
Research Article
A New Variant of JM Software Reliability Model

Kuldeep SinghKaswan,1 SunitaChoudhary,2 Santar Pal Singh ,3 Anil AudumbarPise ,4

and Simon Karanja Hinga 5

1School of Computing Science & Engineering, Galgotias University, Greater Noida-203201, India
2Department of Computing Science, Banasthali Vidyapith, Vanasthali, Rajasthan-304022, India
3Department of Computer Science & Engineering,)apar Institute of Engineering and Technology, Patiala-147004, India
4School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg-2000,
Gauteng, South Africa
5Department of Electrical and Electronic Engineering, Technical University of Mombasa, Mombasa, Kenya

Correspondence should be addressed to Simon Karanja Hinga; kahinga@tum.ac.ke

Received 27 November 2021; Accepted 21 January 2022; Published 25 February 2022

Academic Editor: Punit Gupta

Copyright © 2022 Kuldeep Singh Kaswan et al.+is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Software reliability is the probability of failure-free operations of software in a specific environment in a given time period.
Various software reliability models have been designed by the researchers, but the JM model is the first influential model. +e JM
model was developed with the basic assumption that the faults are independent in this model and the debugging process is perfect.
But practically, all debugging processes may not be perfect, especially when the faults are dependent; in this case, the fault that is
actually to have been removedmay also removemore than one fault and cause it to add some new faults. To handle this behavior of
faults mutual dependency, we need a new model which may be less reliable or the result accuracy of the model may be lower than
that of the existing ones, but it can handle more practical situations in the fault removal process. In this paper, we proposed a new
software reliability model with the same assumption that at whatever time a failure is detected, it is not completely eradicated and
there is a possibility of raising some new faults because of wrong analysis or inaccurate modifications in the software or the
removal of the existing fault may also remove some other faults. +e proposed model is more practical than the existing ones.

1. Introduction

Software reliability models are used to find the faults in a
software product, and for the prediction of faults, these
models predict and estimate the number of faults in the
build. On behalf of this, one can take the decision whether
this product has to be released or corresponding changes
have to be made to improve the quality. Nowadays, due to
the usage of software in real-time applications, even a single
fault in the software becomes very critical, and it may result
in the loss of life and other consequences. So, researchers are
putting their best efforts in developing and improving the
software reliability models so that it may help to provide
more reliable software and better-quality software. Several
software reliability models were proposed, but still the in-
dustry crept around the faults and unstable software.+e JM

model states that faults are independent of each other and
equally likely to cause a failure during a test. +e detected
fault is eliminated immediately without the detection of any
new fault. But these assumptions are not realistic. In our
proposed work, we have extended the JMmodel by replacing
these assumptions with the new assumptions that the faults
are dependent and not equally likely to cause a failure in the
test, and whenever a failure occurred, the identified faults are
removed with probability p, and it may result in the removal
and generation of some other faults, from the total number
of faults, with random probabilities r, such that p> r,
respectively.

+is paper is organized into the following sections.
Related work is given in Section 2. JM model, its assump-
tions, and the mathematical formulation are described in
Section 3. In Section 4, we have proposed a new variant of

Hindawi
Scientific Programming
Volume 2022, Article ID 7257564, 11 pages
https://doi.org/10.1155/2022/7257564

mailto:kahinga@tum.ac.ke
https://orcid.org/0000-0001-8460-1767
https://orcid.org/0000-0002-2402-087X
https://orcid.org/0000-0002-5827-3525
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7257564

the JMmodel. Results and discussions are given in Section 5.
Finally, Section 6 concludes the work.

2. Related Work

+e first reliability model was reported in 1967 using the
Weibull distribution of time between failures [1]. After this,
in 1972, the first influential software reliability model [2]
with initial N bugs was reported [2]. A similar Jelin-
ski–Moranda (JM) model was developed in 1975 [3, 4].
Some researchers designed the first nonhomogeneous
Poisson process model [5]. In 1983, Meinhold and Sing-
purwalla proposed a Bayesian software reliability model
which was a variant of the JM model that used the prior
distributions to the parameters [6]. Jewell used theMeinhold
and Singpurwalla model to derive a newmodel that provides
Bayesian analysis of the software reliability model of JM [7].
Tohma proposed a new software reliability model [8] for
estimating the number of residual software faults based on
the hypergeometric distribution [8, 9]. Brocklehurst im-
proved reliability predictions by a process of recalibration
[10]. Sahinoglu uses the probability density estimation of
failures in the clustering event of the software failures [11].
Campodonico and Singpurwalla proposed a Bayesian ap-
proach using the logarithmic Poisson model to predict the
number of failures in a software system [12]. Chen and Arlat
proposed a fault correction history-based input domain
reliability growth model [13]. A software reliability model
using enhanced nonhomogeneous Poisson process
(ENHPP) approach was reported in the literature [14]. Some
authors considered the phenomena of failure correlation to
develop a software reliability model framework [15]. Tian
described a model for homogeneous failure intensities by
grouping data into clusters [16]. Huang estimated the re-
liability with the unified scheme of some nonhomogeneous
Poisson process models [17]. Some researchers proposed a
model for individual component-based software reliability
and the architecture of the system [18]. Advanced chaos
theory to the stochastic models, an alternative approach of
software reliability, is also there in the literature [19].

Raj Kiran and Ravi group different models to accurately
forecast software reliability [20]. Jun-Gang proposed an
RVM (relevance vector machine)-based model for software
reliability prediction [21]. Some researchers addressed the
issue of optimal selection of software reliability growth
models [22].

An improved additive model to reliability estimation of
modular structure-based software is there to study [23].
Inoue and Yamada discussed discrete software reliability
measurement based on a discredited (NHPP) model [24].
Kiyoshi Honda prosposed a stochastic process based
software reliability model [25], and Kim HeeCheul pro-
posed a comparative problem of a reliability model for
Lomax and Gompertz distribution property [26]. Shinji
Inoue proposed a new software reliability model with the
effect of a change point for the Markovian software reli-
ability model having an imperfect debugging environment
[27]. +is proposed model shows that the observed time-
dependent behavior of the expected number of failures

occurred after the change point has more practical situa-
tions compared to the other existing models. Kwang Yoon
Song proposed a new nonhomogeneous Poisson process
(NHPP) software reliability model [28]. An explicit mean
value function solution for the proposed model is pre-
sented. Jinyong Wang and Xiaoping Mi proposed a new
software reliability model [29] considering the decreasing
trend of fault detection rate. +is model has better pre-
dictive performance and better fitting than the previous
existing models in this field. Yoshinobu Tamura and Shi-
geru Yamada proposed a deep learning-based scheme for
the optimal selection of a software reliability model [30]. As
model selection affects the optimal release time and total
software cost, in this paper we also discussed these two
criteria for the selection of a software reliability model.
Subhashis Chatterjee and Ankur Shukla developed a new
software reliability method with the imperfect debugging
phenomenon [31]. A new ranking method has been pro-
posed to improve the accuracy of model ranking. Da Hye
Lee proposed a software reliability model based on NHPP
[32]. +e proposed model has the same mean value
functions and the testing coverage, but it considers the
environment that is uncertain. +ere are unexpected
variables like syntax error considered in the proposed
model. Shozab Khurshid designed a generalized framework
to develop an effort-based software reliability model [33]
with fault reduction factor (FRF), change point, and error
generation. Yunlu Zhao, Tadashi Dohi, and Hiroyuki
Okamura proposed a nonhomogeneous binomial processes
(NHBPs)-based framework [34] for test-run reliability
modeling. +is paper also demonstrates that Poisson bi-
nomial distribution has a vital role in reliability modeling.
Barack and Huang [35] proposed software reliability
growthmodels (SRGMs) to assess and predict the reliability
of a mobile application. +rough the analysis of bug re-
ports, four software reliability models are used to assess the
dependability of an open-source mobile application. Sun
and Li [36] proposed a new nonhomogeneous Poisson
process (NHPP) based on fault severity considerations. We
categorise software faults into three levels based on their
complexity: Level I denotes a simple fault, Level II a general
fault, and Level III a severe fault. Raghuvanshi et al. [37]
proposed a time-variant software reliability model (SRM)
that takes fault detection and the highest number of faults
in software into account. +e time-variant genetic algo-
rithm process is used to evaluate the SRM parameters. +e
proposed model is based on a nonhomogeneous Poisson
process (NHPP) and includes fault-dependent detection,
software failure intensity, and unremoved error in the
software. Van Driel et al. [38] predict the software reli-
ability in agile testing environments and attempt to model
this way of working by extending the Jelinski–Moranda
model to a “stack” of feature-specific models, assuming that
bugs are labelled with the feature to which they belong.

3. Jelinski–Moranda (JM) Model

+e Jelinski–Moranda (JM) model [4] is a Markov model,
and this model has strongly influenced many later models.

2 Scientific Programming

Numerous software reliability models have been proposed
by assuming this model as the base model.

Characteristics of the JM model are as follows:

(1) It is a binomial type model
(2) It is probably the first and definitely one of the well-

recognized black-box models
(3) +is model always produces an overoptimistic reli-

ability prediction
(4) JM model follows a perfect debugging process

3.1. Model Assumptions. +e assumptions considered in the
JM model are given as follows:

(i) +ere are unknown numbers of faults in the soft-
ware initially and these fault counts are fixed and
constant

(ii) +e faults are not dependent on each other and
equally likely to cause a failure during a test

(iii) +ere are independent time intervals among the
occurrences of failures, exponentially distributed
random variables

(iv) +e software failure rate remains constant over the
intervals between fault occurrences

(v) +e failure rate is directly proportional to the
number of faults that linger in the software

(vi) A detected fault is eliminated immediately, and no
new faults are initiated during the elimination of
the detected fault

(vii) When a failure occurs, the corresponding fault is
removed with certainty

3.2. Mathematical Formulation of the JM Model

(i) Software fault rate: it is defined as the faults per unit
time

λ ti(� ϕ[N − (i − 1)] where i � 1, 2, . . . , N, (1)

in which ϕ is a constant of proportionality repre-
senting the failure rate contributed by each fault,
N is the initial number of faults in the software, and
ti is the time between (i − 1) th and ith failure.

(ii) Failure density function: it is the function that as-
signs to each number the probability that the
random variable takes a value less than or equal to
the given number.
It is defined as the derivative of the failure
probability.

f ti(� ϕ[N − (i − 1)]exp − ϕ[N − (i − 1)]ti(. (2)

(iii) Distribution function is given as follows:

Fi ti(� 1 − exp ϕ[N − (i − 1)]ti(. (3)

(iv) Reliability function at the ith failure interval is given
by

R ti(� 1 − Fi ti(� exp − ϕ[N − (i − 1)]ti(. (4)

(v) MTTF for the ith failure� 1/ϕ[N − (i − 1)].

4. Proposed Model

+e assumptions (ii) and (vi) of the JM model states that
faults are independent of each other and equally likely to
cause a failure at some point in a test. +e detected fault is
removed immediately without the detection of any new
fault. But these assumptions are not realistic. We extended
the JMmodel by replacing the assumptions (ii) and (vi) with
the new assumptions that the faults are dependent and not
equally likely to cause a failure during a test, and whenever a
failure occurred, the detected faults are eliminated with
probability p, and it may result in the removal and gener-
ation of some other faults, from the total number of faults,
with random probabilities r, such that p> r, respectively.

4.1. Model Assumptions of the Proposed Model. +e as-
sumptions in the proposed model include the following:

(i) to (v) Assumptions (i) to (v) are the same as of the
JM model
vi) Whenever a failure occurred, the detected faults are
removed with some probability and it may result first in
the removal of some other faults with the random
probability p and second in the generation of some
other new faults with the random probability r, such
that p> r.

4.2. Mathematical Formulation of the Proposed Model

(i) Failure rate:

λ ti(� Φ N − (i − 1)

N
j�i pj

N − (i − 1)
−

m
k�1 rk

m

⎧⎨

⎩

⎫⎬

⎭
⎡⎣ ⎤⎦, (5)

where φ is the proportionality constant representing
the failure rate contributed by each fault, N is the
initial no. of faults in the software, ti is the time
between (i − 1)th and ith failure, pj is the random
probability to remove the faults, rk is the random
probability to add some new faults, and m is the
number of faults added such that pj> rk and
m<N − (i − 1).

(ii) Failure density is defined as “at any point in the life
of a system, the incremental change in the number
of failures per associated incremental change in
time”

Scientific Programming 3

f ti(� Φ N − (i − 1)

N
j�i pj

N − (i − 1)
−

m
k�1 rk

m

⎧⎨

⎩

⎫⎬

⎭
⎡⎣ ⎤⎦exp − Φ N − (i − 1)

N
j�i pj

N − (i − 1)
−

m
k�1 rk

m

⎧⎨

⎩

⎫⎬

⎭
⎛⎝ ⎞⎠ti

⎡⎢⎢⎣ ⎤⎥⎥⎦. (6)

+e failure distribution function is the integral of
the failure density function.

(iii) Distribution function (cumulative density
function):

Fi ti(� 1 − exp − Φ N − (i − 1)

N
j�i pj

N − (i − 1)
−

m
k�1 rk

m

⎧⎨

⎩

⎫⎬

⎭
⎛⎝ ⎞⎠ti

⎡⎢⎢⎣ ⎤⎥⎥⎦ (7)

or

Fi ti(� 1 − exp − λiti . (8)

(iv) +emean time to failure (MTTF) is the average time
between observed failures: MTTF� 1 − Fi(ti).

(v) Reliability function:

R ti(� 1 − Fi ti(� exp − Φ N − (i − 1)

N
j�i pj

N − (i − 1)
−

m
k�1 rk

m

⎧⎨

⎩

⎫⎬

⎭
⎛⎝ ⎞⎠ti

⎡⎢⎢⎣ ⎤⎥⎥⎦. (9)

4.3. Parameter Estimation. We have to estimate the number
of remaining faultsN′ and the constant of proportionalityΦ.
Our proposed model parameters are estimated using the
maximum likelihood estimation method.

(i) Parameter estimation:

n

i�1

1
N′ − (i − 1)

N
j�i pj/N − (i − 1) −

m
k�1 rk/m

�
n

N′ − 1/
n
i�1 tn(

n
i�1 (i − 1)

N
j�i pj/N − (i − 1) −

m
k�1 rk/m ti

,

(10)

Φ �
n

n
i�1 N′ − (i − 1)

N
j�i pj/N − (i − 1) −

m
k�1 rm/m ti

. (11)

We have obtained maximum likelihood estimationN′ by
solving the equation (10) and put this value into (11) to
obtain the maximum likelihood estimation Φ.

A program has been implemented in MATLAB to find
the value of N′ from (5) (Algorithm 1)

f N′(�
n

i�1

1
N′ − (i − 1)

N
j�i pj/N − (i − 1) −

m
k�1 rk/m

−
n

N′ − 1/
n
i�1 tn(

n
i�1 (i − 1)

N
j�i pj/N − (i − 1) −

m
k�1 rk/m ti

.

(12)

Now find the reliability for the next time interval.

(i) Reliability:

4 Scientific Programming

(1) for n� 3 to 136
begin

(2) for N′� 3 to 150
begin

(3) r� f(N′)
end

(4) Find the minimum value of r and print N′ for that value.
end

ALGORITHM 1: Algorithm to estimate N′ from equation (5).

7000

6000

5000

4000

3000

2000

1000

0
0 20 40 60 80 100 120 140 160

Failure

Ti
m

e

Failure Vs Time

Figure 1: Failure vs. time.

Table 1: Proposed model vs. JM model.

N tn
JM model Proposed model

N′ ϕ λ MTTF R� 1 − f(t) N′ ϕ λ MTTF R� 1 − f(t)
1 3 1 0.333300 0.000000 ∞ 1.000000 1 0.333333 0.333333 3 0.367879
2 30 2 0.055600 0.000000 ∞ 1.000000 2 0.036263 0.059414 16.831049 0.168230
3 113 3 0.016500 0.000000 ∞ 1.000000 3 0.009324 0.018380 54.406556 0.125311
4 81 4 0.009800 0.000000 ∞ 1.000000 4 0.004840 0.014483 69.0432864 0.309382
5 115 6 0.004600 0.004600 218.600000 0.959700 6 0.002671 0.011844 84.430767 0.256131
6 9 11 0.002100 0.010500 95.233300 0.979200 6 0.002871 0.011980 83.469009 0.897785
7 2 ∞ 0.000000 0.019800 50.428600 0.164600 7 0.002838 0.013825 72.332568 0.972728
8 91 28 0.000742 0.014800 67.368800 0.189700 8 0.002414 0.012989 76.983480 0.306642
9 112 16 0.001400 0.009900 100.746000 0.861700 11 0.001567 0.012004 83.300114 0.260660
10 15 46 0.000424 0.015300 65.505600 0.121600 12 0.001471 0.012387 80.726542 0.830429
11 138 20 0.001100 0.009800 102.181800 0.613000 NaN NaN NaN NaN NaN
12 50 27 0.000756 0.011300 88.216700 0.417800 12 0.001353 0.009844 101.574951 0.611251
13 77 29 0.000695 0.011100 89.932700 0.765800 13 0.001233 0.010802 92.573668 0.435278
14 24 61 0.000300 0.014100 70.835900 0.217700 14 0.001175 0.010457 95.6241495 0.778035
15 108 39 0.000494 0.011800 84.416700 0.352600 15 0.001079 0.009997 100.022048 0.339676
16 88 38 0.000509 0.011200 89.335200 0.000600 16 0.000978 0.009748 102.584017 0.424079
17 670 18 0.001400 0.001500 686.235300 0.839600 17 0.000665 0.007561 132.245087 0.006305
18 120 20 0.001200 0.002300 429.944400 0.941300 18 0.000554 0.006507 153.677753 0.458014
19 26 23 0.000899 0.003600 278.236800 0.663800 22 0.000463 0.007150 139.855327 0.830351
20 114 25 0.000782 0.003900 255.740000 0.280600 20 0.000515 0.006244 160.132492 0.490705
21 325 24 0.000844 0.002500 395.047600 0.870000 21 0.000458 0.005896 169.592304 0.147141
22 55 27 0.000684 0.003400 292.281800 0.436900 23 0.000408 0.005975 167.343635 0.719884
23 242 28 0.000639 0.003200 312.773900 0.804600 25 0.000363 0.006200 161.274074 0.223007
24 68 31 0.000541 0.003800 263.910700 0.202100 24 0.000377 0.005658 176.711764 0.680581
25 422 29 0.000608 0.002400 410.950000 0.645300 30 0.000281 0.005879 170.070077 0.083631
26 180 31 0.000538 0.002700 372.084600 0.973500 28 0.000290 0.004883 204.750312 0.415148
27 10 35 0.000439 0.003500 285.060200 0.017900 27 0.000304 0.005190 192.65184 0.949417

Scientific Programming 5

Table 1: Continued.

N tn
JM model Proposed model

N′ ϕ λ MTTF R� 1 − f(t) N′ ϕ λ MTTF R� 1 − f(t)
28 1146 30 0.000576 0.001200 867.339300 0.500700 28 0.000249 0.004452 224.595888 0.006081
29 600 31 0.000529 0.001100 944.913800 0.984300 29 0.000208 0.003817 261.922210 0.101189
30 15 33 0.000462 0.001400 721.477800 0.951300 34 0.000175 0.003886 257.306309 0.943370
31 36 35 0.000412 0.001600 606.540300 0.993400 31 0.000197 0.004052 246.749856 0.864246
32 4 38 0.000354 0.002100 471.322900 1.000000 35 0.000180 0.004712 212.192154 0.981325
33 0 41 0.000312 0.002500 400.609800 0.980200 39 0.000166 0.004508 221.801057 1
34 8 46 0.000259 0.003100 321.838200 0.493900 34 0.000196 0.004231 236.344719 0.966717
35 227 47 0.000251 0.003000 331.804800 0.822100 40 0.000167 0.004566 219.000994 0.354685
36 65 52 0.000215 0.003400 290.074700 0.545100 36 0.000186 0.004050 246.873528 0.768516
37 176 54 0.000204 0.003500 287.804500 0.817500 37 0.000182 0.004212 237.414285 0.476484
38 58 60 0.000176 0.003900 258.077800 0.170200 44 0.000154 0.004847 206.272099 0.754890
39 457 55 0.000200 0.003200 313.152200 0.383700 46 0.000143 0.004333 230.744445 0.137993
40 300 56 0.000194 0.003100 322.792200 0.740400 NaN NaN NaN NaN NaN
41 97 60 0.000175 0.003300 300.445400 0.416700 41 0.000155 0.004072 245.535290 0.673642
42 263 61 0.000171 0.003200 308.000000 0.230500 51 0.000124 0.004525 220.977867 0.304171
43 452 58 0.000185 0.002800 360.924000 0.493400 53 0.000155 0.004254 235.032626 0.146147
44 255 60 0.000175 0.002800 357.265600 0.576100 52 0.000155 0.004091 244.438673 0.352323
45 197 62 0.000167 0.002800 352.882400 0.578700 46 0.000129 0.003872 258.217142 0.466301
46 193 65 0.000155 0.002900 339.527500 0.982500 47 0.000126 0.003811 262.382299 0.479233
47 6 71 0.000137 0.003300 304.892700 0.771700 50 0.000120 0.004016 248.944067 0.976186
48 79 77 0.000122 0.003500 282.576900 0.055700 48 0.000127 0.003553 281.394045 0.755220
49 816 67 0.000149 0.002700 373.731300 0.026900 49 0.000118 0.003763 265.736415 0.046388
50 1351 59 0.000183 0.001600 607.193300 0.783700 52 0.000100 0.003386 295.265642 0.010300
51 148 61 0.000173 0.001700 578.515700 0.964400 51 0.000098 0.003147 317.685879 0.627589
52 21 65 0.000155 0.002000 497.463000 0.626000 56 0.000091 0.003221 310.373974 0.934577
53 233 67 0.000147 0.002100 485.574100 0.758800 53 0.000096 0.003241 308.498330 0.469883
54 134 70 0.000137 0.002200 456.072900 0.457100 54 0.000095 0.003194 312.990824 0.651728
55 357 71 0.000134 0.002100 466.751100 0.661300 NaN NaN NaN NaN NaN
56 193 74 0.000125 0.002300 443.803600 0.587600 56 0.000090 0.003282 304.614060 0.530683
57 236 76 0.000120 0.002300 438.064600 0.931700 NaN NaN NaN NaN NaN
58 31 81 0.000109 0.002500 398.967800 0.396600 58 0.000087 0.003455 289.420777 0.898426
59 369 81 0.000109 0.002400 416.571600 0.166000 70 0.000072 0.003446 290.145967 0.280333
60 748 78 0.000116 0.002100 481.008300 1.000000 60 0.000082 0.002949 339.070155 0.110136
61 0 82 0.000107 0.002200 444.750200 0.593500 72 0.000067 0.003388 295.134138 1
62 232 85 0.000101 0.002300 429.852700 0.464100 62 0.000079 0.002638 379.051733 0.542236
63 330 86 0.000099 0.002300 437.323000 0.434000 69 0.000070 0.003359 297.657092 0.330001
64 365 87 0.000098 0.002200 445.354600 0.064300 65 0.000074 0.003250 307.669056 0.305336
65 1222 81 0.000109 0.001700 572.519200 0.387300 65 0.000070 0.002786 358.894706 0.033210
66 543 81 0.000109 0.001600 610.210100 0.983700 66 0.000066 0.002768 361.168940 0.222361
67 10 85 0.000101 0.001800 551.660000 0.971400 67 0.000066 0.002500 399.861661 0.975301
68 16 89 0.000094 0.002000 508.892200 0.353600 68 0.000065 0.002919 342.534350 0.954363
69 429 89 0.000094 0.001900 534.642800 0.492200 69 0.000064 0.002675 373.720337 0.242804
70 379 90 0.000092 0.001800 543.980000 0.922300 70 0.000062 0.002393 417.854376 0.403727
71 44 94 0.000086 0.002000 506.655200 0.775200 71 0.000062 0.002759 362.371404 0.885659
72 129 98 0.000080 0.002100 478.508000 0.184000 NaN NaN NaN NaN NaN
73 810 95 0.000084 0.001900 538.806400 0.583800 73 0.000059 0.002668 374.698345 0.115124
74 290 97 0.000082 0.001900 532.678600 0.569400 74 0.000058 0.002778 359.874367 0.446713
75 300 99 0.000079 0.001900 527.241700 0.366700 75 0.000057 0.002715 368.299667 0.442836
76 529 99 0.000079 0.001800 550.189400 0.600100 76 0.000055 0.002621 381.517830 0.249931
77 281 101 0.000077 0.001800 544.009700 0.745200 77 0.000054 0.002564 389.939847 0.486448
78 160 105 0.000072 0.001900 514.758800 0.200200 78 0.000054 0.002684 372.443989 0.650772
79 828 102 0.000075 0.001700 576.648300 0.173200 79 0.000052 0.002524 396.126421 0.123657
80 1011 99 0.000079 0.001500 664.027600 0.511600 80 0.000050 0.002304 433.903508 0.097294
81 445 101 0.000076 0.001500 654.198100 0.636100 81 0.000048 0.002689 371.789765 0.302125
82 296 103 0.000074 0.001600 643.633600 0.065400 82 0.000047 0.002356 424.331389 0.497794
83 1755 98 0.000081 0.001200 827.210400 0.276300 83 0.000045 0.002230 448.354358 0.019954
84 1064 97 0.000082 0.001100 935.631900 0.148700 NaN NaN NaN NaN NaN
85 1783 95 0.000086 0.000856 1168.300000 0.479000 85 0.000040 0.001948 513.315339 0.031008
86 860 96 0.000084 0.000836 1195.900000 0.439600 NaN NaN NaN NaN NaN

6 Scientific Programming

R(tn + 1) � 1 − Fn + 1(tn + 1)

� exp − Φ (N − n)

N
j�i pj

N − n
−

m
k�1 rk

m

⎧⎨

⎩

⎫⎬

⎭
⎡⎣ ⎤⎦tn + 1⎛⎝ ⎞⎠.

(13)

Table 1: Continued.

N tn
JM model Proposed model

N′ ϕ λ MTTF R� 1 − f(t) N′ ϕ λ MTTF R� 1 − f(t)
87 983 96 0.000084 0.000754 1326.000000 0.586700 NaN NaN NaN NaN NaN
88 707 97 0.000082 0.000738 1354.900000 0.975900 88 0.000035 0.001920 520.822995 0.257311
89 33 100 0.000077 0.000845 1183.700000 0.480300 92 0.000034 0.001999 500.222704 0.936158
90 868 100 0.000077 0.000770 1298.200000 0.572500 94 0.000033 0.002061 485.139850 0.167098
91 724 101 0.000075 0.000755 1325.000000 0.173200 NaN NaN NaN NaN NaN
92 2323 100 0.000077 0.000615 1625.800000 0.164900 99 0.000029 0.001955 511.391098 0.010646
93 2930 99 0.000079 0.000471 2123.100000 0.502500 105 0.000026 0.001861 537.187177 0.004277
94 1461 99 0.000079 0.000394 2539.200000 0.717500 94 0.000028 0.001583 631.710908 0.098986
95 843 101 0.000075 0.000448 2233.200000 0.994600 104 0.000024 0.001666 599.918456 0.245320
96 12 102 0.000073 0.000439 2275.400000 0.891600 96 0.000027 0.001485 673.395806 0.982337
97 261 104 0.000070 0.000489 2044.300000 0.414600 116 0.000022 0.001836 544.648991 0.619273
98 1800 104 0.000070 0.000420 2382.100000 0.695500 121 0.000021 0.001641 609.064039 0.052060
99 865 106 0.000067 0.000466 2145.700000 0.512300 99 0.000021 0.001656 603.577182 0.238562
100 1435 106 0.000067 0.000401 2495.100000 0.988000 NaN NaN NaN NaN NaN
101 30 108 0.000064 0.000447 2236.700000 0.938100 116 0.000021 0.001310 762.984731 0.961443
102 143 110 0.000061 0.000490 2042.500000 0.948500 110 0.000022 0.001477 677.017482 0.809595
103 108 112 0.000059 0.000529 1890.100000 1.000000 103 0.000024 0.001442 693.326793 0.855755
104 0 114 0.000057 0.000566 1766.100000 0.171900 134 0.000018 0.001799 555.814849 1
105 3110 113 0.000058 0.000461 2169.600000 0.562800 105 0.000023 0.001441 693.594304 0.011289
106 1247 114 0.000056 0.000451 2215.900000 0.653400 106 0.000022 0.001402 712.758614 0.173853
107 943 115 0.000055 0.000443 2259.600000 0.733600 131 0.000017 0.001575 634.876873 0.226428
108 700 116 0.000054 0.000435 2301.000000 0.683700 108 0.000021 0.001388 720.189902 0.378338
109 875 118 0.000052 0.000469 2134.000000 0.891500 109 0.000020 0.001355 737.558886 0.305334
110 245 119 0.000051 0.000462 2166.700000 0.714300 110 0.000020 0.001413 707.414134 0.707277
111 729 121 0.000049 0.000493 2028.800000 0.392600 121 0.000018 0.001203 830.853083 0.415857
112 1897 121 0.000049 0.000444 2252.900000 0.820000 112 0.000019 0.001380 724.616992 0.072953
113 447 123 0.000047 0.000475 2106.100000 0.832500 118 0.000018 0.001553 643.567841 0.499291
114 386 124 0.000047 0.000468 2137.400000 0.811700 NaN NaN NaN NaN NaN
115 446 126 0.000045 0.000497 2014.000000 0.941200 115 0.000019 0.001209 826.530574 0.582978
116 122 128 0.000044 0.000524 1908.000000 0.595200 116 0.000019 0.001299 769.428084 0.853372
117 990 129 0.000043 0.000516 1938.900000 0.613300 117 0.000018 0.001422 702.849012 0.244496
118 948 131 0.000041 0.000539 1854.200000 0.557900 118 0.000019 0.001006 993.772526 0.385220
119 1082 132 0.000041 0.000531 1884.200000 0.988400 119 0.000018 0.001129 885.207957 0.294548
120 22 134 0.000040 0.000555 1802.500000 0.959200 120 0.000020 0.001302 767.619405 0.971746
121 75 136 0.000039 0.000578 1731.300000 0.757000 121 0.000018 0.000978 1021.98930 0.929241
122 482 138 0.000037 0.000598 1672.000000 0.037100 122 0.000018 0.001441 693.576499 0.499100
123 5509 134 0.000040 0.000436 2292.400000 0.957300 123 0.000017 0.001153 866.636866 0.001734
124 100 136 0.000038 0.000461 2169.400000 0.995400 124 0.000016 0.001434 697.121298 0.866366
125 10 138 0.000037 0.000485 2063.700000 0.595100 125 0.000016 0.000697 1433.87795 0.993050
126 1071 139 0.000037 0.000477 2094.700000 0.837700 126 0.000016 0.001357 736.891254 0.233773
127 371 141 0.000036 0.000499 2004.600000 0.674300 127 0.000016 0.001108 902.406476 0.662905
128 790 143 0.000035 0.000518 1929.700000 0.041300 NaN NaN NaN NaN NaN
129 6150 139 0.000037 0.000367 2723.300000 0.295400 129 0.000015 0.000894 1118.172980 0.004086
130 3321 139 0.000037 0.000330 3031.000000 0.708400 130 0.000014 0.001045 956.790792 0.031086
131 1045 140 0.000036 0.000325 3079.800000 0.810300 159 0.000011 0.001370 729.439350 0.238685
132 648 141 0.000036 0.000320 3125.400000 0.172900 NaN 0.000008 NaN NaN NaN
133 5485 140 0.000036 0.000253 3953.600000 0.745700 206 0.000004 0.001080 925.678922 0.002670
134 1160 141 0.000036 0.000249 4020.900000 0.629000 373 0.000004 0.001466 681.741222 0.182405
135 1864 142 0.000035 0.000244 4094.400000 0.365900 NaN NaN NaN NaN NaN
136 4116 142 0.000035 0.000209 4777.000000 0.000000 NaN NaN NaN NaN NaN

Scientific Programming 7

5. Results and Discussion

In this paper, we proposed and implemented a new variant
of the JM model. +e failure vs. time graph based on the
dataset used by Musa [9] is shown in Figure 1.

We estimate the parameters (ϕ, λ). With the help of
these parameters, we calculate the mean time to failure
(MTTF) and the reliability for the JM model and the pro-
posed model using MATLAB R 2015a.

+e model validation is given in Table 1.
It is concluded from this table that the reliability of the

proposed model is not as expected as the JM model. But the
proposed model assumptions are more realistic and will act
as a new approach for software reliability estimation.

A response graph has been used to show the effect of
individual input failure parameters on selected responses.
+e effect of the following one factor graphs (Figures 2–4)
was studied on output.

(a) Reliability vs. failure number
(b) Failure rate vs. failure number
(c) Failure rate vs. MTTF

In Figure 2, we have compared the software reliability
with the failure numbers. +e result shows that the proposed
model exhibits almost similar behavior as the JMmodel, and
the proposed model is found to be more practical than the
JM model. Figure 3 shows that the failure rate for the
proposed model is greater than that for the JM model, as the
proposed model is for imperfect debugging. Figure 4
compares MTTF and failure rate, and at some point,
MTTF for the proposed model is less than that for the JM
model.

We have compared the proposed model and the JM
model in terms of average MTTF and the average reli-
ability of the system and the results are shown in
Figures 5–6.

From Figure 5, it has been found that the average mean
time to failure (MTTF) for the proposed model is less than
that for the JM model. +is shows that, using the proposed
model, we have improved the system.

From Figure 6, it has been found that the average re-
liability for the JM model is more than that for the proposed
model, but the proposed model is more practical and has a
better real-world approach.

1.2

1

0.8

0.6

0.4

0.2

0

1 11 20 38 24 31 35 52 60 65 61 74 82 81 94 99 10
1 96 10
1

10
2

10
8

11
4

12
1

12
8

13
6

13
9

14
0

14
2

Failure Number

JM Model
Proposed Model

Relibility Vs Failure Number

Re
lia

bi
lit

y

Figure 2: Reliability vs. failure number.

1 11 20 38 24 31 35 52 60 65 61 74 82 81 94 99 10
1 96 10
1

10
2

10
8

11
4

12
1

12
8

13
6

13
9

14
0

14
2

Failure Number

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

Fa
ilu

re
 R

at
e

JM Model
Proposed Model

Figure 3: Failure rate vs. failure number.

8 Scientific Programming

0
0.

01
05

0.
00

98
0.

01
12

0.
00

25
0.

00
27

0.
00

16
0.

00
34

0.
00

33
0.

00
29

0.
00

17
0.

00
23

0.
00

22
0.

00
16

0.
00

2
0.

00
18

0.
00

15
0.

00
08

36
0.

00
07

55
0.

00
04

39
0.

00
04

47
0.

00
04

51
0.

00
04

93
0.

00
05

24
0.

00
05

78

0.
00

03
25

0.
00

02
09

0.
00

04
77

Failure Rate

6000

5000

4000

3000

2000

1000

0

M
TT

F

MTTF Vs Failure Rate

JM Model
Proposed Model

Figure 4: MTTF vs. failure rate.

0

200

400

600

800

1000

1200

Proposed Model JM Model

Average MTTF

Average MTTF

Figure 5: Comparison of the proposed model MTTF with the JM model MTTF.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Proposed Model JM Model

Average Reliability

Average Reliability

Figure 6: Comparison of the average reliability of the proposed model with the JM model reliability.

Scientific Programming 9

6. Conclusion

+e proposed model is an imperfect debugging process
model with fault dependency. In this model, the removal of
the existing fault can also remove some other faults with the
random probability of an individual and it may also generate
some new faults with some probability. Reliability for the JM
model and the proposed model is 0.6 and 0.4, respectively.
+e mean time to failure (MTTF) for the JM model and the
proposed model is 1118.596 and 371.5370972, respectively.
Experimental results indicate that MTTF for the proposed
model is found to be better than that for the JM model. But
the reliability of the proposed model is not as good as the JM
model, but it has a more real-world approach and practical
nature.

Data Availability

+e data that support the findings of this study are available
on request from the corresponding author.

Conflicts of Interest

+e authors declare that they do not have any conflicts of
interest.

References

[1] G. R. Hudson, “Program error as a birth and death process,”
ReportNo. SP-3011, System Development Corporation, Santa
Monica, CA, USA, 1967.

[2] Z. Jelinski and P. Moranda, “Software reliability research,” in
Statistical Computer Performance Evaluation, W. Freiberger,
Ed., Academic Press, New York, NY, USA, pp. 465–484, 1972.

[3] M. L. Shooman, “Software reliability: measurement and
models,” in Proceedings of the Annual Reliability and
Maintainability Symposium, pp. 485–491, Washington, DC,
USA, January 1975.

[4] J. D. Musa, “A theory of software reliability and its appli-
cation,” IEEE Transactions on Software Engineering, vol. SE-1,
no. 3, pp. 312–327, 1975.

[5] A. L. Goel and K. Okumoto, “Time-dependent error-detection
rate model for software reliability and other performance
measures,” IEEE Transactions on Reliability, vol. R-28, no. 3,
pp. 206–211, 1979.

[6] R. J. Meinhold and N. D. Singpurwalla, “Bayesian analysis of a
commonly used model for describing software failures,”)e
Statistician, vol. 32, no. 1/2, pp. 168–173, 1983.

[7] W. S. Jewell, “Bayesian extensions to a basic model of software
reliability,” IEEE Transactions on Software Engineering,
vol. SE-I1, no. 12, pp. 1081–1091, 1985.

[8] Y. Tohma, K. Tokunaga, S. Nagase, and Y. Murata, “Structural
approach to the estimation of the number of residual software
faults based on the hyper-geometric distribution,” IEEE
Transactions on Software Engineering, vol. 15, no. 3,
pp. 345–355, 1989.

[9] J. D. Musa, “Data,” Data & Analysis Center for Software,
1980, http://www.dacs.dtic.mil/databases/sledfswrel.shtml.

[10] S. Brocklehurst, P. Y. Chan, B. Littlewood, and J. Snell,
“Recalibrating software reliability models,” IEEE Transactions
on Software Engineering, vol. 16, no. 4, pp. 458–470, 1990.

[11] M. Sahinoglu, “Compound-Poisson software reliability
model,” IEEE Transactions on Software Engineering, vol. 18,
no. 7, pp. 624–630, 1992.

[12] S. Campodonico and N. D. Singpurwalla, “A bayesian analysis
of logarithmic-Poisson execution time model based on expert
opinion and failure data,” IEEE Transactions on Software
Engineering, vol. 20, no. 9, pp. 677–683, 1994.

[13] Y. Chen and J. Arla, “An Input Domain-Based Reliability
Growth Model and its Applications in Comparing Software
Testing Strategies,” LAAS Report No.95105, LAAS-CNRS,
France, 1995.

[14] S. S. Gokhale and K. S. Trivedi, “A time/structure-based
software reliability model,” Annals of Software Engineering,
vol. 8, no. 1/4, pp. 85–121, 1999.

[15] K. G. Popstojanovaand, K. S. Trivedi, Failure correlation in
software reliability models,” IEEE Transactions on Reliability,
vol. 49, no. 1, pp. 37–48, 2000.

[16] J. Tian, “Better reliability assessment and prediction through
data clustering,” IEEE Transactions on Software Engineering,
vol. 28, no. 10, pp. 997–1007, 2002.

[17] C. Y. Huang, M. R. Lyu, and S. Y. Kuo, “A unified scheme of
some nonhomogenous Poisson process models for software
reliability estimation,” IEEE Transactions on Software Engi-
neering, vol. 29, no. 3, pp. 261–269, 2003.

[18] J.-H. Lo, C.-Y. Huang, I.-Y. Chen, S.-Y. Kuo, and M. R. Lyu,
“Reliability assessment and sensitivity analysis of software
reliability growth modeling based on software module
structure,” Journal of Systems and Software, vol. 76, no. 1,
pp. 3–13, 2005.

[19] S. Dick, C. L. Bethel, and A. Kandel, “Software-reliability
modeling: the case for deterministic behavior,” IEEE Trans-
actions on Systems, Man, and Cybernetics - Part A: Systems
and Humans, vol. 37, no. 1, pp. 106–119, 2007.

[20] N. Raj Kiran and V. Ravi, “Software reliability prediction by
soft computing techniques,” Journal of Systems and Software,
vol. 81, no. 4, pp. 576–658, 2007.

[21] J. G. Lou, J.-H. Jiang, C. Y. Shuai, R. Zhang, and A. Jin,
“Software reliability prediction model based on relevance
vector machine,” in Proceedings of the IEEE Int. Conf. on
Intelligent Computing and Intelligent Systems, pp. 229–233,
Shanghai, China, November 2009.

[22] K. Sharma, R. Garg, C. K. Nagpal, and R. K. Garg, “Selection
of optimal software reliability growth models using a distance
based approach,” IEEE Transactions on Reliability, vol. 59,
no. 2, pp. 266–276, 2010.

[23] S. Chatterjee, S. Nigam, J. B. Singh, and L. N. Upadhyaya, “An
improved additivemodel for reliability analysis of software ,with
modular structure,” J. Appl. Math. Informatics, vol. 30,
pp. 489–498, 2012.

[24] S. Inoue and S. Yamada, “A bootstrapping approach for
software reliability measurement based on a discretized
NHPP model,” Journal of Software Engineering and Appli-
cations, vol. 6, no. 4, pp. 1–7, 2013.

[25] K. Honda, H. Washizaki, and Y. Fukazawa, “A generalized
software reliability model considering uncertainty and dy-
namics in development,” in Proceedings of the Int. Conf. on
Product Focused Software Process Improvement, pp. 342–346,
Trondheim, Norway, November 2016.

[26] H. C. Kim, “A performance analysis of software reliability
model using Lomax and Gompertz distribution property,”
Indian Journal of Scienec and Technology, vol. 9, no. 20,
pp. 1–6, 2016.

[27] S. Inoue and S. Yamada, “Software reliability modeling with
imperfect debugging and change of test environment,” in

10 Scientific Programming

http://www.dacs.dtic.mil/databases/sledfswrel.shtml

Proceedings of the Sixth International Conference on Reli-
ability, Infocom Technologies and Optimization Trends and
Future Directions, pp. 128–131, ICRITO), Noida, India,
September 2017.

[28] K. Y. Song, I. H. Chang, and H. Pham, “An NHPP software
reliability model with S-shaped growth curve subject to
random operating environments and optimal release time,”
appl,” vol. 7, no. 12, Article ID 1304, 2017.

[29] J. Wang and X. Mi, “Open-source software reliability model
with the decreasing trend of fault detection rate,”)e
Computer Journal, vol. 62, no. 19, pp. 1301–1312, 2019.

[30] Y. Tamura and S. Yamada, “Software reliability model se-
lection based on deep learning with application to the optimal
release problem,” Journal of Industrial Engineering and
Management Science, vol. 2016, no. 1, pp. 43–58, Article ID 3,
2016.

[31] S. Chatterjee and A. Shukla, “A unified approach of testing
coverage-based software reliability growth modeling with
fault detection probability, imperfect debugging, and change
point,” Journal of Software: Evolution and Process, vol. 30,
2018.

[32] D. H. Lee, I. H. Chan, H. Pham, and K. Y. Song, “A software
reliability model considering the syntax error in uncertainty
environment, optimal release time, and sensitivity analysis,”
Applied Science, vol. 8, Article ID 1483, 2018.

[33] S. Khurshid, A. K. Shrivastava, and J. Iqbal, “Effort based
software reliability model with fault reduction factor, change
point and imperfect debugging,” International Journal of
Information Technology, vol. 13, 2019.

[34] Y. Zhao, T. Dohi, and H. Okamura, “Software test-run reli-
ability modeling with non-homogeneous binomial processes,”
in Proceedings of the 2018 IEEE Twenty)ird Pacific Rim
International Symposium on Dependable Computing,
pp. 145–154, PRDC), Taipei, Taiwan, December 2018.

[35] O. Barack and L. Huang, “Assessment and prediction of
software reliability in mobile applications,” Journal of Soft-
ware Engineering and Applications, vol. 13, no. 9, pp. 179–190,
2020.

[36] X. Sun and J. Li, “Simulation of software reliability growth
model based on fault severity and imperfect debugging,” in
Proceedings of the Simulation Tools and Techniques, Twelveth
EAI International Conference, SIMUtools, Guiyang, China,
August 2020.

[37] K. K. Raghuvanshi, A. Agarwal, K. Jain, and V. B. Singh, “A
time-variant fault detection software reliability model,” SN
Applied Sciences, vol. 3, no. 18, 2021.

[38] W. D. Van Driel, J. W. Bikker, and M. Tijink, “Prediction of
software reliability,” Microelectronics Reliability, vol. 119,
Article ID 114074, 2021.

Scientific Programming 11

