paper has a high recognition rate for both the outer ring and
the titanium spheres on the auxiliary ring, and the detection
effect for the outer ring was better than that of the titanium
sphere.

Using auxiliary ring structure characteristics of the
feature point extraction scheme design, by combining deep
learning target detection and image processing with a feature
point detection method that incorporated a feature point
matchingmethod based on polar constraints, a large number
of target detections were decreased, and the time needed for
binocular image feature matching quickly extracted accurate
target feature points. )e specific process and effects are
shown in Figure 8.

To better evaluate the current morphology and mea-
surement data for the auxiliary ring during the operation,
this paper used QT to design the image interactive interface.
Multithreading displayed current image information in real
time and controlled target detection, image processing, and
information transmission programs, as shown in Figure 9. In
the figure on the left, the image content obtained in real time
by the left and right cameras was provided for real-time
observation during the experiment.)e image on the right is
the target detection effect. )e image in the lower right
corner displays the current coordinate information of the
auxiliary ring in real time. )e interface of information
transmission is also reserved in the program, which makes
preparation for the interaction between the surgical robot
and visual information.

)e auxiliary ring was fixed on the experimental plat-
form with a variable dip angle, and the auxiliary ring po-
sition and attitude were measured by changing the platform
angle and setting the auxiliary ring dip angle. )e binocular
camera was placed about 25 cm above the experimental
platform. To eliminate any error interference caused by the
camera’s own attitude, the camera was fixed, and the error
between the actual and measured angle changes was cal-
culated through the differences in experimental angle
measurement. )e position and attitude information of the
auxiliary ring under random different attitudes were mea-
sured several times (greater than 50), and the standard
deviations and maximum deviations obtained from all
measurements were counted. )e test results are shown in
Table 2. Experimental data shows that the method has
relatively high accuracy and small measurement fluctuations
in the test environment, and the measurement results have
good stability.

Computing center of
the circle

Enter the next
boundary

Titanium sphere
boundary box

Seed point calculation

whether it is a
seed point

Y

N

Circular
compensation

Image input

Region growing

Figure 6: Calculation process for center coordinates.
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In robotic surgery, the use of titanium nails as markers
does not give a fixed structure. )e use of a triangulation bar
usually requires the secondary calibration in the operation,
which takes time and has a certain impact on the operating

space. )e auxiliary ring of cochlear implant drilling used in
this paper adopts the combination of simple shapes, colors,
and materials, which not only meets the positioning re-
quirements of the auxiliary robot cochlear implant drilling

(a) (b) (c)

(d) (e) (f )

Figure 8: Feature Point Extraction Effect. (a) Target detection; (b) ellipse fitting; (c) region growing; (d) contour detection; (e) compensation
outline; and (f) final exaction effect.

Figure 7: )is is a figure. Schemes follow the same formatting.
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surgery but also provides enough operating space. It has
certain advantages compared with titanium nail implanta-
tion or the use of a visual calibration rod. )e effects of
traditional markers and auxiliary ring implantation are
shown in Table 3.

In this paper, the deep learning algorithm was combined
with the binocular vision image processing auxiliary ring
detectionmethodDL-M.)e neural networkmethod is used
to train the model of specific auxiliary rings in advance, and
the deep learning target detection method is applied to
medical-assisted detection, which is faster and more accu-
rate than the traditional target detection method, and the
detected perceptual region helps to reduce the computa-
tional effort and difficulty in the subsequent feature ex-
traction. Compared with the traditional binocular vision
matching algorithms, such as BM and SGBM, the detection
speed and matching effect were improved. )e DL-M
method used in this paper is similar to the BM matching
algorithm in speed, but the effect is more accurate. In this

paper, the DL-M method eliminated the duration of useless
feature point matching and 3D coordinate calculation and
utilized a fast image processing method to increase the
accuracy of effective feature extraction for the auxiliary ring.
In this paper, an image with a resolution of 1280∗ 720 was
used to compare three visual matching algorithms, and the
results are shown in Table 4.

Based on the aforementioned experiments, it can be seen
that the DL-Mmethod designed to detect the temporal bone
in cochlear implant surgery using the auxiliary ring as the
temporal bone marker in this paper can quickly and ac-
curately detect the auxiliary ring, extract the features, solve
the relative pose information, and then calculate the tem-
poral bone pose. It reduces the duration spent on temporal
bone localization while the cochlear implant robot drills, and
the average detection and calculation efficiency is about
25FPS, which is a great improvement over traditional
medical image navigation systems and binocular matching
algorithms. )e average attitude measurement accuracy is

Figure 9: GUI interactive interface.

Table 2: Position and angle measurement results statistical table.

Measuring object Max deviation Standard deviation
X/Y 0.562mm 0.287mm
Z 1.331mm 0.718mm
θx/θy 0.632° 0.265°
θz 0.312° 0.205°

Table 3: Comparisons of marker implanting effects.

Marker object Volume Number of wounds Visual features Feature fixed Workspace impact
Titanium nail Smallest 3∼5 Shape N Minimal
Tripod visual calibration rod Biggest 3∼5 Shape Y Greatest
Auxiliary ring Smaller 2∼3 Shape, color Y Less
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about ±0.6°. )e high frequency detection ability can further
compensate for measurement errors and meet the re-
quirements for the real-time acquisition of temporal bone
postures in cochlear implant drilling surgery.

6. Conclusions

Combined with target detection, image processing, and
binocular vision, this paper proposes a fast and real-time
detection and calculation method for temporal bone marker
localization in cochlear implant robot drilling surgery. )e
detection rate for auxiliary ring features is about 97%, and the
overall detection and calculation time is about 40ms. )e
average attitudemeasurement accuracy is ±0.63°.)e position
and attitude information of the auxiliary ring can be obtained
quickly, and the rapid calculation for the auxiliary ring po-
sition and pose can reduce the time of temporal bone visual
positioning in cochlear implant drilling operations, greatly
improving the robot’s capabilities to extract visual informa-
tion during the operation, which has a better auxiliary role for
future research and applications of cochlear implant drilling
operation. Since the accuracy of visual positioning is closely
related to the binocular camera itself, the positioning accuracy
of this method is still very limited. )e accuracy of mea-
surement may not yet fully meet the requirements of surgical
positioning. )e accuracy of the detection calculation is
limited by camera performance, and the future research di-
rection is to improve the accuracy of target detection and
visual measurement, and our team will continue to conduct
in-depth research in this direction.With the improvements in
binocular vision technology and camera performance, this
method will also make the research results more robust, and
the use of this method will also obtain higher measurement
accuracy, which our team will investigate here next.
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