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�e rolling bearing is one of the important parts of rotating machinery, while the degree of dependence on the machine is
becoming heavier nowadays.�erefore, it is always necessary to monitor its operating status and diagnose faults. To better analyze
the bearing vibration signal from the time domain and frequency domain and reduce information loss, we propose a model that
decomposes the original bearing vibration signal with a length of 1024 by a two-layer wavelet packet. For the analysis, four low-
frequency and high-frequency feature vectors of a length of 1024 are obtained as the input for the analysis model. �e proposed
model uses frequency subbands to automatically extract features from network input and then fuse the features. �e accuracy of
the model on a single load on the CaseWestern Reserve University (CWRU) dataset is 98−100%, which shows the diagnostic e�ect
is satisfactory.

1. Introduction

�e rolling bearing is an indispensable part of rotating
machinery. Unexpectable damage to bearings has a huge
impact on the operation of the equipment and immeasurable
consequences. In the development of manufacturing, the use
of machines demands reliability and safety for the better
availability of the mechanical system [1–3]. �erefore, it is
important to monitor the status and diagnose rolling
bearings in the machine.

E�ective fault diagnosis is required to avoid production
safety accidents of machines and reduce equipment main-
tenance costs, which also improve productivity [4]. To detect
the abnormal situation of rolling bearings in time, the vi-
bration signals of rolling bearings from sensors under dif-
ferent working conditions are collected andused for
intelligent fault diagnosis methods. �en, the analysis and
processing of the signals are performed to identify the type of

failure [5–7]. �e intelligent fault diagnosis method mainly
has two steps: extraction and classi�cation of fault features.

Extracting fault features from the vibration signal is
carried out in time and frequency domain analysis. �e
time-domain analysis calculates the peak, mean square, root
mean square, skewness, and kurtosis for the recognition and
characterization of the corresponding bearing fault. Fre-
quency domain analysis includes wavelet transform [8],
Fourier spectrum analysis [9], Hilbert–Huang transform
[10], and other methods. �e time-domain analysis and the
frequency domain analysis have their limitations, and it is
still necessary to select appropriate analysis methods
according to di�erent working scenarios of rolling bearings
based on professional and technical knowledge. For domain
analyses, deep learning is generally used. Deep learning
depends on the learning and reasoning ability of the neural
network to extract and analyze the vibration signal of the
bearing and identify the fault by using complex nonlinear
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functions [11].*erefore, deep learning in the fault diagnosis
of the rolling bearing has attracted researchers’ interest, and
the results are used for improving the stability of machine
operation [12].

Based on the previous research results, a CNN is used to
analyze the rolling bearing fault diagnosis [11] in the time-
frequency domain analysis with the two-layer wavelet packet
decomposition for this study. *e method was combined
with the multibranch one-dimensional convolutional neural
network. *e vibration signal of the rolling bearing and
judging the fault category are then analyzed efficiently.

*e proposed method has the following advantages:

(1) Using two-layer wavelet packet decomposition, a
multiscale analysis of bearing vibration signals is
carried out in the time and frequency domain which
results in reduced loss of fault information.

(2) Each branch is designed with different convolution
kernel sizes and steps to extract corresponding fault
features according to the characteristics of low-fre-
quency and high-frequency components, and fault
classification becomes better after feature fusion.

(3) *e model structure has a strong generalization
ability when diagnosing bearing faults across loads.

*e rest of this paper is organized as follows: in the second
section, the basics of wavelet packet decomposition and the
convolutional neural network are introduced. *e third
section proposes the fault diagnosis model.*e fourth section
describes the experimental verification and analysis of the
experimental results.*e fifth section concludes this research.

2. Related Work

2.1. Literature Review. *e theory of deep learning was
proposed by Hinton in 2006 [13]. Owing to its powerful
feature extraction and learning capabilities, it has developed
rapidly in various fields [3, 14, 15]. Janssens et al. used the
global spectrum analysis to identify bearing faults by using a
fast Fourier transform. *e vibration signal was pre-
processed to select the dominant frequency feature, and the
main feature was extracted by using the principal compo-
nent analysis. Finally, the extracted main features were
classified using a linear discriminator [16]. For the first time,
Janssen et al. used convolutional neural networks to diag-
nose the faults of bearings and gears in gearboxes. *e time-
domain vibration signals were converted into frequency-
domain signals through discrete Fourier transform, and then
the frequency-domain signals were used in convolutional
neural networks. *e input was used to identify the fault of
the rolling bearing. *e accuracy of this method in the
experimental system was improved by 6% compared with
the conventional algorithm [17].

Xu et al. proposed a hybrid deep learning model based
on a convolutional neural network (CNN) and gcForest [18].
*ey used continuous wavelet transform to convert bearing
vibration signals into time-frequency images, then used the
CNN to extract bearing fault features, and finally input the
extracted corresponding features to gcForest. *e

classification was performed in the classifier, and the ex-
perimental results showed that the model had a fault di-
agnosis accuracy of higher than 98% on data sets of different
scales [3, 18, 19]. Jin et al. proposed an end-to-end deep
convolutional neural network with a local sparse structure,
by using local sparse nodes to replace high-dimensional
convolutional layers and fully connected layers even in the
presence of noise. 47% of the obtained parameters showed
similar performance to the original method [20]. Wang et al.
proposed an adaptive overlapping convolutional neural
network (AOCNN) by using root-mean-square pooling
layers to overcome displacement changes and edge problems
[21]. Huang et al. used an improved deep CNN to implement
multiscale information in bearing fault diagnosis [22]. Liu
et al. proposed a time series dislocation CNN (DTS-CNN) to
overcome the shortcomings of traditional CNN in the di-
agnosis of modern faulty motors [23]. Zhang et al. proposed
a bearing fault diagnosis method based on deep 1D-CNN
with the original vibration signal as input without any
denoising processing and achieved high accuracy under
noise and different loads [24]. [21, 25]. Wang et al. proposed
a method to fuse multimodal sensor signals (that is, data
collected by accelerometers and microphones) by using 1D-
CNN to extract features from the original vibration signals
and acoustic signals and perform feature fusion and obtain
stronger robustness and performance with high accuracy
[3, 19, 21]. Yao et al. proposed a superimposed inverse
residual convolutional neural network (SIRCNN) to reduce
the size of the model by using deep separable convolution.
*ey introduced a residual structure to ensure the stability of
the model in a noisy environment. *e experimental results
showed that the fault diagnosis model of the rolling bearing
based on SIRCNN effectively identified the type and degree
of damage to the bearing [25].

2.2. Backgrounds. Traditional time and frequency domain
analyses perform a global transformation of the signal but
cannot analyze the signal in both domains at the same time.
Although wavelet analysis can be used for the time and
frequency domain data at the same time, it decomposes the
low-frequency signal only. As the high-frequency signal of
the bearing vibration also contains fault information, the
loss of fault information may occur. *e wavelet packet
decomposition is to decompose high-frequency signals with
wavelet analysis for a better resolution of time-frequency
analysis and to perform a multiscale detailed analysis of
bearing vibration signals.

2.2.1. Wavelet Packet Decomposition. Wavelet packet de-
composition is to convolve the signal through low-pass and
high-pass wavelet filters. *e equations of the low-pass filter
and the high-pass filter are shown as follows:

h(k) �
1
�
2

√ < ϑ(t),φ(2t − k)> ,

h(k) �
1
�
2

√ < ϑ(t),φ(2t − k)> ,

(1)
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(ϑ(t): the Haar wavelet function.φ(t): the scaling
function.〈∗ , ∗ 〉: the inner product operation, t and k are
variables).

*e calculation of the wavelet coefficients of the bearing
vibration signal in each frequency band and decomposition
layer is carried out with the following equations:

wi+1,2j(k) � 􏽘 wi,j(k)∗ h(k − 2τ), (2)

wi+1,2j+1(k) � 􏽘 wi,j(k)∗g(k − 2τ), (3)

(wi,j(k): the original bearing vibration signal.wi+1,2j(k),

wi+1,2j+1(k): the wavelet coefficients in the i-th decompo-
sition layer and the j-th frequency band.k: the translation
operations, k � 1, 2, . . . , N/2{ }).

We carried out two-layer wavelet packet decomposition
on the bearing vibration signal S(0,0) and obtained two low-
frequency and two high-frequency components. *e fre-
quency increases from left to right. *e wavelet packet
decomposition tree structure is shown in Figure 1. A
schematic diagram of the relationship between the coeffi-
cients of wavelet packet decomposition and the size of the
convolution kernel is shown in Figure 2.

2.2.2. Deep-Learning: Convolutional Neural Networks.
*e convolutional neural network (CNN) was inspired by
the biological vision system and proposed by LeCun et al.
[26]. *e CNN consists of an input layer, a convolutional
layer, a pooling layer, a fully connected layer, and an output
layer [27]. *e CNN only needs to include the forward
propagation of the training data and the backpropagation of
the error in the training process. Forward propagation is
required to process the training data layer by layer according
to the network parameters and obtain the probability of each
category corresponding to the output training data. Back-
propagation refers to adjusting the training parameters of
the network by calculating the difference between the data
type of the network output and that of the sample label.
General classification problems use cross-entropy as a loss
function to calculate the difference between the network
output and the sample label. After each forward propagation
is completed, the training parameters of each layer of the
network need to be updated according to the loss value
calculated by the loss function.

*e convolutional layer is the essence of the entire
convolutional neural network. *e corresponding features
of the input data are extracted through multiple convolution
operations. Its characteristics of local connection and weight
sharing reduce the parameters involved in the training of the
network and avoid the slowing-down and the overfitting
problem caused by too many parameters in the network
calculation.*e convolution operation generally changes the
size of the original feature map, where the step size of the
convolution kernel affects the output. *e calculation of the
convolutional layer is shown as follows:

x
l
i � f W

l
i ∗X

(l− 1)
+ b

l
i􏼐 􏼑, (4)

where Xl
i represents the first l layer output value i features,

Wl
i represents the first l layer i.In the weight matrix of a

convolution kernel, the ∗ operator represents the convo-
lution operation, X(l− 1) is for the first (l − 1) output of the
layer, bl

i represents the bias term, and function f represents
the activation function of the output.

*e activation function performs a nonlinear transfor-
mation of the output value in the convolution operation.
*en, the convolution operation is repeated to extract
further data abstract features.*e commonly used activation
functions in neural networks include the hyperbolic tangent
function (Tanh) and the rectified linear unit (ReLU). *e
expressions of the two activation functions are shown in the
following equations:

Tanh y
l(i,j)

􏼐 􏼑 �
e

yl(i,j)

− e
− yl(i,j)

e
yl(i,j)

+ e
−yl(i,j)

,

f y
l(i,j)

􏼐 􏼑 � max 0, y
l(i,j)

􏽮 􏽯.

(5)

*e pooling layer (the subsampling layer) and the down-
sampling layer reduce the risk of network overfitting to save
computing resources and the dimension of the feature map
while maintaining important features and the calculation
parameters in the network. Commonly used operations of
the general pooling layer include maximum pooling and
average pooling. Maximum pooling uses the local maximum
value as the output, while average pooling uses the local
average value as the output value.

*e output layer realizes the classification of the features
extracted after the convolution operation. *e commonly
used multielement classifier is softmax, which makes deci-
sions through a probability distribution (equation).

softmax z
0
(j)􏼐 􏼑 �

e
z0(j)

􏽐
M
k�1 e

z0(k)
, (6)

where z0(j) represents the first j. *e output value of each
neuron in the classification layer, and M represents the
general category.

3. Proposed Method and Analysis of Data

3.1.ProposalExperimentalMethod. Amultibranch 1D-CNN
network model structure is proposed for the analysis of the
data. *e structural parameters of the four branch networks
are shown in Tables 1–4. *e fault features extracted by the
four branches are fused after passing through the flat layer.
*en, after layers are fully connected, the extracted fault
features are classified by the softmax classification function.
A single sample with a sampling frequency of 12 kHz and a
data point length of 1024 is subjected to two-layer wavelet
packet decomposition. Lastly, we will calculate the flattened
and concatenated neurons shown in Table 5.

*e bearing vibration signal is decomposed into four
wavelet packet coefficients, which are 0–1.5 kHz (LL),
1.5–3 kHz (LH), 3–4.5 kHz (HL), and 4.5–6 kHz (HH) as
input for each branch network. After the convolutional
pooling operation of each branch network, the fusion is
performed in the feature layer, the fused fault features are
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input to the fully connected layer, and then the softmax
activation function identifies and classifies faults.

Due to the long signal of the low-frequency band, a
larger convolution kernel is used to cover the complete
signal, and the stride becomes relatively large. *e signal of
the high-frequency band has a shorter period. A smaller
convolution kernel is used, and the stride becomes relatively
small (Tables 2 and 3).

A dropout operation with a deactivation ratio of 0.3 is
added before the second convolutional layer of the four
branch networks. Its random selection of connected neurons
is used to achieve the effect of not relying on specific neuron
connections and thereby enhance the generalization ability
of the model. A fully connected layer with 64 neurons is
added to the concatenate layer, and then the softmax
classification function is used in the output layer for
classification.

4. Experimental Results and Discussion

4.1. Dataset Description. *e public data set provided by
Case Western Reserve University (CWRU) is generally used
in the research study of rolling bearing fault diagnosis.
*erefore, we used the CWRU public data set to verify the
proposed multibranch network model. *e bearing vibra-
tion data provided by the CWRU data set were collected by
the accelerometers placed on the drive end and the fan end

with a sampling frequency of 12 and 48 kHz by a 16-channel
data logger.*e used bearing models at the drive and the fan
ends were SKF6205 and SKF6203. To simulate the failure
damage, single point damage by EDM is used on the ball,
inner ring, and outer ring.*e damage diameters were 0.007,
0.014, 0.021, 0.028, and 0.04 inches.*e damage points of the
outer ring of the rolling bearing are set at three positions: 90°,
180°, and 360°.

During this experiment, the vibration signal of the drive
end bearing with the sampling frequency of 12 kHz under
three load states of 1, 2, and 3 HP. *e data set of each load
has 9 different fault states and normal states (10 different
states in total), and the original vibration signal is se-
quentially segmented into 1024 points as a sample. 1150
sample signals in total are obtained under each load, of
which 900 are training samples and 250 are testing samples
as shown in Table 4.

4.2. Verification of Results

4.2.1. Single Load. *e proposed model is trained and tested
on four workloads.*emodel uses the Adam optimizer with
the loss function set to categorical_cross-entropy. *e
learning rate is set to 0.0001, and the batch is set to 5-fold
cross-validation. To reduce random errors, the experiment is
repeated 50 times to calculate the average value. *e ex-
perimental results are shown in Table 5.*e proposed model
has the highest accuracy of 100% on four loads and the
lowest accuracy of 98%. *e average accuracy rate on four
different loads reaches 99.82%.

*e standard deviations of the 50-fold and 5-fold
cross-validation for 0, 1, 2, and 3 HP are 0.16, 0.48, 0.11,
and 0.13%, respectively. According to the standard

Table 1: CNN branch LL.
Layer Filters Kernel size Stride Output size Padding
Convolution
ReLU 16 32×1 4×1 64×16 Same

Average pooling
Dropout (0.3) 8×1 2×1 29×16 Valid

Convolution 32 4×1 2×1 15× 32 Same
Average pooling 2×1 2×1 7× 32
Max pooling 2×1 2×1 3× 32 Valid
Convolution
ReLU 64 3×1 1× 1 3× 64 Same

Average pooling 2×1 2×1 1× 64 Valid

Table 2: CNN branch HH.
Layer Filters Kernel size Stride Output size Padding
Convolution
ReLU 16 16×1 2×1 256×16 Same

Convolution
Dropout (0.3) 24 4×1 1× 1 256× 24 Same

Average pooling 2×1 2×1 128× 24
Max pooling 8×1 1× 1 121× 24 Valid
Convolution 32 3×1 1× 1 121× 32 Same
Max pooling 2×1 2×1 60× 32 Valid

Table 3: Flattened and concatenated neurons.

Layer Neuron
Concatenate 2752
Fully connected 64
Softmax 10
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deviation results under various loads, the proposed
multibranch convolutional neural network has better
performance under different loads and strong

generalization ability, which shows it applies to various
load conditions. *e model accuracy under different loads
is shown in Figure 3.

Table 4: Details of the dataset.
Fault type Fault size (mil) Label Training sample Test sample Sample length Load (HP)
Ball 7 1 90 25 1024 1, 2, 3
Ball 14 2 90 25 1024 1, 2, 3
Ball 21 3 90 25 1024 1, 2, 3
Inner-race 7 4 90 25 1024 1, 2, 3
Inner-race 14 5 90 25 1024 1, 2, 3
Inner-race 21 6 90 25 1024 1, 2, 3
Outer-race@3 7 7 90 25 1024 1, 2, 3
Outer-race@6 14 8 90 25 1024 1, 2, 3
Outer-race@12 21 9 90 25 1024 1, 2, 3
Normal - 0 90 25 1024 1, 2, 3

Table 5: Accuracy of the model under different loads.
Load (HP) Maximum (%) Minimum (%) Average accuracy (%) Standard deviation (%)
0 100 99.2 99.94 0.16
1 100 98 99.37 0.48
2 100 99.2 99.98 0.11
3 100 99.2 99.98 0.13

Segment

L

LL LH

H

HL HH

Figure 1: Wavelet packet decomposition tree structure.

Wavelet coefficients Schematic diagram of the relationship between
wavelet coefficients and convolution kernel

HH (High-High 
Band)

HL (High-Low 
Band)

LH (Low-High 
Band)

LL (Low-Low 
Band)

Figure 2: Schematic diagram of wavelet packet coefficients and convolution kernel.
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Figure 3: Accuracy of the model under different loads (Max: maximum accuracy, Min: minimum accuracy, Avg. Acc.: average accuracy in %).

Table 6: CNN branch LH.
Layer Filters Kernel size Stride Output size Padding
Convolution
ReLU 16 24×1 3×1 86×16 Same

Average pooling
Dropout (0.3) 6×1 2×1 41× 16 Valid

Convolution 32 4×1 1× 1 41× 32 Same
Average pooling 2×1 2×1 20× 32
Max pooling 8×1 1× 1 13× 32 Valid
Convolution
ReLU 64 3×1 1× 1 13× 64 Same

Max pooling 2×1 2×1 6× 64 Valid

Table 7: CNN branch HL.
Layer Filters Kernel size Stride Output size Padding
Convolution
ReLU 16 16×1 2×1 128×16 Same

Convolution 4×1 2×1 63×16 Valid
Max pooling 24 4×1 1× 1 63× 24 Same
Convolution
ReLU 2×1 2×1 31× 24

Max pooling 8×1 1× 1 24× 24 Valid
Convolution
ReLU 32 3×1 1× 1 24× 32 Same

Max pooling 2×1 2×1 12× 32 Valid

Table 8: Accuracy comparison of different models across loads.

Training
domain

FFT-SVM
(%)

FFT-MLP
(%)

FFT-DNN
(%)

WDCNN
(%)

TICNN
(%)

Ensemble TICNN
(%)

*e proposed model
(%)

1⟶ 2 68.6 82.1 82.2 99.2 99.1 99.5 99.4
1⟶ 3 60.0 85.6 82.6 91.0 90.7 91.1 97.1
2⟶1 73.2 71.5 72.3 95.1 97.4 97.6 96.1
2⟶ 3 67.6 82.4 77.0 91.5 98.8 99.4 98.6
3⟶1 68.4 81.8 76.9 78.1 89.2 90.2 90.2
3⟶ 2 62.0 79.0 77.3 85.1 97.6 98.7 97.3
AVG 66.6 80.4 78.1 90.0 95.5 96.1 96.4

6 Scientific Programming



4.2.2. Performance in Different Workloads. In the actual
industrial production environment, mechanical equipment
does not operate at a constant load as different loads are
required for different tasks. *us, the performance of the
multibranch network model is tested for various loads and
compared with that of the other models in references such as
fast Fourier transform-based support vector machine (FFT-
SVM), FFT-multi layer perceptron (FFT-MLP), FFT-deep
neural network (FFT-DNN), deep convolutional neural
networks with wide first-layer kernels (WDCNN), text and
image information-based convolutional neural network
(TICNN), and ensemble TICNN. Tables 1, 6, 7, and 8
represent the datasets under the workload of 1, 2, and 3
HP, and “1⟶ 2” means that after dataset 1 is trained, it is
tested on dataset 2.

*e experimental results in Table 8 and Figure 4 prove
the effectiveness of the proposed multibranch network
model. *e average accuracy rate of the five models across
loads of the model is 96.4%, which is 29.8% higher than the
average accuracy rate of FFT-SVM of 66.66%. *e accuracy
is 16% higher than that of FFT-MLP (80.4%) and 6.4%
higher than that ofWDCNN of 90%. It is slightly higher than
that of TICNN and ensemble TICNN. *e accuracy of the
multibranch network model is 90.2% in the 3⟶1 scenario.
In other scenarios, the average accuracy of the model is
higher than 96%.

5. Conclusions

We propose a multiconvolutional neural network model
for bearing fault diagnosis. *e model processes the data of
a sample length of 1024 which is divided into four low and
high-frequency components of the length of 1024. *ese
low-frequency and high-frequency components go through
two-layer wavelet packet decomposition and are sent to the
four branches of 0–1.5 kHz (LL), 1.5−3 kHz (LH),
3–4.5 kHz (HL), and 4.5–6 kHz (HH). *e corresponding
fault features are extracted in four branch networks. *e
low-frequency and high-frequency information in the
bearing vibration signal is analyzed at the same time, which

allows for minimal loss of fault information. After a feature
fusion process in the proposed network, we use a softmax
classification function to identify and classify the extracted
fault features. In summary, the proposed model uses
subband frequencies to extract bearing fault features from
the output of 4 branches which are fused in the classifi-
cation model. *e proposed model has the highest accuracy
of 100% on four different loads (0, 1, 2, and 3 HP) and the
lowest accuracy of 98%. *e average accuracy on four
different loads reaches 99.82%, which suggests the effect of
the proposed model in diagnosing faults in bearings. *e
average accuracy of the model across multiple loads reaches
96.4%, and the generalization ability is considered to be
robust.

Data Availability

*enature of the data includes excel files, and the data can be
accessed on the website: https://engineering.case.edu/
bearingdatacenter/normal-baseline-data and fault (12 kHz)
and https://engineering.case.edu/bearingdatacenter/12k-
drive-end-bearing-fault-data. *ere are no restrictions on
data access. *e data used to support the findings of this
study are included within the article.
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