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-e aim of multiprojector interreflection compensation is to modify input images to remove complex physical stray-light effects
(interreflection) from a multiprojector immersive system. -is is an important but often ignored problem, which can lead to
degradation of a projection image. Traditional methods usually address this problem by computing a matrix inversion. -ese
traditional methods often ignore issue of the clarity of the generated images. In this paper, we describe a method for learning the
inversion using a deep convolutional neural network (CNN), named Superresolution Compensation Net (SRCN). SRCN consists
of four convolution layers to learn interactions of global light, six convolution layers, and two transposed convolution layers to
extract multilevel features and generate compensation images. We also used a subpixel convolution layer to increase the res-
olution. Tomake compensation images more consistent with human visual perception, we used a perceptual loss, which compares
the differences between feature maps on the VGG16 network. We implemented an immersive projector-camera display prototype
(Pro-Cam) and calculated the quality index of the compensation images and the projection results. Our method achieved better
results than previous methods in both objective evaluations and subjective visual perception.

1. Introduction

Multiprojector systems are used in virtual reality (VR)
systems, exhibitions, and tower simulators. For these ap-
plications, a good projection effect is crucial, since it can
bring people an immersive visual experience, producing a
highly realistic effect. However, the imaging effect of mul-
tiprojector systems is usually not ideal due to multiple
factors, such as generation of points with noise and inter-
reflection. Approaches to the multiprojector noise problem
are relatively mature, and some researchers [1, 2] have
proposed techniques to solve the noise problem, but the
interreflection problem is very common and easily ignored,
and there is still considerable scope for the development of
effective solutions. When interreflection is serious, such as
when there are too many projectors, folding projection
surfaces, or curved projection screens, the display image

mixed by the light from the projector and the interference
light of superimposed reflections leads to poor display image
quality. -e contrast of the projection display images is low,
which disturbs user immersion and becomes an important
factor hampering the popularization, application, and de-
velopment of these systems. For example, this phenomenon
has already led to the failure of an aerospace industry tower
simulator to be put into practical teaching in a university.
Internal reflection is a serious problem that prevents mul-
tiprojection systems from meeting application requirements
and therefore needs to be solved.Methods for multiprojector
reflection compensation can help multiprojector systems
produce an optimal immersive visual experience. Conven-
tional methods require considerable optical knowledge, and
they are often ineffective in dealing with the interreflection
problem in large, complex systems. -erefore, we aimed to
minimize the heavy reliance on optical knowledge and
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explore the use of deep learning methods to solve the
interreflection problem in sophisticated environments.

Generally, a light transport matrix (LTM) is used to
describe the multiplication of the projected incident light
and the reflection from the immersive scene [3–8], and the
interreflection compensation is regarded as a matrix in-
version problem. Inverting the LTM, we can calculate the
compensated images, so when they are reprojected, the
interreflection will be eliminated.-e acquisition of an LTM,
however, is a laborious process. -e available methods re-
quire the devices to be radiometrically calibrated and
carefully set up. -e LTM, which is determined by the
resolution of the projector-camera system (Pro-Cam), is
very large, so it is very difficult to calculate the inversion. To
obtain an LTM suitable for matrix inversion, methods are
used to downsize or simplify the matrix. -e performance of
these methods is limited, so they are not practical for use in a
huge immersive environment.

In the image processing field, the inverse problem is
common. Assuming that an observed image y represents the
output of model T, and x is the input of T, then given output
y, calculating the input x is the inverse problem [9]. In recent
years, convolutional neural networks (CNNs) have become a
popular way to solve the inverse problem [10–15] in
problems such as dehazing, style transfer, and image
superresolution reconstruction. -ey have shown out-
standing performance on large databases of images.

Interreflection compensation is also an inverse problem.
However, in the last decade, few researchers have solved the
problem using CNNs. We realized that this was a possible
approach to reduce the undesired interreflection without
LTM inversion. Compared with traditional methods, CNN
does not require a large amount of knowledge about optics,
such as the radiometric precalibration of the Pro-Cam. -e
method generates a visually optimal compensation image
even with slight misalignment.

In this study, we innovatively used a deep learning-based
image processing method to solve the problem of interre-
flection in complex immersive projection systems, built a
projector-camera display prototype (Figure 1), and devel-
oped a novel neural network, named Superresolution
Compensation Net (SRCN), for multiprojector interre-
flection compensation, to improve the projection perfor-
mance, as shown in Figure 2. First, we used a geometric
correction subnet to autocorrect the sampling images cap-
tured by the camera. Second, by connecting with several
convolution layers, SRCN could be trained to perform
matrix inversion to modify the input images. We used a
superresolution layer (hereinafter referred to as SR layer) as
proposed by Habe et al. [3] to double the resolution of the
output images and used a loss calculated from the differences
in the outputs of the max-pooling layer of the VGG network
to improve the perceptual quality [16], Finally, we evaluated
the proposed network model and evaluated its performance
compared to that of conventional methods.

Our main contributions are as follows:

(1) We removed multiprojector interreflection using a
learning process, greatly improving multiprojector

system imaging and simplifying the process of
obtaining an LTM and calculating its inverse

(2) We utilized SR compensation to further improve the
definition of compensated images

(3) We used a perceptual loss with coefficients in ad-
dition to pixelwise loss [17], so that the compensated
images are more invariant to changes in pixel space
[18, 19]

(4) We created a dataset in our Pro-Cam environment
and made the dataset public

-e rest of this paper is organized as follows. Section 2
reviews and discusses the relevant research. In Section 3, the
multiprojector interreflection model-based deep learning is
described.-e experimental results are compared with other
methods, and a comparison of the self-control method is
introduced in Section 4, and Section 5 presents the
conclusions.

2. Related Work

Two research fields—interreflection compensation and
convolutional neural networks—are closely related to our
proposed method. We introduce the related fields and
discuss the development of our approach in this section.

2.1. Interreflection Compensation. Some techniques have
been proposed to remove interreflection by modifying the
uncompensated projection images. -e method was initially
presented by Bimber et al. [4], who divided the uncom-
pensated projection image into small patches, and based on
the Jacobi iteration, each patch was compensated offline to
eliminate the scattered light. Similarly, Bai et al. [7] compute
the compensation iteratively. -ese iterative methods do not
require direct LTM inversion so it is effective to solve only a
single image compensation. However, for multiple images,
the compensated projector images need to be separately and
iteratively computed for each input.

Other methods have been proposed to remove inter-
reflection by precorrecting input images. -is is a popular
research method for the reduction of undesired lights on
various types of surfaces. However, such approaches usually
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Figure 1: Our projector-camera (Pro-Cam) display prototype.
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need to find the inverse of the LTM. Compared with iterative
computation, this approach precomputes the matrix in-
version only once, and then any desired images can be
compensated using matrix-vector multiplication. -is ap-
proach was taken by Habe et al., Wetzstein et al., Ding
et al., and Grundhöfer et al. A difficulty with this ap-
proach is the enormous size of the LTM, which is decided
by the resolution of the Pro-Cam system. For example, a
camera may have 3072 × 2304 pixels and the projector
1024 × 768. -en, the size of the LTM is 3072 × 2304 by
1024 × 768. To make the LTM inversion feasible, one
approach is to downsize the matrix. Habe et al. [3]
simplify the LTM by downsizing it to 64 × 64 pixels,
Wetzstein and Bimber [6] describe a customized clus-
tering scheme to approximate the inverse of the LTM.
-ey traverse all the pixels in the projection image and
find a pixel of the highest luminance contribution as the
center of each patch in turn, and add some adjacent pixels
into the patch. -ese clusters were computed for many
small patches. Another approach is to simplify the matrix
without changing the size of the LTM. Ding et al. [5] took
pairs of white images in their Pro-Cam to acquire the
LTM.-ereafter, they used the LTM to construct a matrix
to approximate inversion. Recently, Grundhöfer and Iwai
[8] proposed an interpolation based on TPS used to
calculate an accurate color transformation.

2.2. Convolutional Neural Networks. Recently, CNNs have
attracted considerable attention. -ey imitate the visual
perception mechanism of biology and are widely used to
solve the inverse problem in image processing. -ey can
reach a stable effect, and there are no additional feature
engineering requirements for the data [20, 21]. We re-
view the network architecture and loss function in this
part.

In these inverse problems, dehazing provides the main
trends in most papers. One important perspective on
these dehazing results is that the CNN is learning a
mapping between a hazy image and a clear image [12, 13].
To improve the image quality and increase the resolution,
Ledig et al. [22] propose a four-time superresolution (SR)
architecture constructed by connecting two two-time
superresolution trained subpixel convolution layers. In
[11], the authors propose an encoder-decoder structure
named UNet, which keeps the size of feature maps un-
changed. In the encoder, it can extract features faster by
increasing the number of feature channels. -e decoder
gradually recovers the edge information of the images.
-en, Zhang et al. [18] designed a UNet-like backbone
network named CompenNet to remove the projected
texture background. Both input and output images were
256 × 256 × 3. In CompenNet, the researchers innovatively
added an encoder, which is the same as the encoder of the

(c)

(e)(d)

(b)

(a)

Figure 2: Interreflection compensation for an L-shaped projecting screen using SRCN. (a) White projection surface ŝ. (b) Input image (x).
(c) -e uncompensated projection result y(x) taken by the camera when b is projected on screen. (d) Compensation image x∗ using our
SRCN. (e) -e compensation projection result y(x∗) taken by the camera when d is projected on screen. Comparing (c) and (e), we can
conclude (e) is closer to (b) with higher quality and fewer interreflections.
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backbone network, to learn the global light. Each layer of
the two encoders is connected by elementwise adding.
Later, they proposed CompenNet++, which concatenates
a geometric correction subnet with CompenNet, to realize
both geometric correction and projection texture
removal.

-e choice of the loss function generally defaults to
pixelwise approaches such as l1 loss and l2 loss (MSE).
However, some limitations are apparent when using these
pixelwise loss functions in image processing. For example,
although the test index is high, the image quality is not
necessarily good, because human visual perception is not
taken into account [18], so a structural similarity index
(SSIM) was proposed in [17]. SSIM uses luminance,
contrast, and structure to evaluate images, to more closely
match the human visual system (HVS). Generally, the
results using SSIM are more detailed than those using
pixelwise loss. In [19] the authors investigated different
loss functions and found that using different losses in
combination can obtain better results than using only one
loss. Recently, a perceptual loss was proposed in [16],
achieved by comparing the loss in a feature map. -is
approach was extended in SRGAN [22] to enhance the
visual quality.

Our method addresses the problem of removing inter-
reflection by precorrecting input images. Inspired by the
research into the inverse problem using CNNs, we propose a
novel neural network for multiprojector interreflection
compensation, instead of computing the LTM inversion.-e
network can learn the mapping between input images and
compensated images, which means that it can learn complex
spectral interactions and generate a modified input image.
To improve the visual quality, we used SSIM and perceptual
loss as well as pixelwise loss.

3. Proposed Method

3.1. Problem Formulation. -e purpose of interreflection
compensation is to map the input image onto a compensated
image.When the image is projected again, the interreflection
is reduced or even eliminated. Our research focused on
finding an LTM inversion to realize the mapping between
the input image and compensated image.

Assuming x is an input image, fp is the optical transfer
function of two projectors, s and fs are the surface reflec-
tance property and surface bidirectional reflectance distri-
bution function (BRDF), respectively, E is the global
illumination, and fc is the camera’s composite capturing
function, then we can formulate the camera-captured image
y as

y � fc fs fp(x), E, s  . (1)

For simplicity, we can regard fp, fs, fc as T, which is
actually interreflection light transport mapping between the
projected image and camera-captured image.-us, equation
(1) can be reformulated as

y � T(x, E, s). (2)

However, the global illumination E and surface reflec-
tance s are hard to measure without additional spectral
devices. Because the multiprojection display prototype is
fixed, we can use a camera-captured surface image, s

∧
, to

approximate global interactions:

s
∧

� T x0, E, s( , (3)

where x0 is a pure white image whose grayscale is 255. -us,
we can substitute E and s with s

∧
in equation (2):

y � T(x, s
∧
). (4)

Interreflection compensation aims to find a compen-
sated image x∗ so that the camera-captured result is the same
as the original input image x (ground truth):

x � T x
∗
, s
∧

 . (5)

Multiprojector interreflection compensation can be
formulated as follows:

x
∗

� T
−1

(x, s
∧
), (6)

where T−1 is the T inversion. We used a deep neural network
to model it.

3.2. Deep Learning-Based Formulation. From equation (4)
we can get

x � T
− 1

(y, s
∧
). (7)

Because s
∧
is known, we can use sampled image pairs (x,

y) to learn T− 1. We model T− 1 using a deep convolutional
neural network named SRCN and denote it as T(θ)− 1, where
θ is the learning parameter.

y
∗

� T(θ)
− 1

(y, s
∧
), (8)

where y∗ is the compensated image of camera-captured
image y. Because the projection system is not a plane, y is out
of shape, as shown in Figure 1. Generally, y requires manual
geometric correction. In this paper, we add a geometric
correction subnet G to realize the process automatically. We
designed G inspired by [23], which uses a cascaded coarse-
to-fine structure to generate a sampling gridΩ, and camera-
captured images y can be corrected geometrically using a
single bilinear interpolation ⊕.

We train T(θ)− 1 with N sets of image pairs (xi, yi) 
N
i�1.

We want y∗ to be as close to ground truth x as possible. So,
using a loss function L, SRCN can converge by learning as
follows:

θ � argmin
N′

i�1
L y
∗
i , xi( . (9)

3.3. Network Architecture. -e architecture of SRCN is
shown in Figure 3. We used a UNet-like [9] backbone
network with several convolution layers to extract features. ŝ
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and y are fed separately to the same four convolutional
layers. -en, the multilevel feature maps generated by the
convolution of each layer are combined using elementwise
addition, which allows learning the complex interreflection
information of the immersive environment. To keep the size
invariant for the feature maps, the first two convolutional
strides are set to 2, the last two convolutional strides are set
to 1, and the number of convolution kernels is {32, 64, 128,
256}. Each is followed by a rectified linear unit (ReLU). In
addition, we use three skip convolution connections [24] to
enrich the representation ability of the network.-en we use
two convolutional layers with stride 1, padding 1, and two
transposed convolutional layers with stride 2, no-padding to
gradually reduce the channel of the feature maps. We ul-
timately use the SR layer [25] to increase the resolution of the
input images, which is then followed by ParametricReLU
[26] as the activation function.

Our multiprojector interreflection compensation overall
architecture consists of three main steps. (1) We first split a
plain white image x0 and N sampling images x1, x2. . .. . .xN
into two parts and project them using two projectors. With a
camera, we can capture y1, y2. . .. . .yN. -en, we resize the
images to 256× 256 and preprocess them by gamma cor-
rection. (2) All of the camera-captured images are input to
the geometric correction subnet G and then enter the deep
convolution layer to output the compensation images y1∗,
y2∗. . .. . .yN∗. Because of the superresolution mechanism in
SRCN, the resolution of the output is doubled. Finally, using
our four-loss functions, we can train SRCN to converge. (3)
With the converged SRCN, we can input the desired image x
and obtain a compensated image x∗. If x∗ is projected, we
find that the result is the same as the ground truth x, as
Figure 2 shows.

3.4. Loss Function. -e loss function in a neural network
compares the difference between the predicted value and
the true value. In SRCN, we use the loss function below to
jointly optimize the color fidelity (pixelwise l1 and l2),
structural similarity (SSIM), and perceived similarity
(perceptual loss):

L � l1 + l2 + lssim + λlperceptual, (10)

where λ is a coefficient to balance perceptual loss and other
loss functions. In our experiment, we set λ to 0.02 to balance
perceptual loss and other loss functions. All of these loss

functions are explained in detail in Sections 3.4.1, 3.4.2, and
3.4.3.

3.4.1. Pixelwise Loss. -e output of the network is compared
with the ground truth pixel by pixel. l1 is most simple:

l1 �
1
N



N

_l�1

y
∗
i − xi


. (11)

l2 is also called MSE loss and can be computed by

l2 �
1
N



N

_l�1

y
∗
i − xi






2
. (12)

3.4.2. SSIM Loss. -is approach compares the structure
similarity of y∗i and xi in three dimensions: luminance
ℓ(y∗i , xi), contrast c(y∗i , xi), and structure s(y∗i , xi)

2

SSIMi � ℓ y
∗
i , xi(  × c y

∗
i , xi(  × s y

∗
i , xi( 

�
2μyi
∗μxi

+ C1  2σyi
∗xi

+ C2 

μ2yi
∗ + μ2xi

+ C1  σ2yi
∗ + σ2xi

+ C2 
,

(13)

where μ and σ are the means and standard deviations and C1
and C2 both are invariant constants. -e SSIM loss can be
computed by

lssim �
1
N



N

i�1
1 − SSIMi( . (14)

3.4.3. Perceptual Loss. Perceptual loss can bring the high-
level information, content, and global structure closer by
comparing the features of a generated image with that of the
real image. It uses a pretrained 16-layer VGG networkVk [27]
to obtain the feature map of y∗i and xi, where Vk indicates the
feature map obtained by the k-th max-pooling layer. -en, it
compares the difference between Vk(y∗i ) and Vk(xi):

lperceptual �
1
N



N

i�1
Vk y
∗
i(  − Vk xi( 






2
. (15)

Rather than encouraging the pixels of the generated
image y∗i to exactly match the pixels of the input image xi,

G Ω

+ =

y1…yN

x1…xN

y1*…yN*

3 32 64 128 256

12

T (θ)–1

Input size:
256×256×3

Output size:
512×512×3

33264128

Skip Cov

Perceptual Loss
Network (VGG-16)

LossLperceptualL1+L2+Lssim

Ŝ

Figure 3: -e architecture of SRCN. Operator ⊕ denotes bilinear interpolation. {3, 32, 64, 128, 256} is the number of channels in each layer.
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we instead encourage them to have similar feature repre-
sentations as computed by the VGG network. Using the total
losses above, we achieved comparable performance with
better reconstructed fine details and edges.

3.5. Training Details. We trained our deep convolutional
architecture SRCN for 8 epochs on NVIDIA GEFORCE
1060TI GPUs with a batch size of 8, using 4,200 images for the
training set and 72 images for the validation set. Back-
propagating the derivative of the loss throughout the network,
the network’s parameters, θ, such as weight and bias, were
updated via the Adam optimizer [28] with the following
specifications: we set the fixed l2 penalty factor to 10−4. We
started with a learning rate of 0.001. -e size of input images
was 256× 256. As mentioned in equation (10), we set λ to 0.02
to balance perceptual loss and other loss functions. We used
the third and fifth max-pooling layers within the VGG16
network to compute the perceptual loss, so k� 3, 5 in equation
(15). We also provided a pretrained model to make the
method more practical, using 5,000 pairs of sampling images.
θ was initialized by loading the saved weights. During the test
time, we used SRCN without geometric correction subnet G
to compensate 52 1920×1080 colorful images.

4. Experiments

In this work, we created a dataset using our Pro-Cam. We
conducted the experiment under a multiprojector immersive
environment and compared the results with different values
of gamma correction in the data preprocessing phase. We
compared the experimental results from SRCN with those
from other methods, from objective and subjective aspects.

4.1. ProjectionDisplayPrototype andDataset. Our immersive
multiprojector-camera system consists of a Nikon DX VR
camera with a resolution of 2992× 2000 and two JMGO G7
projectors with a projection resolution of 1920×1080. We set
the distance between the camera and the two projectors to
300mm. -e L-shaped screen was located approximately
550mm in front of the projectors. -e camera’s white balance
mode, shutter speed, ISO, and focus were set to Auto, 1/90, 200,
and f� 5.6, respectively. To simulate a real immersive pro-
jection system, we captured the pictures in the dark to exclude
the influence of global lighting.

To ensure the dataset was as diverse as possible, we pro-
jected 5,000 1920×1080 colorful images crawled from several
free picture websites and obtained N� 5000 camera-captured
images automatically by setting the camera mode to interval
shooting. -en, we resized the images to 256× 256 and pre-
processed them using gamma correction (Figure 4).

4.2. Comparison of Different Methods

4.2.1. Objective Evaluations. We used objective evaluations
to compare the quality of the compensation images. We
compared our SRCN model with other methods, in-
cluding CompenNet [13], CompenNet++ [29], and TPS
[8].

To compare the compensation effect of different kinds
of images, we divided the test images into four groups.
Each group had 13 images. In the first group, the images
were bright, and some areas were even overexposed. In the
second group, the images were dark. In the third group,
the images were multicolored. In the last group, the
images were solid color. We named them Group_Bright,

(a)

(b)

Figure 4: Samples from our Pro-Cam dataset. (a): the input images (ground truth). (b): the corresponding camera-captured images
preprocessed using gamma correction.
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Group_Dark, Group_Multicolor, and Group_Solidcolor,
respectively. -e projection results are shown in Figure 5.
We compared four groups of projection results on PSRN,
SSIM, and RSME. Table 1 shows specific evaluation values
for four group images. We can conclude that SRCN gen-
erally produced better compensation image quality.

4.2.2. Subjective Evaluations

(1) Compensation Image. We used subjective evaluations to
compare the clarity of the compensation images. We utilized
the SR mechanism to increase the resolution of the input
images. We found that the compensation image was clearer

than those of other methods. As shown in Figure 6, we
observed that using SRCN yielded better texture detail.
-e cat’s eyes are clearer in our images than in those
produced by CompenNet and TPS. CompenNet++ takes
geometric correction into consideration, so the com-
pensation result is a little distorted. When it is projected,
the image will be distorted back. In this work, we were
solely concerned with reducing interreflection. -e res-
olution of the other three methods depends on the
training dataset. If we want to obtain a 1920 ×1080
compensation image, we must use thousands of
1920 ×1080 images to train the model. -is approach
requires more computer memory and a longer training
time than ours.

a b c d e f

a b c d e f

a b c d e f

a b c d e f

250

200

150

100

50

0

250

200

150

100

50

0

250

200

150

100

50

0

250

200

150

100

50

0

250

200

150

100

50

0

250

200

150

100

50

0

250

200

150

100

50

0

250

200

150

100

50

0

250

200

150

100

50

0

250

200

150

100

50

0

250

200

150

100

50

0

250

200

150

100

50

0

250

200

150

100

50

0

250

200

150

100

50

0

250

200

150

100

50

0

250

200

150

100

50

0

250

200

150

100

50

0

250

200

150

100

50

0

250

200

150

100

50

0

250

200

150

100

50

0

250

200

150

100

50

0

250

200

150

100

50

0

250

200

150

100

50

0

250

200

150

100

50

0

Figure 5: Comparison of projection results with (b) uncompensated, (c) SRCN, (d) CompenNet++, (e) CompenNet, and (f) TPS. (a) is the
ground truth image (GT). In the heat maps, red and blue colors indicate that the image has higher and lower intensity, respectively.
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(2) Projection Results. Our multiprojector display prototype
was designed for an immersive viewing experience, so
subjective assessment with respect to the human visual
system is very important.We invited 25 raters to evaluate the
quality of the compensation images in a mean opinion score
(MOS) test and asked them to choose the scores (1 to 5) for
different projection images. A score of 1 indicated that the
quality of the projection image was poor, and 5 indicated
excellent quality. All raters had normal visual power and
color vision. We used the ground truth as the reference
image. -e MOS of each compensated method was used as
the final subjective evaluation index, as shown in Table 2.

We computed the heat maps [30] of four projection
images. -ese images represent Group_Bright, Group_Dark,
Group_Multicolor, and Group_Solidcolor, respectively. -e
heat maps represent the luminance of projection images. -e

redder the color, the brighter the projection images, and the
more the interreflection. As shown in Figure 5(b), when the
image was projected directly onto the L-shaped screen
without any processing, the projection image contained some
scattered light and became lighter than the original image.
CompenNet (Figure 5(e)) reduced the interreflection but also
reduced the color. TPS (Figure 5(f)) exhibited color deviation
problems when the images were projected. In CompenNet++,
the authors thought, from the surface patches illuminated by
the projector, the rest of the surface outside the projector FOV
did not provide useful information for compensation, so they
cropped the images to achieve better geometric correction.
When the size of the compensation image is 256× 256, it can
approximate to the original image. However, in our situation,
in which we compensate 1920×1080 images, the cropping
seriously affects the results (Figure 5(d)). Our method
(Figure 5(c)) can reduce interreflection most effectively, while
maintaining the color information.

4.3. Effectiveness of Gamma Correction. In the immersive
projection system, observation by the human eye is the most

SRCNProjected (GT) CompenNet CompenNet++ TPS

Figure 6: Comparison of clarity of compensation images produced using SRCN, CompenNet, CompenNet++, and TPS.

Table 2: Comparison of MOS of projection results with SRCN,
CompenNet, CompenNet++, and TPS.

Methods SRCN CompenNet CompenNet++ TPS
MOS 3.3 2.4 2.6 3.1

Table 1: Objective evaluations of different compensation algorithms.

Model SSIM↑ PSRN↑ RSME↓

Group_Bright

SRCN 0.54 16.85 0.14
CompenNet 0.51 15.37 0.17

CompenNet++ 0.39 11.52 0.27
TPS 0.46 12.37 0.24

Group_dark

SRCN 0.39 16.79 0.15
CompenNet 0.34 14.31 0.20

CompenNet++ 0.23 11.49 0.28
TPS 0.31 12.74 0.23

Group_Multicolor

SRCN 0.49 15.52 0.17
CompenNet 0.46 13.67 0.21

CompenNet++ 0.31 9.92 0.32
TPS 0.41 11.73 0.26

Group_Solidcolor

SRCN 0.49 15.81 0.16
CompenNet 0.48 14.72 0.19

CompenNet++ 0.34 11.16 0.28
TPS 0.46 13.14 0.22

Average

SRCN 0.48 16.24 0.16
CompenNet 0.45 14.52 0.19

CompenNet++ 0.32 11.02 0.29
TPS 0.41 12.50 0.24

-e best results are in bold. “Average” was obtained by averaging the metric scores of four groups of test images.
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important index of image quality. However, the human eye’s
response to radiation is not a linear function but a curve that
is similar to the gamma curve. Generally, our eyes have a
greater dynamic range in the shadow than under high il-
lumination, and we are more sensitive to low illumination
and less sensitive to bright light. In our research, we took this
situation into full consideration and performed a gamma
correction on the camera-captured images.

As shown in Figure 7, we compared the different training
data sets, with all conditions being the same, other than
gamma correction.-e values of the gamma correction were
1 (no gamma), 1.5, 1.8, and 2.2. -e larger the value of the
gamma correction, the darker the compensation image. If
there was no gamma correction in the data preprocessing,
the interreflection of the compensation image was only
slightly reduced. -erefore, we set the value of the gamma

gamma 2.2gamma 1.8gamma 1.5no gammaUncompensatedProjected (GT)

Figure 7: Comparison of projection results with different gamma corrections in the data preprocessing phase.

Table 3: Objective evaluations of compensation images between SRCN and SRCN w/o SR.

Model SSIM↑ PSRN↑ RSME↓
SRCN 0.80 19.69 0.11
SRCN w/o SR 0.71 17.92 0.13

SRCNProjected (GT) SRCN without SR layer

Figure 8: Subjective visual perception of compensation images between SRCN and SRCN w/o SR.

Table 4: Objective evaluations of projection results with different loss functions.

Loss SSIM↑ PSRN↑ RSME↓
Uncompensated 0.49 12.90 0.23
l1 0.51 15.58 0.17
l2 0.51 15.19 0.18
l1 + l2 + lssim 0.48 14.29 0.20
l1 + l2 + lssim + lperceptual 0.48 16.24 0.16

l1 + l2 + lssimProjeccted (GT) Uncompensated
l1 + l2 + lssim +

lperceptual l1 l2

Figure 9: Comparison of projection results with different loss functions.
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correction to 1.5, which produced the closest results to the
ground truth.

4.4. Effectiveness of the SR Layer. In order to investigate
whether our learning-based formulation and the SR layer
(subpixel convolutional layer) were necessary, we compared
the results of the proposed SRCN with and without the SR
layer (SRCN w/o SR). -e results are shown in Table 3, and
visual comparisons are shown in Figure 8. SRCN with an SR
layer clearly yielded a better result.

4.5. Comparison of Different Loss Functions. We compared
four different loss functions: l1, l2, l1 + l2 + lssim, and l1 + l2 +

lssim + lperceptual loss. -e objective and subjective compari-
sons are shown in Table 4 and Figure 9, respectively. We
found that the quality of the compensation image and that of
the projection image using l1 and l2 were almost the same.
-e use of l1 + l2 + lssim produced the worst compensation
and projection results, while l1 + l2 + lssim + lperceptual pro-
duced the best results. Finally, we used
l1 + l2 + lssim + lperceptual as our SRCN loss function.

5. Conclusions

In this paper, in order to solve the problem of serious
interreflection in multiprojection system imaging, we de-
veloped an SRCN model that reduces interreflection from
multiprojector immersive systems. We performed experi-
ments using our own data set to establish the validity of the
approach. -e technique achieved consistently better
perceptual quality than previous methods. We first used a
deep convolution network specialized for multiprojector
interreflection compensation. We formulated a novel ar-
chitecture by adding a geometric correction subnet. We
used SR layers to improve the resolution of the compen-
sated images. Other useful techniques, including gamma
correction and perceptual loss, were employed to improve
the image quality and restore more accurate realistic
textures.
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