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In logistics distribution systems, the constrained optimisation of the cargo dispensing problem has been the focus of research in
related fields. At present, many scholars try to solve the problem by introducing swarm intelligence algorithms, including genetic
algorithm, particle swarm algorithm, bee swarm algorithm, fish swarm algorithm, etc. Each swarm intelligence algorithm has
different characteristics, but they all have certain advantages for the optimisation of complex problems. In recent years, the Wolf
Pack algorithm, an emerging swarm intelligence algorithm, has shown good global convergence and computational robustness in
solving complex high-dimensional functions. Therefore, this article chooses to use the Wolf Pack algorithm to solve a multi-
vehicle and multi-goods dispensing problem model. First, the principle and process of the Wolf Pack algorithm are introduced,
and two improvements are proposed for the way of location update and the way of step update. Then, a mathematical model of the
multi-vehicle and multi-goods dispensing problem is developed. Next, the mathematical model is solved using the proposed
improved Wolf Pack algorithm. The experimental results show that the proposed improved Wolf Pack algorithm effectively solves
the cargo dispatching problem. In addition, the proposed improved Wolf Pack algorithm can effectively reduce the number of

vehicles to be dispatched compared with other swarm intelligence algorithms.

1. Introduction

With the progress of science and technology, after reducing
the cost of raw materials and improving labour productivity,
modern logistics has become a “new source of profit” for
enterprises and has received widespread attention from the
logistics industry and even from the business community
[1, 2]. Especially in the field of commodity circulation,
different types of large-scale modern logistics enterprises
have emerged. With the rapid development of the logistics
industry, the study of logistics distribution has also attracted
more widespread attention [3, 4]. How to reduce costs and at
the same time improve efficiency, as well as obtain more
economic and social benefits, has become a topic of research
for experts and scholars.

In modern logistics, the biggest cost of logistics and
distribution is the transport cost, which in turn has a lot to
do with the vehicle. Therefore, when carrying out distri-
bution operations, the load capacity and volume of the

vehicle should be fully considered [5, 6]. By selecting the
right transport vehicle, the optimum utilisation of the
transport vehicle (100% utilisation) is achieved as far as
possible, which is an effective way to reduce distribution
costs. However, in practical situations, the space utilisation
and load capacity of the vehicle often cannot be maximised
at the same time due to the type of goods, packaging
methods, etc. These situations can waste transport power
and cause an increase in transport costs. In logistics and
distribution systems, the issue of cargo dispensing is the
most fundamental item [7, 8]. Reasonable dispensing can
improve distribution efficiency on the one hand and reduce
distribution costs on the other. At present, in the actual
cargo dispensing business, it is usually done based on
manual estimation methods. There is no uniform planning
based on experience alone, which wastes both manpower
and material resources [9, 10]. Therefore, the rational al-
location of goods is conducive to improving distribution
efficiency, reducing distribution costs, and achieving higher
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vehicle utilisation. Therefore, due to its extensive application
background and important theoretical value, the study of
cargo dispensing has become an important research content
in the logistics and distribution industry [11, 12].

The key to the cargo dispensing problem is how to
maximise the vehicle’s capacity and volume, thereby re-
ducing distribution costs and improving distribution effi-
ciency. It is a complex discrete multi-constrained
combinatorial optimisation problem, which belongs to the
NP problem like the traveler problem and workshop
scheduling problem [13, 14]. And for solving NP problems,
heuristic algorithms or intelligent optimisation algorithms
are the most commonly used techniques. Solving cargo
dispensing problems often requires the use of heuristic al-
gorithms or intelligent optimisation algorithms to approx-
imate the optimisation solution.

There have been a number of studies on heuristic algo-
rithms for cargo dispensing and loading problems. For ex-
ample, Tran et al. [15] constructed a three-dimensional
multilayer loading layout optimisation model with the max-
imisation of combined vehicle load and volume utilisation as
the optimisation objective and designed a heuristic algorithm
that can quickly develop a reasonable loading solution. Chua
et al. [16] combined the two problems of vehicle dispensing
optimization and transport path optimization into one and
used the classical Dijkstra’s algorithm and the improved C-W
saving algorithm to solve the optimisation problem for the full-
load transportation case and the optimisation problem for the
non-full-load transportation case, respectively. Experimental
results show that the solution is effective. Du et al. [17] de-
veloped an intelligent cargo dispensing model with multidi-
mensional constraints and proposed a hybrid algorithm based
on heuristic ideas and fuzzy principles. The test results showed
the effectiveness of this intelligent dispensing model. Chao et al.
[18] established a cargo dispensing model with the optimisation
objective of maximising revenue and minimising expenditure
and used a heuristic algorithm to solve it. Finally, the effec-
tiveness of this algorithm was verified by example. However,
heuristic algorithms tend to rely too much on personal ex-
perience. When the problem is large, heuristics can become
“combinatorially explosive.” As a result, heuristics are not very
efficient when solving large-scale problems and lack global
optimisation capabilities, giving only approximate or locally
optimal solutions to the problem.

Swarm intelligence algorithms are all inspired by the
evolution of organisms in nature, foraging, clustering, and
information exchange. At present, the main swarm intelli-
gence optimisation algorithms are simulated annealing al-
gorithms, genetic algorithms, particle swarm algorithms, ant
colony algorithms, immune algorithms, etc. These intelligent
optimisation algorithms are all easy to implement and have
good robustness. When solving complex optimisation
problems, the advantages of swarm intelligence algorithms
are more obvious. For solving large-scale, multi-constrained
complex problems, swarm intelligent optimisation algo-
rithms are more widely used. For example, Jamrus et al. [19]
used a genetic algorithm to investigate the optimal place-
ment of containers and developed a corresponding single-
vehicle transport dispensing model, while Miao et al. [20]
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designed a hybrid genetic algorithm and applied it to a
multi-species cargo dispensing model. The experimental
results showed that the above model could fully utilise the
load and volume of the loading tools in a balanced manner.
Sicilia et al. [21] used an ant colony algorithm to solve a bi-
objective bulk cargo loading model and verified that the
proposed model and algorithm were feasible through
experiments.

As an emerging swarm intelligence algorithm, the Wolf
Pack algorithm exhibits good global convergence and
computational robustness in the process of solving complex
high-dimensional functions [22, 23]. During the hunting
process, each wolf is classified into Alpha, Beta, or Omega
wolves according to its different roles. Alpha wolves are
always the strongest wolves in the pack and are responsible
for directing the pack to capture prey without participating
in the roaming, running, or siege process; Beta wolf is an elite
unit of wolves, responsible for searching for prey; and
Omega wolf is the attack force of wolves and is responsible
for quickly closing in on the Alpha Wolf's direction when the
Alpha Wolf initiates an attack command, in order to capture
prey. Zhu et al. [24] proposed a Wolf Pack algorithm based
on ant colony optimisation for solving the TSP problem. An
ant colony algorithm was used to initialise the population in
order to implement a heuristic crossover operator, while
adaptive adjustment of the crossover probability and vari-
ation probability was employed. This algorithm achieves
good optimisation results for smaller TSP problems.
However, when the scale is larger, this algorithm needs
further improvement. As an efficient intelligent optimisation
algorithm, the Wolf Pack algorithm can provide a practical
and effective solution to the cargo dispensing problem,
thereby effectively reducing logistics costs (improving dis-
pensing efficiency).

Therefore, this study aims to use the Wolf Pack algorithm
to solve the cargo dispensing problem in logistics distribution,
so that it can effectively improve the solution quality. Al-
though the Wolf Pack algorithm has good global search
performance and superiority-seeking ability, the number of
iterations and convergence speed need to be further im-
proved. Therefore, this article improves the traditional Wolf
Pack algorithm. In addition, this article provides a brief in-
troduction to the components and classification of the cargo
dispensing problem in logistics distribution and establishes a
multi-vehicle, multi-goods mathematical model. The im-
proved Wolf Pack algorithm in this article is used to solve this
model in order to reduce the number of vehicles used, which
can effectively improve the solution quality. The final ex-
perimental results validate the performance and application
value of the improved algorithm.

The main innovations and contributions of this article
include:

(1) Through an in-depth study of the Wolf Pack algo-
rithm, it was found that the location update method
of Beta and Omega wolves has certain shortcomings,
so the location update and step update of the Wolf
Pack algorithm were improved respectively to
achieve better optimisation search results.
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(2) A mathematical model is described and developed
for the multi-vehicle, multi-goods dispensing
problem. The constraints of the model are deformed
and transformed into a penalty function added to the
fitness function. The model is solved using the
proposed improved Wolf Pack algorithm to reduce
the number of vehicles used, thus effectively im-
proving the quality of the solution.

The rest of the article is organised as follows: In Section 2,
the Wolf Pack algorithm is studied in detail, while Section 3
provides the improvements to the Wolf Pack algorithm. In
Section 4, the multi-vehicle, multi-goods dispensing prob-
lem based on the improved Wolf Pack algorithm is studied
in detail, while Section 5 provides experimental results and
analysis. Finally, the article is concluded in Section 6.

2. Wolf Pack Algorithm

2.1. Principle of the Wolf Pack Algorithm. Each wolf is
classified as an Alpha, Beta, or Omega wolf, depending on
the role it plays in the hunting process [25, 26]. Alpha wolves
are always the strongest wolves in the pack and are re-
sponsible for directing the pack to capture prey without
participating in the roaming, running, or siege process; Beta
wolf is an elite unit of wolves, responsible for searching for
prey; and Omega wolf is the attack force of wolves and is
responsible for the [27, 28]. The principle of the Wolf Pack
algorithm is shown in Figure 1.

When a wolf perceives a greater concentration of prey
than the current Alpha wolf, we consider that wolf to be
more likely to capture the prey. That wolf will then replace
the Alpha wolf and call the surrounding Omega wolves to
approach the current location [29]. When the prey is caught,
the earlier the wolf catches the prey, the more food it gets,
which approach allows wolves capable of capturing prey to
maintain sufficient stamina [30, 31]. Wolves with sufficient
physical strength are more likely to catch prey in the later
hunting process, thus ensuring the development of wolfs.

The total number of wolves is assumed to be N and the
total number of variables is D. The state of an artificial wolf is
represented as X; = (x;;, X, . - ., X;p), wherex;q denotes the
position of the ith artificial wolf in the dth dimension. The
objective function is Y = f(x), where Y denotes the con-
centration value of prey perceived by a wolf, that is the
degree of adaptation.

2.1.1. Generation of Alpha Wolves. An Alpha wolf is an
optimal value in the initial solution. An Alpha wolf is not
fixed. During the iteration, the position of each wolf is
updated continuously. If a better solution appears, the Alpha
wolf is replaced by another wolf [32, 33].

2.1.2. The Wandering Process of Beta Wolves. Among N
artificial wolves, the number of Beta wolves is S_num. The
scale factor is denoted as a, the number of directions is 4, and
the wandering step is step,. The fitness value of the Beta
wolves in the initial solution is Y;. The Beta wolves then take

a step forward in a direction (p=1,2, ..., h) based on their
current position. The position of the advancing Beta wolves
in the dth dimension is updated.

xb = xq + sin<271 x %) x step?. (1)

After updating the Beta wolf’s position, the adaptation
value Y; of the Beta wolf’s current position is compared with
the adaptation value Y4 of the Alpha wolf. If Y; >Y 4, this
Beta wolf replaces the Alpha wolf, and the Omega wolf is
called to run towards the current position; otherwise the
wandering continues until the maximum number of times
T ax is reached.

2.1.3. The Long-Range Raiding Process of Omega Wolves.
Except Alpha wolf and Beta wolf, the remaining artificial
wolves are Omega wolves. The number of Omega wolves is
_num. When an Omega wolf receives a call from an Alpha
wolf, it will run in the direction of the Alpha wolf. The step
length of the long-range raid is step,. The position of the
Omega wolf in the dth dimension is updated at the (k+1)th
iteration.
k
xig | = xig + step (o Z ) (2)
| 9a ~ 1d|

where g¥ is the position in the d-th dimension of the Alpha
wolf at the (k+1)th iteration.

When the distance between the Omega wolf and the
Alpha wolf is less than d,,,, it enters into a siege process of
its prey.

near?

1 D

Apear = X Z |max,; — min|, (3)
d=1

near D X @

where w is the decision factor and [max,; — min,] is the
range of values for the dth dimensional variable.

2.1.4. The Siege Process of Prey. Because Alpha wolves are
closest to the prey, the position of Alpha wolves is con-
sidered to be the position of the prey GX. The siege step of the
wolves in the prey siege process is step,.. Location updates are
calculated as follows:

kl _ _k d |~k _ k
Xiq = X4 +AXstep, ><|Gd—xid|, (4)

where A is a random number between [1].

There is a relationship between the step sizes of the three
different stages.
stepZ Imaxd - mind| (5)

5 .

:steprZ: S

stepi =
During the siege process of a wolf pack, the position is
updated if the adaptation of the current position is greater
than the adaptation of the original position; otherwise, the
position remains unchanged.



Scientific Programming

FIGURE 1: Principle of the Wolf Pack algorithm.

2.1.5. Renewal of Wolf Pack. In order to maintain the quality
of the wolf population while preserving the diversity of the
pack, the least adapted wolves are selected for culling and
new artificial wolves are randomly generated [34-37]. The
number of eliminated artificial wolves is the same as the
number of newborn artificial wolves. The number of re-
tirements needs to be determined by human experience.

2.2. Flow Chart of the Wolf Pack Algorithm. Figure 2 shows
the flow chart of the Wolf Pack algorithm.

The detailed steps of the Wolf Pack algorithm are as
follows:

Step 1: Initialise the number of artificial wolves N, the
position X, the maximum number of generations to be
selected k. the scale factor g, the maximum number
of wanderings T',,., the distance determination factor
w, and the step size factor S.

Step 2: Follow equation (1) for position update. If the Beta
wolf’s fitness value Y; is greater than the Alpha wolf’s
fitness value Y4, replace Alpha wolf and jump to Step 3;
otherwise, the Beta wolf continues to wander until the
maximum number of wanderings T, is reached.

Step 3: Follow equation (2) for position update. If the
fitness value of an Omega wolf Y; is greater than the
fitness value of an Alpha wolf Y4, replace the Alpha
wolf; otherwise, the Omega wolf continues to long-
range raid until the distance to the prey is less than the
judged distance d,,,.

Step 4: Begin the wolf pack siege process and carry out
the position update according to equation (5), together
with the Alpha wolf update.

Step 5: Update Wolf Pack.

Step 6: Determine whether the maximum number of
iterations is reached or the optimisation accuracy is

achieved. If yes, the output of the optimal solution is
carried out; otherwise jump to Step 2.

3. Improvements to the Wolf Pack Algorithm

After an in-depth study of the Wolf Pack algorithm, it was
found that position update methods have certain short-
comings for Beta wolf and Omega wolf. Therefore, in this
article, the Wolf Pack algorithm is improved in order to
achieve better merit-seeking results.

3.1. Location Update. The Beta wolfs position during the
wandering phase [38] was updated as follows:

xb = xq + sin<2ﬂ X %) X stepg, (6)
where / is the number of directions in Beta wolf’s wandering

process.

In most cases, the value of £ is 4. The calculation shows
that there are only two values for updating the position of the
Beta wolf.

1 d
Xig = Xig t step,,
3 d
Xig = Xjq — Step,, (7)

Xig = Xiq = Xia-

That is, when Beta wolves wander in each of the four
directions, they are only able to obtain two values that are
different from their original position. This increases the
computational effort and weakens the ability of Beta wolves
to wander [39].

Therefore, the updated formula for the wandering phase
has been improved in this article.

xf = xq + cos(n X %) X stepj. (8)

When h takes the value of 4, the Beta wolf’s position is
updated with a value of 3.
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1 V2 g
Xig = Xig T = -Stepy

©)

3 2 g
Xig = Xid ~ TSter

4 _ d
Xig = Xig ~ Step,.

The improvement ensures that when Beta wolves wander
in more than one direction, at most one value can be the
same as the original position value.

3.2. Step Size Update. The step size of the long-range raiding
and the step size of the siege are always fixed. However, as
the distance between the wolves and their prey decreases
(increasing number of iterations), both step values should
decrease adaptively.

Therefore, this article uses an adaptive approach to
improve the update process of the step size.

kK k
ik, (1=k) d (gd_xid)
Xig = X4 +k— X step, X %>

max |gd ~ Xid

(10)

(1-k)
k

k+1 _ _k
Xg =Xg+AX

X stepf X |G§ - xfdl,

max

where k is the current number of iterations and k., is the
maximum number of iterations.

4. Multi-Vehicle, Multi-Goods Dispensing
Problem Based on the Improved Wolf
Pack Algorithm

4.1. Description of Cargo Dispensing Problems. As a funda-
mental part of logistics and distribution, the quality of the
cargo dispensing has an impact not only on the efficiency of
distribution, but also on the operational efficiency of the
entire logistics centre. Therefore, a reasonable cargo dis-
pensing can reduce logistics costs, on the one hand, and
improve the efficiency of distribution on the other. The
dispensing problem is a complex discrete multi-con-
strained combinatorial optimisation problem, which be-
longs to the same NP problem as the travel merchant
problem (TSP) and the workshop scheduling problem. The
main components of the cargo dispensing problem are
goods, vehicles, constraints, objective functions, etc. [40].
The volume and weight of the cargo are the basis for the
decision of vehicle allocation. When the volume or weight
of the cargo exceeds the volume or capacity of the vehicle,
multiple transport vehicles are required to distribute it. A
general description of the cargo dispensing problem is
shown in Figure 3.
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FIGURE 3: General description of the cargo dispensing problem.

4.2. Problem Description and Mathematical Model.
Real-life cargo dispensing problems are very complex, and to
facilitate modelling and solution, some cases are simplified:
(1) the goods are all shipped to the same distribution centre;
(2) the goods are intermixable and not incompatible; (3)
there is no priority of goods.

Problem description: In a distribution centre, there are m
vehicles of different types. Each vehicle has a maximum
weight and a maximum volume of wy and v, (k= 1,2, ..., m),
respectively. There are n different goods to be dispensed,
with weights and volumes of w; and v; (i=1,2, ..., n), re-
spectively. Under the condition that the goods are relatively
limited, the number of vehicles to be used is required to
reach a minimum value.

The mathematical model for the multi-vehicle, multi-
goods dispensing problem presented in this article is shown
as follows:

m n n m
min f =)y ) Xqw < Wi Y. x4 < Vo DX =1, (11)
i=1 k=1

k=1 i=1

1, Thekthvehicleisselected,
Yk = (12)

0, Thekthvehicleisnotselected,

I, Theithshipmentisloadedintothekthvehicle,
X =
K 0, Theithshipmentisnotloadedintothekthvehicle.
(13)

The objective function is (11). It can be seen that the
objective function is a minimum optimisation problem, that
is, the number of vehicles used is the least. The constraint
indicates that the total weight of the cargo on the kth vehicle
does not exceed the capacity of the vehicle. (12) and (13)
represent the constraints on the values taken by the variables
i and x.

4.3. Fitness Function. Fitness function is the optimisation
index of wolf pack algorithm and the important basis of
survival of the fittest in the siege process. In the mathe-
matical model of multi-vehicle and multi-goods allocation,

the objective function cannot be directly used as the fitness
function due to more constraints. Therefore, this article uses
the penalty function to construct the fitness function.

minF = f + cg([max(o, gr)]” +[max (0, hk)]z),

Ik = Z XW; = VWi (14)

i=1
n

b = Z XV = ViV
i=1

where ¢ is the penalty factor.

The optimisation process of the Wolf Pack algorithm is a
maximum value problem, so a further transformation has to
be performed to obtain the optimisation fitness function of
the Wolf Pack algorithm.

maxFit (F) = —F. (15)

5. Experimental Results and Analysis

5.1. Experimental Environment and Setup. In order to verify
the effectiveness of a multi-vehicle, multi-cargo dispensing
model based on the improved Wolf Pack algorithm, sim-
ulation tests were carried out using MATLAB. The hardware
and software environments associated with the experiments
are shown in Table 1. In addition, all experiments involved in
this study were carried out in the same hardware and
software environment. The parameter settings for the im-
proved Wolf Pack algorithm during the experiments are
shown in Table 2.

5.2. Typical Test Function Verification. Five typical contin-
uous complexity functions are selected to verify the effec-
tiveness and feasibility of the proposed improved wolf pack
algorithm and to compare it with the traditional wolf pack
algorithm.
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TaBLE 1: Experiment-related software and hardware environment
and parameter settings.

TABLE 2: Parameter settings for the improved Wolf Pack algorithm.

Parameters Numerical
Specification Parameters values
Processor Intel Core i7 Wolf population 50
Memory 8GB Maximum number of iterations 20
Hard disk 500 GB Scale factor for Beta wolves 4
Operating systems Windows 10 Professional Maximum number of wanderings for Beta wolves 20
Programming software MATLAB R2012a Number of directions for Beta wolves 4
Distance determination factor 500
Step size factor 1000
Updating the scale factor 6
2, .2 .
F,=x]+x5-5<x;<5,i=1,2,
2 :
F, =100(x] - x,)" + (1 - x,)%,-2.048 <x; <2.048,i = 1,2,
Fy=[1+(x; +x, +1)*(19 - 14x, +3x] — 14x, + 6x,x, + 353 )| x
(16)

[30 + (25, - 3x,)°(18 - 32x, + 12x] + 48, — 36x,x, + 27x; )|, -2 x,2,i = 1,2,

1
F,= (4 -2.1x0 + gx‘l‘)xf + x5, +(—4 + 43)x5, -3< %, <3,i = 1,2

F5 = 10cos (27rx,) + 10 cos (27x,) — x7 — x5 — 20,-5.12 < x; <5.12,i = 1,2.

In order to illustrate the convergence and optimisation
seeking ability of the improved Wolf Pack algorithm in this
article, a comparison was made with the genetic algorithm
and the traditional Wolf Pack algorithm on the above five
test functions. Figure 4 shows the optimisation process
curves of the three algorithms on the test function Fj.
Figure 5 shows the optimisation curves of the three algo-
rithms on the test function F,

It can be seen that the genetic algorithm can only
converge to a local optimum. Both the traditional Wolf Pack
algorithm and the improved Wolf Pack algorithm can
converge to the global optimum, while the improved Wolf
Pack algorithm converges faster, indicating that the im-
proved Wolf Pack algorithm in this article can greatly im-
prove the efficiency of the search for the optimum. In order
to further illustrate the optimisation finding ability of the
improved Wolf Pack algorithm in this article, 100 calcula-
tions were carried out for each of the five test functions.
Then, four metrics, the best value, the worst value, the av-
erage value, and the average deviation value (the deviation of
the average value from the theoretical optimum value), were
used to evaluate the results. A comparison of the test
function optimisation results is shown in Table 3.

The best, worst, and average values show that the so-
lution quality of the improved Wolf Pack algorithm is
significantly better than that of the genetic algorithm and the
traditional Wolf Pack algorithm. The highest accuracy was
obtained by the improved Wolf Pack algorithm. In terms of
the average deviation value, the improved wolf pack

algorithm has the smallest value, that is the smallest dif-
ference from the theoretical optimum.

The global search capability of the three algorithms was
then judged by the number of convergences. A comparison
of the convergence results on the five test functions is shown
in Table 4. The maximum number of evolutionary gener-
ations was set to 1000. 100 tests were performed for each
algorithm. The convergence accuracy was 107°. These al-
gorithms were considered to have reached the convergence
condition when the difference between the optimised value
and the theoretical optimum was less than 107>,

It can be seen that the improved Wolf Pack algorithm
converges 100 times on all five test functions, indicating that
it is able to achieve global convergence with 100% proba-
bility, that is it is more stable. The genetic algorithm has the
worst convergence, with only 4 out of 100 experimental tests,
indicating that it is prone to fall into the local extreme value
trap. Compared to the traditional wolf pack algorithm, the
improved wolf pack algorithm takes 40% less time to reach
convergence, indicating that it can converge to the global
optimum more quickly. Overall, the number of convergence
iterations and convergence time of the improved wolf pack
algorithm are the lowest.

5.3. Experimental Cases. Suppose a distribution centre has
20 delivery vehicles with a load and volume of 6 t and 10 m>,
respectively. There are 42 different types of goods to be
dispensed. The goods now need to be rationally dispensed
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TaBLE 3: Comparison of test function optimisation results.

Functions Algorithms Best value Worst value Average Average deviation value
Genetic algorithm 2.15E-05 1.0173 0.1302 0.1302
F, Traditional Wolf Pack 4.55E-11 1.17E-05 1.65E-07 1.65E-07
Improved Wolf Pack 4.55E-11 4.55E-11 4.55E-11 4.55E-11
Genetic algorithm 8.63E-04 2.8217 0.64209 0.64209
F, Traditional Wolf Pack 1.08E-10 5.76E-02 2.63E-03 2.63E-03
Improved Wolf Pack 1.01E-10 1.94E-03 2.30E-04 2.30E-04
Genetic algorithm 3.0094 96.9906 19.8777 16.8777
Fs Traditional Wolf Pack 3 3.0002 3 +7.79E-06 7.79E-06
Improved Wolf Pack 3 3+ 5.63E-09 3+ 1.47E-09 1.47E-09
Genetic algorithm -1.03068005 -0.122028 -0.754928 0.2767
F, Traditional Wolf Pack —-1.03162779 -0.999872 -1.0276737 3.95E-03
Improved Wolf Pack -1.03162779 —-1.03153801 —-1.03161098 1.70E-05
Genetic algorithm -1.0174 -12.6704 -4.9979 4.9979
Fs Traditional Wolf Pack —9.46E-09 -1.2372 -0.1319 0.1319
Improved Wolf Pack —-9.46E-09 —-9.46E-09 —-9.46E-09 9.46E-09
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TaBLE 4: Comparison of convergence results of test functions.
. . Maximum number ~Minimum number  Average number Average Number of
Functions  Algorithms . - . - - . .
Of iterations Of iterations Of iterations convergence tlme/s convergences
Genetic 1000 84 977 9.157 4
algorithm
F Traditional Wolf 539 11 46 0.539 100
Pack
Improved Wolf 60 7 26 0.304 100
Pack
Genetic 1000 2 990 9.433 11
algorithm
F, Traditional Wolf 1000 2 442 5387 61
Pack
Improved Wolf 947 12 219 2.681 100
Pack
Genetic 1000 1000 1000 9.582 0
algorithm
F, Traditional Wolf 600 23 115 1.419 100
Pack
Improved Wolf 162 21 66 0.823 100
Pack
Genetic 1000 1 970 9.905 3
algorithm
E, Traditional Wolf 1000 16 256 3.224 78
Pack
Improved Wolf 326 1 52 0.654 100
Pack
Genetic 1000 1000 1000 9.462 0
algorithm
Fs Traditional Wolf 1000 43 293 3.560 89
Pack
Improved Wolf 355 17 104 1.282 100
Pack
TaBLE 5: Number, weight, and volume of goods.
No. Weight/t Volume/m® No. Weight/t Volume/m® No. Weight/t Volume/m®
1 1.221 1.05 15 1.040 2.60 29 1.102 2.46
2 1.156 1.98 16 0.805 1.23 30 2.041 2.20
3 0.700 2.00 17 1.220 0.65 31 1.900 2.80
4 1.243 314 18 1.000 2.40 32 2.400 3.20
3 1.600 2.86 19 1.782 0.87 33 1.029 3.00
6 1.612 217 20 1.100 1.54 34 3.000 1.20
7 2.300 4.80 21 1.030 5.60 35 1.840 1.20
8 1.930 5.20 22 0.730 4.40 36 1.796 3.89
9 1.850 2.30 23 1.030 1.80 37 2.650 1.01
10 1.900 3.80 24 2.430 3.80 38 1.975 123
11 1.120 2.00 25 1.520 4.00 39 0.800 1.00
12 1.431 4.02 26 1.890 5.46 40 1.100 3.20
13 0.600 2.78 27 1.320 3.54 41 1.200 0.80
14 0.306 322 28 1.150 1.60 4 2.000 1.10

and the minimum number of vehicles to be used are re-
quired. The numbers, weights, and volumes of all goods are
shown in Table 5.

The experiment was carried out for 40 calculations. Both
the conventional Wolf Pack algorithm and the modified
Wolf Pack algorithm yielded an optimal solution of 12 after
40 calculations, which indicates that a minimum of 12 ve-
hicles are required. An optimal dispensing solution is shown
in Table 6.

When using the improved particle swarm algorithm
(IPSO) to solve the same multi-vehicle, multi-goods dis-
pensing problem, the best value is 13 in 35 out of 40 op-
erations and the worst value is 16. When using the improved
genetic algorithm (IGA) to solve the same vehicle dispensing
problem, the best value is 13 in 36 out of 40 operations and
the worst value is 17. The results of the different algorithms
are compared in Table 7 and Figure 6. It can be seen that the
improved Wolf Pack algorithm has better optimisation
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TaBLE 6: The solution of dispensing.

Vehicle no. Goods no. Total weight/t Total volume/m® Load utilisation (%) Volume utilisation (%)
1 22, 23, 30, 35 5.641 9.6 94.02 96
2 1, 4,7, 41 5.964 9.79 99.4 97.9
5 9, 16, 18, 27 4.975 9.47 82.92 94.7
7 20, 36, 40, 42 5.996 9.73 99.93 97.3
8 6, 14, 28, 33 4.097 9.99 68.28 99.9
9 2, 10, 19, 29 5.94 9.11 99 91.1
12 5,17, 26 4.71 8.97 78.5 89.7
13 11, 24, 25 5.07 9.8 84.5 98
14 3,12, 34 5.131 7.22 85.52 72.2
16 8, 32 4.33 8.4 7217 84
19 21, 37, 38 5.655 7.84 94.25 78.4
20 13, 15, 31, 39 4.34 9.18 72.33 91.8
TaBLE 7: Optimisation results.
Algorithms Best value Worst value Probability of best value (%)
IPSO [41] 13 16 87.5
IGA [42] 13 17 90
Wolf Pack algorithm 13 15 100
Improved Wolf Pack algorithm 12 12 100
18 -
16 | — 100
14 | &
2
g 12 g
Ei 95 %
=] o
© =
6 £
H9%0 5
4 =}
, .// ]
1 85

IPSO IGA Wolf pack Improve wolf pack
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FIGURE 6: Comparison results of the optimising performance.

capability and better stability in solving multi-vehicle and
multi-goods dispensing problems.

6. Conclusion

In this article, a mathematical model of a multi-vehicle
and multi-goods dispensing problem is established and
constraints are transformed into penalty functions.
Simulation results of five typical test functions show that
the proposed improved wolf pack algorithm achieves
better performance in terms of accuracy and convergence
time. Compared with the traditional Wolf Pack algorithm,
the time required for convergence of the improved Wolf
Pack algorithm is reduced by 40%. The simulation results

of the logistics case show that the improved Wolf Pack
algorithm has stronger optimising performance and better
stability in solving the multi-vehicle and multi-goods
dispensing problem, thus effectively reducing the number
of vehicles. As the number of vehicles is often limited in
actual logistics distribution, subsequent research will
consider more realistic constraints to further improve the
dispensing model.

Data Availability

The data that support the findings of this study are available
from the author upon request.
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