
Research Article
A Cross-Modal Image and Text Retrieval Method Based on
Efficient Feature Extraction and Interactive Learning CAE

Xiuye Yin 1 and Liyong Chen2

1School of Computer Science and Technology, Zhoukou Normal University, Henan, Zhoukou 466001, China
2School of Network Engineering, Zhoukou Normal University, Henan, Zhoukou 466001, China

Correspondence should be addressed to Xiuye Yin; 20111036@zknu.edu.cn

Received 10 November 2021; Revised 1 December 2021; Accepted 9 December 2021; Published 10 January 2022

Academic Editor: Le Sun

Copyright © 2022 Xiuye Yin and Liyong Chen. +is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is properly cited.

In view of the complexity of the multimodal environment and the existing shallow network structure that cannot achieve high-
precision image and text retrieval, a cross-modal image and text retrieval method combining efficient feature extraction and
interactive learning convolutional autoencoder (CAE) is proposed. First, the residual network convolution kernel is improved by
incorporating two-dimensional principal component analysis (2DPCA) to extract image features and extracting text features
through long short-term memory (LSTM) and word vectors to efficiently extract graphic features. +en, based on interactive
learning CAE, cross-modal retrieval of images and text is realized. Among them, the image and text features are respectively input
to the two input terminals of the dual-modal CAE, and the image-text relationship model is obtained through the interactive
learning of the middle layer to realize the image-text retrieval. Finally, based on Flickr30K, MSCOCO, and Pascal VOC 2007
datasets, the proposed method is experimentally demonstrated.+e results show that the proposed method can complete accurate
image retrieval and text retrieval. Moreover, the mean average precision (MAP) has reached more than 0.3, the area of precision-
recall rate (PR) curves are better than other comparison methods, and they are applicable.

1. Introduction

With the advancement of digitalization, more and more
people use the Internet to obtain the information they need.
How to make users accurately and quickly search for the
information they need has become a hot issue [1]. In the era
of mobile Internet, each of us is receiving massive amounts
of information from the Internet, while at the same time
generating massive amounts of multimedia information,
that is, multimodal data [2]. +e original form of cross-
modal retrieval is similar to that of single-mode retrieval.
With the growth of multimodal data, it is more difficult for
users to retrieve the information they are interested in ef-
ficiently and accurately [3]. +ere are many retrieval
methods so far, most of which are based on a single mo-
dality, such as searching for articles by text, searching for
pictures by pictures, or multimodal search on the surface. In
fact, it is in the form of search keywords to query and request
the most matching content among many resources on the
Internet.

In order to meet people’s actual needs and provide better
retrieval services, scholars are committed to the research on
relevant methods and practice in the field of cross-modal
retrieval. +erefore, the cross-modal retrieval method has a
wide range of application scenarios and research signifi-
cance. How to mine the effective information in these
multimodal data is an important problem in the research
field of cross-modal retrieval.

Researchers found a semantic gap between the low-level
features of data and high-level semantics, and the data of
different modalities are heterogeneous [4, 5]. It can be seen
that the core of cross-modal retrieval research is to mine the
associated information between different modal data. How
to mine this associated information has become the key to
the research of cross-modal retrieval technology.

In recent years, with the rapid development of deep
learning technology, people have become more and more
capable of solvingmore complexmachine learning problems
and have made great progress in analyzing and processing
multimodal data [6]. Multimodal content analysis has broad
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application prospects in various fields such as smart cities,
smart homes, and smart transportation. Based on the
breakthrough progress in the application research of deep
learning in the monomodal field, it is applied to the theo-
retical research of cross-modal retrieval tasks, and technical
practice is provided at the same time [7].

+e current cross-modal retrieval system modelling
mainly solves two problems: one is how to complete the
unifiedmapping of different modal information features and
the second is how to ensure the retrieval rate on the basis of
improving the retrieval rate of retrieval models [8]. +ese
two problems are interdependent. Due to the diversity and
heterogeneity of different modal information, the feature
extraction method and unified representation form of each
modal become the key to solving the problem [9, 10]. In
addition, the corpus with three modalities and above is less
researched, and the corpus with two modalities is more
common. In particular, the corpus with the modal alignment
of images and text is more common.

2. Related Research

Because there is a huge heterogeneous gap in different modal
data, how to effectively measure the content similarity of
different modal data has become a major challenge [11].
Nowadays, many cross-modal retrieval methods have been
proposed [12].

2.1. Real-Valued Cross-Modal Retrieval Method.
Cross-modal retrieval methods based on real-valued rep-
resentation can generally be divided into two categories:
canonical correlation analysis (CCA) and deep learning [13].
CCA uses different modal data to form sample pairs, learns a
projection matrix, and projects different modal data to a
common latent subspace, and then in the subspace, mea-
sures the similarity between modal data [14]. Reference [15]
proposed a new multilabel kernel canonical correlation
analysis (ml-KCCA) method for cross-modal retrieval,
which uses the high-level semantic information reflected in
multilabel annotations to enhance the kernel CCA. Refer-
ence [16] proposed cross-media correlation learning with
deep canonical correlation analysis (CMC-DCCA). It can
better mine the complex correlation between cross-media
data and achieve better cross-media retrieval performance.
However, the performance of its feature extraction algo-
rithm highly depends on the size of the sample set, and it is
difficult to obtain training samples for noncooperative
targets in actual situations. How to efficiently set the pa-
rameter range still needs further exploration.

+e cross-modal retrieval method based on deep
learning makes full use of the powerful feature extraction
capabilities of deep learning models, learns the feature
representation of different modal data, and then establishes
semantic associations betweenmodalities at a high level [17].
Reference [18] proposed a two-stage deep learning method
for supervised cross-modal retrieval, extending the tradi-
tional norm-related analysis from 2 views to 3 views and
conducting supervised learning in two stages.+e evaluation

results on two publicly available datasets show that the
proposed method has a better performance. However, there
is still room for optimization for the detection accuracy of
complex retrieval environments. At present, the dimen-
sionality obtained by the representation learning model
when automatically extracting features is relatively high.
Particularly for the cross-modal retrieval model based on
deep learning, the sample feature dimension obtained in the
representation stage is usually not less than 4096, and the
final feature dimension is still too high [19]. Reference [20]
proposed an image retrieval method combining deep
Boltzmann machine (DBM) and CNN to extract high-order
semantic features of the image.

2.2. Cross-Modal Retrieval Method Based on Hash
Transformation. +e cross-modal retrieval method based on
real-valued representation has the problems of time-con-
suming calculation and large demand space when facing
large-scale data. +erefore, an information retrieval method
based on hash transformation appears. +is method is based
on the paired sample pairs of different modal data, learns the
corresponding hash transformation, maps the corresponding
modal data features to the Hamming binary space, and then
realizes faster cross-modal retrieval in this space [21]. +e
premise of hash transformation is that the hash codes of
similar samples are also similar. Reference [22] proposed a
method called DNDCMH.+is algorithm uses binary vectors
specifying the existence of specific facial attributes as input
queries to retrieve relevant facial images from the database.
Secondly, the dimension reduction methods such as principal
component analysis (PCA) can reduce the feature dimension
to a certain extent, but under the premise of maintaining the
necessary retrieval accuracy, the dimension that can be re-
duced is quite limited and lacks efficient and reasonable
retrieval mechanism that can adapt to large-scale image sets
[23]. Reference [24] proposed a new self-supervised deep
multimodal hashing (SSDMH) method. However, cross-
modal retrieval still only realizes the matching of image
content and subject words, ignoring a large amount of
content-based, subtle, and important image information [25].
Reference [26] proposed a deep hashing method that can
combine stacked convolutional autoencoders with hash
learning and hierarchically map the input image to a low-
dimensional space. Some additional relaxation constraints are
added to the objective function to optimize the hash algo-
rithm. Experimental results on ultra-high-dimensional image
datasets show that the proposed method has good stability in
cross-modal retrieval, but the detection timeliness needs to be
optimized. However, various models have their specific ad-
aptation targets, advantages, and limitations. How to combine
the advantages of models and various algorithms in practical
applications to construct a universal cross-modal retrieval
model is one of the urgent problems to be solved in the
current cross-modal retrieval research.

2.3. OtherCross-Modal RetrievalMethods. In addition to the
above classical methods, there are some other methods. For
example, Feng et al. [27] proposed an automatic encoder
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(Corr-AE) model, which is characterized by using two
autoencoder networks to encode image vectors and text
vectors with each other to obtain two correlation loss terms
for model training. Reference [28] proposed a retrieval
method based on multimodal semantic autoencoder. +is
method uses an encoder decoder to learn projection and
preserve feature and semantic information while ensuring
embedding. +e 2-way net model proposed in [29] also
applies the idea of autoencoder, which is optimized in more
detail than Corr-AE. Reference [30] proposed a graphic
matching method based on semantic concepts and order
(SCO), which is characterized by introducing a multilabel
classification mechanism when retrieving images. Specifi-
cally, SCO performs a multilabel classification operation for
each candidate image extracted by the target detection
network so that each candidate image can not only carry
entity category information but also add some attribute
labels.

According to the above analysis, (1) in CCA method, the
single-mode feature representation of different data is
extracted first, and then associated learning is carried out.
+is two-stage method cannot ensure that the extracted
single-mode feature is the effective representation required
by associated learning. (2) In the deep learning method,
most networks use shallow networks to model the associ-
ation learning part, ignoring the high-level semantic asso-
ciation between modes. (3) In the deep hashing method,
some information will be lost when it converts the modal
representation to hash coding.

+erefore, effective feature extraction and feature as-
sociation learning are key to improving the accuracy of
cross-modal retrieval. In order to make better association
learning between different modal data, a cross-modal image
and text retrieval method combining efficient feature ex-
traction and interactive learning convolutional autoencoder
(CAE) is proposed in this paper. +e innovations of the
proposed method are as follows:

(1) Image feature extraction: +e new convolution
kernel constructed by 2DPCA is integrated into the
image feature extraction based on residual network,
which avoids the complex operation of traditional
PCA and reduces the dimension of image spatial
features.

(2) Cross-modal CAE architecture: Based on the tra-
ditional multimodal CAE architecture, a feature
association module (i.e., joint public representation)
is integrated to associate the representations of each
mode to realize interactive learning, make the
learned intermediate representation of each mode
contain the association relationship between modes,
and improve the accuracy of cross-modal retrieval.

3. Method Framework

3.1. Overall Framework. In order to make full use of the
advantages of complementary information of multimodal
data, in the training stage, the proposed method takes image
data and text data as the input of the network at the same

time, carries out interactive learning of image and text
features through multimodal CAE model, and generates the
classification model of the retrieval system. In the test stage,
the image or text features are input into the classification
model for discrimination, and the retrieval results are ob-
tained. +e overall architecture of the proposed method is
shown in Figure 1.

Among them, the image data use the residual network as
the image feature extractor and introduce two-dimensional
principal component analysis (2DPCA) to construct a new
convolution kernel. +e text data use word2vec and long
short-term memory (LSTM) network as the text feature
extractor. +e network fusion layer is designed using cross-
modal convolution CAE based on interactive learning, and
the two modal data features are fused and sent to the next
fully connected layer. In order to learn the nonlinear
mapping from the image-text data feature space to the se-
mantic label space and prevent overfitting, the Batch Norm
layer and the ReLU layer are added to the fully connected
layer.+e output dimension of the final fully connected layer
is consistent with the data dimension of the real label. +e
proposed method takes full advantage of the complementary
information of different modal data for multimodal data-
image data and text data.

3.2. Improved ImageFeature Extraction ofConvolutionKernel

3.2.1. Convolution Neural Network Is Used to Extract Image
Features. For the extraction of image features, a very
mainstream residual network, which is more suitable for
image features, is selected. +e network has five convolution
stages, each of which has a corresponding pooling operation.
After inputting a piece of image data, it is processed in layers
of convolution, and the size of the output image feature map
is 7× 7× 2048, which can be processed according to the
needs of subsequent machine learning tasks.

Image modal data have high dimensionality and rich
content information. +e selection of a deep convolutional
neural network will extract effective visual monomodal
representation features. Using Wx to simplify the model
parameters of the entire embedded subnetwork, the feature
output hx of the image modal data after passing through this
network is

hx � fx X; Wx( 􏼁, (1)

where X is the input image modal data.

3.2.2. Constructing a New Convolution Kernel by Introducing
2DPCA. PCA is a linear analysis method to extract the main
features of data in high-dimensional space and transform it
into low-dimensional vector space. 2DPCA directly utilizes
the two-dimensional information of the image, avoiding the
complicated calculations brought about by PCA’s row and
column vector conversion while retaining the spatial
characteristics of the image. Assuming that there are M

images I � I1, I2, . . . , IM􏼈 􏼉 of size w × h × c, the average
image of the sample can be expressed as
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I �
1

M
􏽘

M

i�1
Ii. (2)

+e difference image between each sample and the av-
erage image is

Z(i) � Ii − I. (3)

+e required covariance matrix is

Cn×n �
1

M
􏽘

M

i�1
Ii − I( 􏼁

T
Ii − I( 􏼁. (4)

+e optimal projection subspace U � η1, η2, . . . , ηd􏼈 􏼉 can
be constructed using the orthogonal eigenvectors corre-
sponding to the first d eigenvalues of the covariance matrix.
Mapping the original image to the projection space can obtain
the feature image Ti � ZiU after dimensionality reduction.+e
flow of the 2DPCA algorithm is shown in Figure 2.

3.3. Text Feature Extraction. In the multimodal dataset used,
the text modal data are mainly in the form of long text, so a
reasonable representation that matches its characteristics is
used for text feature extraction.

Short sentences: the text representation of short
sentences is simpler than long sentences. It is represented
by word vector (word2vec); that is, words are converted
into vectors that can be accepted by machine learning
tasks.

Long sentences: +e representation of long sentences is
more complicated because the words of the sentence are
related to each other. +e first or several words will affect the
understanding of the following sentence, so the sentence’s
meaning should be grasped from the whole. In order to
retain the previous information in the text, the LSTM
network is used to first represent each word in the sentence
by a word vector Y � y1, y2, . . . , yc􏼈 􏼉, and c represents the
number of words in the sentence, so each sentence is rep-
resented as a 300-dimensional word vector sequence.
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Figure 1: Overall framework of the proposed method.
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4. Cross-Modal Convolutional Autoencoder

4.1. Classical Convolutional Autoencoder (CAE). An
autoencoder (AE) is an unsupervised learning algorithm that
makes the output close to the input by learning data rep-
resentation. AE extracts data features through an encoder
and then decodes the acquired features through a decoder to
realize the reconstruction of input data. CAE is based on
unsupervised AE, combining the convolution and pooling
operations of CNN to convolve the encoder and decoder to
achieve better feature extraction [31]. +e single-layer CAE
network model is shown in Figure 3. +e coding part is
composed of a convolutional layer and a maximum pooling
layer.

Given MC1 feature maps I � I1, I2, . . . , IC1􏼈 􏼉, after
convolution operation, a set of FC2 feature maps is obtained

gn(i, j) � a 􏽘
k

u�−k

􏽘

k

v�−k

F
(1)
n (u, v)∗ I(i − u, j − v) + b

(1)
n

⎛⎝ ⎞⎠,

(5)

where gn(i, j) is the activation value at pixel (i, j) in the
activation map of the n-th channel and a(·) is a nonlinear
activation function. +e size of the filter is FC2 � 2k + 1. F(1)

n

is the weight of the convolution filter in the encoding
process, and the number of channels of each filter is the same
as that of the input sample. b(1)

n is the offset of the encoder
convolutional layer to the activation map of the n-th
channel.

+e convolutional layer of the convolutional encoding
part outputs a feature map of size
(OC1 − FC2/SC2 + 1)2 × MC2. After the maximum pooling
operation, the final output of the encoding part is obtained.
Among them, OC1 � ((w − FC1 + SC1)/SC1FP1) is the output
feature map size of the convolution module C1.

+e decoding process is the process of reconstructing the
original image from the feature activation map. CAE is a
fully convolutional network, so the decoding process is
mainly realized through deconvolution operation. Consid-
ering that the size of the feature activation map obtained
after encoding is smaller than the original image, the size
information of the original image cannot be reconstructed
only through the transposed convolution of the decoding
process. +erefore, it is necessary to perform zero padding

operation on the input feature map to decode later; a
reconstructed image with the same size as the original image
can be reconstructed. +e convolution output of the
encoding part is used as the input of the decoder and then
convolved with the convolution filter F(2) to obtain the
reconstructed image:

􏽥I � f G∗F
(2)
n + b

(2)
n􏼐 􏼑, (6)

where G is the set of feature maps obtained by encoding and
b(2)

n is the offset of the activation map of the n-th channel
corresponding to the decoder deconvolution layer.

4.2. Cross-Modal CAE Based on Interactive Learning.
Different from the existing multimodal CAE models
[32, 33], while learning the representations of different
modes, respectively, this method generates some associa-
tion between the representations of each mode through a
feature association module (i.e., joint public representa-
tion) after the hidden layer, to realize interactive learning.
+erefore, the intermediate representation of each mode
contains the correlation between modes, which helps to
improve the accuracy of cross-modal retrieval. +e pro-
posed dual-mode interactive learning CAE architecture is
shown in Figure 4.

+e input text and image data are, respectively, passed
through the convolution layer and the pooling layer to
obtain the data representation. +en, through an interme-
diate interaction layer, the feature representation of text and
image data is interactively learned to obtain a new joint
public representation feature data. +e original input can be
obtained by deconvolution of the feature data [34–36].

In order to train the dual-mode interactive learning
CAE, it is necessary to construct the objective function in the
training stage. In classical CAE training, the objective
function is usually to minimize the reconstruction error.
However, in the dual-mode interactive learning CAE model,
the interactive learning between multimodal features is
integrated to improve the accuracy of model retrieval.
+erefore, the objective function needs to include the goal of
maximizing the correlation between the two modal features
in the hidden layer.

+e given input is zi � xi; yi􏼈 􏼉, where zi is the associated
representation of the input views xi and yi. Self-recon-
struction loss and cross-reconstruction loss are defined as
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Figure 3: CAE model.
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Figure 2: +e flow of the 2DPCA algorithm.
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L1 � 􏽘
N

i�0
L zi, g h zi( 􏼁( 􏼁( 􏼁,

L2 � 􏽘
N

i�0
L zi, g h xi( 􏼁( 􏼁( 􏼁,

L3 � 􏽘
N

i�0
L zi, g h yi( 􏼁( 􏼁( 􏼁,

L4 � 􏽘
K

k�0
􏽘

N

i�0
L h xi( 􏼁

k
, h yi( 􏼁

k
􏼐 􏼑,

L5 � 􏽘
N

i�0
L g h xi( 􏼁( 􏼁, g h yi( 􏼁( 􏼁( 􏼁,

(7)

where g, h are the nonlinearity generally regarded as ReLU,
g(h(xk

i )) and g(h(yk
i )) are the representations of the kth

intermediate hidden layer (K � 2), and L is the error
function. In the loss L2 and L3 (for cross reconstruction), the
0 vector is used instead of another view to calculate xi and yi.

Finally, in order to enhance the interaction between the
two modal features, the objective function of correlation loss
is expressed as follows:

L6 � λcorr(h(X), h(Y)),

L7 � 􏽘
K

k�0
λkcorr h(X)

k
, h(Y)

k
􏼐 􏼑,

(8)

where h(X) and h(Y) are the projections of the combined
model (the projections of the joint public representation in
Figure 4). X and Y are the representation of two modal
features. λk is the relative regularization hyperparameter
used for each kth intermediate encoding step (similarly using
λ in the decoding stage). In the encoding process, a con-
volution layer and two intermediate layers (K � 2) are used.
For decoding, the deconvolution layer and an intermediate
layer (K �1) are used for reconstruction. λ affects the
complexity of model training. When it is too small, the
model is easy to overfit. When the value is large, it is easy to
cause underfitting. Considering the search results on each
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Figure 4: Dual-mode interactive learning CAE architecture.
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dataset, λ1 � 0.004 and λ2 � 0.05 in item L7 and λ� 0.02 in
item L6 are uniformly set here.

+e correlation between the two views h(X) and h(Y) is

corr(h(X), h(Y)) �
􏽐

n
i�1 h xi( 􏼁 − h(X)􏼐 􏼑 h yi( 􏼁 − h(Y)􏼐 􏼑

�����������������������������������

􏽐
n
i�1 h xi( 􏼁 − h(X)􏼐 􏼑

2
􏽐

n
i�1 h yi( 􏼁 − h(Y)􏼐 􏼑

2
􏽱 ,

(9)

where h(X) and h(Y) are the mean vectors of the hidden
representations of the two views. h(xi) and h(yi) are hidden
layer representations of a single modal view.

Integrate all objective functions to build a total objective
function, which is expressed as follows:

L(θ) � 􏽘

5

i�1
Li − 􏽘

7

j�6
Lj, (10)

where θ is the model parameter. +e above formula mini-
mizes self-reconstruction and cross-reconstruction and
maximizes the association between views.

5. Experiment and Analysis

5.1. Experimental Dataset. In order to verify the perfor-
mance of the proposed method, the effectiveness of the
method is verified on three commonly used real cross-modal
graphic retrieval datasets: Flickr30K dataset, MSCOCO
dataset, and Pascal VOC 2007 dataset.

(1) Flickr30K: +e Flickr30K dataset contains 31,783
images, and the English description of the images is
158,915 sentences. +at is, each image corresponds to
5 sentences with different description sentences. +e
sentence descriptions of these images are obtained
through manual annotation. +e Flickr30K dataset is
divided into three parts: 1000 images and corre-
sponding descriptions as the verification dataset, 1000
images and corresponding descriptions as the test
dataset, and the remaining part as the training dataset.

(2) MSCOCO: +e MSCOCO dataset contains 123287
images, and each image also corresponds to 5 dif-
ferent description sentences. +is dataset is divided
into four parts, including 82783 images as the
training dataset, 5000 images as the verification
dataset, 5000 as the test dataset, and 30504 images as
the reserved dataset.

(3) Pascal VOC 2007: +e Pascal VOC 2007 dataset
contains 5011 image-annotation pairs for training
and 4952 image-annotation pairs for testing, all from
the Flickr website. Each sample pair is labeled as one
of 20 semantic categories. +is dataset is randomly
divided into three subsets: training set, test set, and
validation set, which contain 800, 100, and 100
samples, respectively.

+e experimental running environment is a PC con-
figured with Intel Core i7-7700 CPU and Nvidia GTX1070Ti
8G video memory GPU. +e deep learning framework used
is PyTorch, and the development language is Python.

5.2. Performance Index and Comparison Method. +e eval-
uation indexes commonly used in the cross-modal retrieval field
are selected to compare and analyse the proposed methods: the
mean average precision (MAP) and the precision-recall (PR)
curve. Among them, MAP can effectively evaluate the exper-
imental results through the positions of positive samples and
negative samples in the search results. AP represents the average
accuracy of each specific search, calculated as follows:

AP �
􏽐

n
k�1(P(k) × φ(k))

N
, (11)

where N represents the total number of search results that
belong to the same semantic category as the query. n is the
number of all results returned by the search. k is the position
index in the search result sequence. P(k) is the accuracy of
the first k search. φ(k) indicates whether the k th search
result and the query have the same semantic category (the
same value is 1, and the value is 0 if they are different).

+e value of MAP is the average of AP values corre-
sponding to multiple searches:

MAP �
􏽐

Q
q�1 AP(q)

Q
, (12)

where Q represents the total number of searches.
UseMAP@R to indicate that given a query, sort the top R

results with the highest similarity according to the similarity.
+e accuracy of these R results was averaged:

MAP@R �
􏽐

R
k�1 P(k) × φ(k)

N
. (13)

+e PR curve is the curve of the accuracy rate changing
with the recall rate, which is used as the performance
evaluation index in cross-modal retrieval.

In the experiment, the three selected datasets have two
modes: image and text. +is model is compared with the
reference model on two retrieval tasks, namely, retrieving
text with images and retrieving images with text. For ex-
ample, when retrieving images based on text, the proposed
method selects each text in the test set to retrieve all images
in the test set and finally obtains the retrieval result.

In order to verify the effectiveness of the proposed
method, it is compared with two classical methods: CCA and
deep hashing method. +e corresponding research is a
multilabel kernel canonical correlation analysis (ml-KCCA)
method proposed in [15] and a cross-modal hashing re-
trieval method (DNDCMH) proposed in [22]. In addition,
in order to highlight the effectiveness of the interactive
learning CAE model proposed in this paper, it is compared
with other methods based on the CAE model, such as the
text retrieval method based on multimodal semantic auto-
matic encoder (SCAE) proposed in [28].

5.3. Cross-Modal Retrieval Example

5.3.1. Image-Text Retrieval Analysis. +e image-text re-
trieval results obtained by the proposed method and [22]
retrieval method are shown in Table 1. It is the text retrieval
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result of the image on the Flickr30K test set. +e text in bold
is the correct recall text, and the text without bold is the
wrong recall text.

It can be seen from Table 1 that the proposed method has
better retrieval results in terms of recall index. Specifically, in
the text retrieval task, the proposed method uses image
search to find the correct text sorting more advanced. +ese
visually presented phenomena more intuitively illustrate the
effectiveness of the proposed method. In [22], DNDCMH is
used to achieve text retrieval. Due to the lack of image
feature extraction effect, the correct text is less.

5.3.2. Text-Image Retrieval Analysis. In order to compare
the performance of the proposed method and the com-
parison method [15, 22, 28], in text-image retrieval, the ‘car’
is used as the query text to retrieve the image on the Pascal
VOC 2007 dataset. +e top 5 images retrieved by various
methods are shown in Figure 5.

It can be seen from Figure 5 that compared to other
comparison methods, the text retrieval results of the pro-
posed method are more reasonable. Since the proposed
method uses word2vec and LSTM network for text feature
extraction, the extraction effect is better. +erefore, the
retrieval images obtained through the CAE network of in-
teractive learning are more accurate.

5.4. Performance Comparison. In order to demonstrate the
retrieval performance of the proposed method in the three
datasets, it is compared with the methods in [15, 28] and
[22]. +e MAP values of the first 50 results of the four
methods are shown in Table 2.

It can be seen from Table 2 that, in the two retrieval tasks
of retrieving images by text and retrieving text by images, the
proposed method has significantly improved MAP on these
three datasets compared with other comparison methods.
Since the Pascal VOC 2007 dataset has the largest magnitude,
the proposed method has the most significant improvement
on Pascal VOC 2007. On Flickr30K, MSCOCO, and Pascal
VOC 2007, three cross-modal graphic retrieval domain
datasets, the average MAP on the two retrieval tasks of the
proposed method are 0.359, 0.334, and 0.309, respectively.

Compared with [15], it increased by 58.85%, 44.59%, and
58.46%; compared with [28], by 14.14%, 9.57%, and 10.69%;
and compared with [22], by 16.56%, 12.46%, and 24.10%.

In addition, with different methods on the Flickr30K
dataset, the PR curves for two different retrieval tasks of
image retrieval and text retrieval are shown in Figure 6. +e
ordinate represents the precision, and the abscissa represents
the recall. Similarly, the PR curves of two different retrieval
tasks on MSCOCO and Pascal VOC 2007 datasets with
different methods are shown in Figures 7 and 8, respectively.

It can be seen from Figure 6 that whether it is image
retrieval text or text retrieval image, the area of the PR curve
of the proposed method is larger than other comparison
methods. Because it adopts the cross-modal retrieval method
of image and text interactive CAE and incorporates 2DCPA
into the feature extraction, the accuracy of retrieval is im-
proved. Reference [15] proposed a ml-KCCA method to
achieve cross-mode retrieval, but the retrieval performance
is low due to poor feature extraction. Reference [28] com-
bined low-level features and high-level semantic informa-
tion to learn feature representation. Although it solves the
problem of feature representation, due to the lack of feature
interaction, the retrieval accuracy for complex environments
still needs to be improved. Reference [22] used the
DNDCMH method to complete cross-modal retrieval.
However, this method has poor universality, so the retrieval
performance is inferior to the proposed method.

It can be seen from Figure 7 that the retrieval perfor-
mance of the proposed method is better than other com-
parison methods in the two retrieval tasks of image retrieval
text and text retrieval image. When the recall is 0.2, the
accuracy of each method reaches the maximum, and the
recall increases and decreases continuously. Since the
MSCOCO dataset has relatively few samples, the area
composed of PR curves of different methods has increased
compared to the Flickr30K dataset.

It can be seen from Figure 8 that, like the first two
datasets, the retrieval performance of the proposed method
on the Pascal VOC 2007 dataset is better than other com-
parison methods. +e proposed method uses the residual
network to extract image features and introduces 2DPCA to
construct a new convolution kernel. At the same time, using

Table 1: Comparison of text retrieval.

Retrieving
images Methods Text retrieval results (top 5)

Reference [22] (Flickr30K)

1. A man wearing a black sweater cook food in a pan while standing in a cluttered
kitchen.
2. A man cooking food on the stove.
3. A man is cooking on a stove in a kitchen, using wooden utensil.
4. A cook is posing for a camera while cooking.
5. Man with a white T-shirt and black rimmed glasses cooking a pot of food on the
stove.

+e proposed method
(Flickr30K)

1. A man preparing food in his kitchen.
2. A man wearing a black sweater cook food in a pan while standing in a cluttered
kitchen.
3. A man cooking food on the stove.
4. A man is cooking on a stove in a kitchen, using wooden utensil.
5. A man stirring a pot of liquid in this kitchen.
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The 
proposed 
method

Ref.[22]

Ref.[15]

Ref.[28]

Figure 5: An example of image retrieval with text “car.”

Table 2: MAP (R� 50) values of different methods on three datasets.

Datasets
MAP values

Methods Image query Text query Average

Flickr30K

Reference [15] 0.215 0.237 0.226
Reference [28] 0.304 0.312 0.328
Reference [22] 0.281 0.335 0.308

+e proposed method 0.338 0.379 0.359

MSCOCO

Reference [15] 0.198 0.264 0.231
Reference [28] 0.293 0.319 0.301
Reference [22] 0.275 0.318 0.297

+e proposed method 0.324 0.343 0.334

Pascal VOC 2007

Reference [15] 0.192 0.198 0.195
Reference [28] 0.279 0.295 0.262
Reference [22] 0.251 0.247 0.249

+e proposed method 0.306 0.311 0.309

The proposed method
Ref.[22]

Ref.[28]
Ref.[15]
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Figure 6: PR curves on Flickr30K datasets. (a) Retrieving text with images. (b) Retrieving images with text.
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word2vec and LSTM network for text feature extraction,
feature extraction is more efficient. It is better than [15] using
existing label information and [22] using specific images. In
addition, [28] used the semantic CAE method to learn
multimodal mapping and projected multimodal data into
low dimensional space to retain feature and semantic in-
formation and improve retrieval accuracy. However, the
proposed method uses the CAE model with interactive
learning, and the fusion effect of image and text feature
learning is better, so the retrieval performance is more ideal.

In summary, it can be seen from the PR curves on
different datasets that the proposed method shows the best

results under different recall. +is proves that the deep
interactive learning method constructed by it is effective.

6. Conclusion

Cross-modal retrieval technology meets people’s more di-
verse retrieval needs and solves the problems of heteroge-
neous gap and semantic gap between different modal data.
However, the retrieval accuracy still needs to be improved.
For this reason, a cross-modal image retrieval method
combining efficient feature extraction and interactive
learning CAE is proposed.+e residual network convolution
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Figure 8: PR curves on Pascal VOC 2007 datasets. (a) Retrieving text with images. (b) Retrieving images with text.
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Figure 7: PR curves on the MSCOCO datasets. (a) Retrieving text with images. (b) Retrieving images with text.
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kernel is improved by incorporating 2DPCA to extract
image features, and text features are extracted through
LSTM and word vectors to obtain image and text features.
After that, the two features are input into the cross-modal
CAE of interactive learning, and through the interactive
learning of the middle layer, the image-text retrieval is re-
alized. In addition, the proposed method is experimentally
demonstrated based on the Flickr30K,MSCOCO, and Pascal
VOC 2007 datasets. +e results show that the proposed
method can complete accurate image retrieval and text
retrieval. Moreover, the average MAP on the two retrieval
tasks is 0.359, 0.334, and 0.309, which are higher than other
comparison methods. +e same is true for the area formed
by the PR curve.

At present, the method proposed in this paper is only
suitable for cross-modal retrieval between text and image,
but there are many types of multimodal data on the network.
Next, more data of different media types such as audio and
video will be expanded to meet people’s broader retrieval
needs.
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