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In recent years, because of the popularity of the internet and mobile devices, the dissemination of new media in social networks
has attracted extensive attention from scholars and the industry. Scale prediction or propagation speed prediction is to use the
initial data to predict the propagation scale of the network. In the complex and changeable social network, how to accurately
predict the cascading scale of new media information is the biggest problem at present. In the process of new media information
transmission, because of the role of new media information transmission in guiding public opinion, the current hierarchical
model of new media information transmission lacks the overall and local models. To solve this problem, a global structure
modeling method is proposed. In addition, because of the uncertainty of new media information dissemination, a method of
bidirectional recurrent neural network prediction and algorithm complexity is used, and a newmethod based on large-scale graph
neural network is constructed. A prediction method of newmedia information dissemination speed and scale based on large-scale
graph neural network. �rough comparative experiments with previous research models, it is found that the NWIDF model
constructed in this paper has a good prediction e�ect.

1. Introduction

In recent years, the modeling and prediction of new media
information cascade has attracted extensive attention in the
academic �eld and industry [1]. In recent years, with the
improvement of computing power, prediction models based
on deep learning have been successful in many tasks.

Existing models based on deep learning can be roughly
divided into three categories: (1) models based on infor-
mation content, such as text, image, video, and other
multimedia content, which usually use technology from the
�eld of computer vision and natural language processing to
learn the e�ective representation of information content. (2)
Based on time series model, it relies on recurrent neural
network, pooling mechanism, and attenuation mechanism
to linearly model the information cascade in social networks
and [2] (3) model based on the graph structure, such as
information cascade graph or global graph. As per reference

[3], these models typically use graph neural networks and
graph representation learning techniques to learn e�cient
structures of nodes, edges, and graphs to represent infor-
mation. Other deep learning technologies, such as varia-
tional reasoning and reinforcement learning, are also used
for information cascade scale prediction. In many cases,
multimode, multiscale, and multitask learning techniques
can be used to improve prediction performance. Deepcas [4]
is the �rst model to model and predict the scale of infor-
mation cascade using graph representation learning tech-
nology. It borrows the idea of deepwalk model [5] and uses
the random walk method to sample the information cascade
graph. �e sampled node sequence is input into the bidi-
rectional gated loop unit [6], and then the node embedding
is obtained in cooperation with the attentionmechanism [7].
�e prediction of the deepcas model is end-to-end, and
therefore, it does not depend on the manual functional
design. Subsequently, in document [8], the author proposed
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the dcgt model, which adds the modeling of node content to
deepcas. &e purpose of the deephawkes model [9] is to
combine the advantages of the generated model with the
advantages of deep learning technology, so as to simulta-
neously consider the predictability and good prediction
performance. &e ANPP model [10] uses g1ove [11] for the
text embedding of information content and node2vec [12]
for user graph embedding. ANPP uses the attention
mechanism to aggregate the obtained representations and
time-series feature vectors. &e Dtcn model [13] predicts the
popularity of Flickr images by learning user and image
embedding, pore context of shared sequences, and multistep
temporal attention mechanism. &e dtcn model uses
RESNET [14] and long-term and short-term memory ar-
tificial neural networks [15] to simulate the visual and
temporal dependence of pictures, respectively. &e recursive
cascade convolution network [16] regards the information
cascade graph as a series of subinformation cascade graphs,
and then, it uses the dynamic multidirectional graph con-
volution network to learn the structural information of the
information cascade.

Although the model based on deep learning has achieved
good results in the information cascade prediction task, it
also faces many limitations and challenges. &e computa-
tional consumption of the deep learning model is generally
greater than that of the other two types of models. To obtain
satisfactory prediction results, engineers usually need to
perform complex parameter optimization and model
training and face the risk of data overfitting. At the same
time, in the prediction of the cascade scale of new media
information, there is a lack of modeling of global and local
communication structures, ignoring hierarchical modeling,
and it is unable to cope with changes and uncertainties in the
process of information dissemination. &erefore, the article
starts from this angle, and relevant research is carried out.

2. Related Work

&e modeling and prediction of new media information
cascades have attracted extensive attention in academia and
industry in recent years [1]. In recent years, with the im-
provement of computing power, prediction models based on
deep learning have been successful in many tasks.

Existing deep learning-based models can be roughly
divided into three categories: (1) models based on infor-
mation content, such as text, images, videos, and other
multimedia content, these models usually use technologies
from the fields of computer vision and natural language
processing to effectively represent the content learning of
information; (2) time-based models of sequences, which
linearly model information cascades in social networks and
rely on techniques such as recurrent neural networks,
pooling mechanisms, and attention mechanisms [2]. (3)
Models based on graph structures, such as information
cascade graphs or global graphs, etc. [3], usually use graph
neural networks and graph representation learning tech-
niques to learn effective structural representations of nodes,
edges, and graphs. Other deep learning techniques, such as
variational inference, reinforcement learning, etc., are also

used in information cascade scale prediction. In many cases,
techniques, such as multimodal, multiscale, and multitask
learning, are used to improve the prediction performance.
DeepCas [4] is the first model to use graph representation
learning techniques to model and predict the scale of in-
formation cascades. It borrows the idea of the DeepWalk
model [5] and uses a random walk method to sample the
information cascade graph. &e sampled node sequence is
input into the bidirectional gated recurrent unit [6], and it
cooperates with the attention mechanism [7] to obtain the
node embedding. &e predictions of the DeepCas model are
end-to-end and thus do not rely on manual feature design.
Subsequently, in literature [8], the authors propose the
DCGTmodel, which adds the modeling of node content to
DeepCas. &e purpose of the DeepHawkes model [9] is to
combine the advantages of generative models with the ad-
vantages of deep learning techniques, thereby taking into
account both predictive interpretability and good predictive
performance. &e ANPP model [10] uses G1oVe [11] for the
textual embedding of information content and node2vec
[12] for user graph embedding. ANPP uses an attention
mechanism to aggregate the acquired representations and
time series feature vectors. &e DTCN model [13] predicts
the popularity of Flickr images by learning user and image
embeddings, sharing temporal context of sequences, and a
multistep temporal attention mechanism. &e DTCN model
uses ResNet [14] and Long Short-Term Memory Artificial
Neural Network [15] to model the visual and temporal
dependencies of pictures, respectively. Recurrent Cascade
Convolutional Networks [16] treat the information cascade
graph as a series of subinformation cascade graphs, and then,
it use a dynamic multidirectional graph convolutional
network to learn the structural information of the infor-
mation cascade.

Although deep learning-based models have achieved
good results on information cascade prediction tasks, they
also face many limitations and challenges. &e computa-
tional consumption of deep learning models is generally
larger than that of the other two types of models. &e main
reason is that deep learning learns the deep nonlinear
network structure, and its essence is to approximate complex
functions and represent the distributed representation of the
input data. Deep learning can learn the essential charac-
teristics of the dataset. But the problem may often involve
causal reasoning, logical reasoning, and dealing with un-
certainty, which is obviously beyond the ability of traditional
deep learning methods. Hence, the predictions of deep
learning models lack interpretability, because neural net-
works are essentially a “black box model.” Secondly, the
computational consumption of deep learning models is
generally higher than that of feature engineering-based
prediction models and probability-based generation. &e
model should be bigger. To achieve satisfactory prediction
results, engineers often need to perform complex parameter
tuning, model training, and face the risk of overfitting the
data. At the same time, in the prediction of the cascade scale
of new media information dissemination, there is a lack of
modeling of the global and local dissemination structure,
ignoring hierarchical modeling and inability to deal with
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changes and uncertainties in the process of information
dissemination. &erefore, the paper starts from this per-
spective, and related research is conducted.

3. Related Theories

3.1. Bayesian Graph Neural Network. A Bayesian network is
a probabilistic graphical model. By adjusting the preset
parameters or the prior knowledge of the model through
sample data, the parameters of the Bayesian network or the
posterior probability of the model are inferred to express
uncertainty. &e uncertainty of the node characteristics of
new media information dissemination is mainly man-
ifested in the uncertainty caused by noise data, missing or
repeated data, etc., in the process of feature extraction and
the uncertainty of the relationship between different
characteristics of nodes and node labels. A probabilistic
graph model that can solve uncertainty through the
Bayesian graph neural network identifies hot topics in new
media information, compares the prediction of node labels
under different features, integrates the prediction of node
labels by all features, and then judges the uncertainty of
node features.

In the dissemination of new media information, as the
network structure is not fully known and constructed by
domain experts, it usually leads to missing important edges,
adding false edges and other problems, resulting in poor
model prediction effect and poor robustness.

&is paper needs to propose a way to add missing im-
portant edges and prune irrelevant and spurious edges. In
other words, the network structure needs to be recon-
structed. &e Bayesian graph neural network is used to solve
the uncertainty problem of the node relationship in the
reconstructed network.

Generally speaking, a neural network can be regarded
as a conditional distribution model p(Y | X, W), i.e., the
distribution of labels Y under the condition of input
feature X and neural network weight W. &en, the
learning process of the neural network can be regarded as
maximum likelihood estimation. Based on this, the re-
searchers proposed a Bayesian neural network [17],
which, firstly, obtained the weight probability p(W | D) of
the neural network based on the dataset not only to find its
maximum posterior value but also to be used for the
neural network. Networks introduce uncertainty. &e
prediction Y for a new input x can be obtained by inte-
grating the posterior distribution of W, and the process
can be expressed as follows:

p(y|x, X, Y) �  p(y | x, W)p(W | X, Y)dW. (1)

However, since the posterior distribution (formula (1))
of the Bayesian neural network is often difficult to calculate
directly, researchers have adopted different methods to
approximate it [18–21].

&is paper considers reconstructing the network
structure with a random graph generation model to solve the
uncertainty of the network structure.

3.2. Random Block Model. &e random block model is a
generative model for random graphs. &e model tends to
generate graphs that contain populations, i.e., subsets
characterized by a certain edge density interconnected. For
example, edges may be more common within a community
than between communities. &e stochastic block model is
important in statistics, machine learning, and network
science, and in graph data, it serves as a useful benchmark
for the task of recovering community structure. Recon-
structing the network structure in this way can aggregate
nodes with strong correlations in the network, while nodes
with weak correlations will have certain edges if they are
directly pressed.

&e random block model has the following parameters:

(1) &e number of vertices n
(2) Divide the vertex set V1, V2, · · · , Vn  into disjoint

subsets C1, C2, · · · , Cr called groups
(3) A symmetric matrix P of edge probabilities

Randomly sample the edge set: any two nodes VpϵCi and
VqϵCj are connected by an edge with probability Pij.

Its generation process is shown in Algorithm 1.
&e group membership of each node depends on the

context, i.e., each node may have different memberships
when interacting with or being interacted with by different
nodes. Statistically, each node is a mixture of group-specific
interactions. After the random blockmodel is represented by
a generative graph, the network can be reconstructed and
applied to the graph neural network to solve the uncertainty
of the network structure.

3.3. New Media Information Dissemination Mechanism.
In this paper, we mainly explain the mechanism of new
media information dissemination from two perspectives,
namely information cascade graph and user social network
(global graph).

Cascade graph: given the new media information
microblog I and its corresponding forwarding information
cascade C, the information cascade graph can be defined as
ζc � (vc, εc), where vc � ui|1< i≤M  is a part of the user
nodes participating in the information cascade, εc ∈ vc × vc is
a set of edges with a number of M � |C|, representing all user
interactions in the information cascade graph. A schematic
diagram of a cascade graph growing over time is shown in
Figure 1.

C t0( ⟶ · · ·⟶ C tn( . (2)

Global Graph: the global graph contains all the nodes
and edges in the social network, which can be defined as
ζg � (vg, εg). &e edges represent different node relation-
ships in the information cascade. An example of a typical
global graph is the user’s follow du and followed network in
TikTok.

In this paper, the information cascade graph represents
the local propagation characteristics of information in the
network, while the global graph represents the associations
between nodes in the whole network. Taking TikTok as an
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example, the following relationships, forwarding relation-
ships, and historical behaviors among users can all be re-
flected in the structure of the global graph. &e previous
work [8–10] simply used features, such as the number of
followers of the user (which can be regarded as the degree of
nodes) as the structural features of the user, which cannot
fully capture the user’s influence, preference, and other
attributes.&ere are a few other works [14, 17] that use other
types of structural features. But, they also all make strong
assumptions about the intrinsic mechanism of information
dissemination, or face the risk of overfitting on specific data,
resulting in their poor generalization performance, and
whenmigrating to other applications or data platforms (with
different propagation mechanism or propagation mecha-
nism unknown) is less effective.

4. New Media Information Dissemination and
Scale Prediction Path Based on Large-Scale
Graph Neural Network

4.1. 6e Overall Architecture of the Prediction Model. &is
section builds the general framework of the NWIDF pre-
diction model. It consists of four parts: structure learning,
time series propagation, new media information uncertainty
propagation, and predictor. Structural learning mainly
captures and models the contextualized structural patterns
in information cascade graphs and the implicit relationships
of users in social networks. It leverages techniques from
graph signal processing to learn structural representations of
information cascades: local structure modeling based on
wavelet maps and user global structure modeling based on
sparse matrix factorization. Temporal propagation uses a
bidirectional recurrent neural network to model temporal
dependencies in information propagation. &e uncertain
propagation of information in new media uses a variational
autoencoder to model changes and uncertainties in infor-
mation propagation and information growth, and it uses a
regularized flow to estimate the posterior distribution of
hidden variables for a series of complex and flexible
transformations. &e predictor combines recurrent neural

networks and variational inference to learn high-order
representations of the information cascade, and finally, it
uses a multilayer perceptron to make predictions about the
final size of the information cascade, as shown in Figure 2.

As the core of the NWIDF model system, the new media
information person is the main body of information pro-
duction, transmission, processing, and management. In-
formation people usually include are users and platforms.
Users can enhance the quality impact of new media plat-
forms by accepting feedback and continuously optimizing.
New media information technology is the support of in-
formation activities. &rough the collection, processing,
dissemination, and feedback of information, the continuous
operation of the NWIDF model system is realized.

4.2. Modeling of New Media Information Cascade Structure
under Large-Scale Graph Neural Network

4.2.1. New Media Information Cascade Learning Structure.
In the new media information dissemination mode, the
cascade graph is introduced Ci(t), which is represented as an
adjacency matrix, and a self-loop is added to each node, as
shown in Figure 3. &en, according to the arrival time of
each node in the cascade graph Ci(t), one-hot encoding
(One-Hot Code) is performed to represent the node char-
acteristics. Divide the observation window [0, T into disjoint
fine l-grained time intervals, then encode each time interval.

At the tm(0<m< l) moment, the node Vi forwards to
the node. &en, Vj the adjacency matrix of the a

tm

i cascaded
graph at this moment Ci(t) is 1, and the rest are 0. &e
adjacency matrix embedding for the cascaded graph Ci(t) is
encoded as follows:

A
T
i � a

t1
1 , a

t1
2 , · · · , a

ti−1
i .tjϵ[0, T, jϵ[1, l. (3)

To capture the global graph structure information in the
process of cascading information diffusion in newmedia, we
use a graph convolutional network to learn the Markov
process embedded in [22] information diffusion, i.e., it will
converge to a stable value after a period of diffusion. Normal
distribution will converge to a stable distribution after a

Diffusion of 
information sources

Information Source

spread

not propagated

Figure 1: Cascading diagram of media information.
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period of time, similar to the normal distribution [23].
&erefore, let the cascaded Laplacian matrix ∆c conform to
the random walk characteristics of the cascaded graph, and

let the Markov state transition probability matrix P � D− 1A.
According to the graph convolution network formula, the
Lapuas matrix can be obtained ∆c as follows:

Cascade 
diagram global map

�e overall architecture of the NWIDF model

New media information 
dissemination embedded user learning

adjacency
matrix

Bi-GRU

Node-level VAE

Cascade-level VAE

regularized flow

∆Si

input

structural learning

temporal learning

learning with
uncertainty

predictor

Ci (t)

Gij = Xij + Yij

A1,, A1 , ..., An ζg

ψ → Ec (vc)

Z3 h2

MLP (h’i )

Figure 2: &e overall architecture of the NWIDF model.
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Figure 3: Cascaded subgraph sequence sampling representation.
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∆c � D
− 1/2

(D − A)D
− 1/2

� D
− 1/2

(I − P)D
− 1/2 ≈ Φ1/2(I − P)Φ− 1/2

.

(4)

D represents the degree matrix of the cascade graph, and
K represents the number of captured neighborhood layers.
Λ � Diag(λ0, λ1, · · · , λM−1) is the eigenvalue of the ad-

jacency matrix satisfying the condition of
λ0 < λ1 ≤ · · · ≤ λM−1, where U is the eigenvalue decomposi-
tion. We can then compute uiϵvi(t0) the graph wavelet for
each node Ψu,s as follows:

Ψu,s � UDiag gs λ0( , · · · , gs λM−1( ( U
Tδu, (5)

where δu is the one-hot encoded vector of node u, and the
filter kernel gs is a continuous function defined on R+. Here,
we use the Heat kernel function gs(λ) � e− λs, where s is a
scale parameter defined on the spectrum (λl)l�0,···,M−1.

In particular, for a given node ui and a scale parameter s,
the empirical feature function is formally defined by the
following formula:

φu,s(p) �
1

M
 e

ipΨm,u,s ,Ψm,u,s � 
M−1

l�0
gs λl( UmlUul, (6)

where Ψm,u,s is them
th wavelet coefficient of Ψu,s. &en, the

embedding of node ui in the information cascade graph
can be obtained by concatenating the real and imaginary
parts.

Ec ui(  � Reφu,s(p), Imφu,s(p) 
p1,p2,···,p d

. (7)

&e dimension of the node embedding Ec(ui) is dc � 2 d,
and the first element of the embedding is set as the weight of
the node edge, which is defined and regularized by the
following formula:

Wu �
tj − t0 

t0
∈ [0, 1], 0< t0 ≤ tj. (8)

From the perspective of sentences, the emotion of a
long sentence is mainly determined by several keywords
connected to the root node, and the function of other
words is ignored, resulting in the lack of key information.
In recent years, the rapid development of Internet+ has
made the sentiment analysis of comment texts occupy a
certain proportion in user-based big data analysis.
Compared with the inflexibility of traditional machine
learning methods, deep learning methods can be more
efficient and accurate. &e emotional information is
contained in the text, so obtaining text emotional in-
formation through deep learning is a relatively popular
research field at present, and it has achieved good research
success. Since the machine cannot directly recognize the
plain text input, it is necessary to vectorize the text to
convert the text into a numerical form that the machine
can recognize.

To solve the problem of the adjacency matrix generated
by the dependency tree containing a large number of zero
elements, there may be information loss and data
sparseness. In this paper, a global graph matrix is

constructed, and a layer of identity matrix is added to the
original adjacency matrix, which is the global graph matrix.
&e construction of the global matrix in this paper is shown
in equations –(11).

Xii � 1, (9)

Xij � 1,ORXij � 0, (10)

Yij � 1, (11)

Gij � Xij + Yij. (12)

Xii � 1 means that all elements on the diagonal of the
adjacency matrix are set to 1, which means that each node in
the graph performs a self-loop operation. &e formula Xij �

1 indicates that the ith node has a directed connection to the
jth node. Xii � 0 indicates that there is no connection be-
tween the Yiji

th node and the jth node, and when generating
the adjacency matrix, a unit matrix is added, which means
that an edge is added between each node in the graph
structure to connect. &is allows the graph structure to
contain global dependency information. Gij represents the
connection of all nodes in the graph, which is the global
graph matrix. &is operation allows each word to play a
corresponding role, avoiding data sparse and incomplete
information.

Compared with the node embedding in the infor-
mation cascade graph, the node embedding in the global
graph expresses a very different concept of information
propagation in the global graph. For the information
cascade graph, whether for those influential nodes, hub
nodes connecting different communities, or inconspic-
uous leaf nodes, nodes with similar structural positions
will have similar node embeddings even if they are very
far apart in the graph.&is positional property is captured
by the propagation mode of the graph wavelet. For the
global graph, the low-dimensional continuous embed-
dings learned by the model preserve the neighbors of
nodes in the global graph. Hence, nodes with similar
preferences and behaviors will have similar spatial
embeddings.

Unlike information cascade graphs, global graphs often
contain up to millions of nodes and edges, making repre-
sentation learning on them very difficult. Existing graph
learning models [15, 18] are difficult to directly apply to
practical information cascade prediction problems. &e text
uses sparse matrix factorization to process and model
large-scale global graphs efficiently and in a scalable manner
ζ_c ζ_g.

4.2.2. Temporal Propagation Build. In the above, we used
graph wavelets and sparse matrix factorization to generate
embeddings that encode the structural information of
users in information cascade and global graphs. In par-
ticular, they are characterized by the following: (1)
structurally equivalent nodes in an information cascade
graph will have similar embeddings (refer to [20]). For
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example, hub nodes have stronger propagation capabil-
ities than leaf nodes. (2) Adjacent nodes in the global
graph will have similar embeddings, i.e., adjacent nodes
will have similar preferences for disseminating specific
information.

In addition to the structural information contained in
the information cascade, time series information is
considered to be one of the most important features in the
scale prediction problem of the information cascade, and
it has a key impact on the final scale of the information
cascade. To capture the temporal nature of information
cascades, we use bidirectional gated recurrent units
(BiGRUs) to model the cascade effects in information.
Recurrent neural networks are widely used in the mod-
eling of time series data, and they are used to model time
series features in information dissemination. &e calcu-
lation formula of BiGRU is shown in formulas (12)–(14),
which can be expressed in the formula. &e hidden state of
the forward output at the moment is expressed in watts.
&e hidden state of the reverse output at time, Qc, rep-
resents the hidden state of the output, ωc represents the
input, and ωc and vc represent the weight matrix, where bc

is the bias vector.

Q
→

c � GRU Q
→

c−1,ωc , (13)

Q
⃖

c � GRU Q
⃖

c−1,ωc , (14)

Qc � ωc Q
→

c + vcQ
⃖

c−1 + bc.
(15)

BiGRU includes the process of forward GRU and
reverse GRU transfer. Bidirectional GRU can enrich the
representation of contextual information based on aspect
words and enhance the interaction of information in a
complementary form, so that more useful information can
be captured compared to unidirectional GRU. Usually,
two-way GRU will also perform better than one-way GRU.
Deep BiGRU is to continuously expand the depth of the
neural network. On the basis of one layer of BiGRU, the
method of superimposing multiple layers of BiGRU is to
use the output of each BiGRU layer as the input of the
corresponding node of the next layer of BiGRU.

However, only using the hidden state of the last layer of
the RNN has certain drawbacks for information cascade
prediction. It is because of the flat sequence generation
process in recurrent neural networks, where the embedding
of each node is dependent on the node embedding at the
previous time. &e problem is that the model is forced to
generate all higher-order information in a deterministic and
step-by-step manner. &is setting has significant limitations
for exploring uncertain dependencies in information cas-
cades. In addition, because of the limitations of RNNs
themselves, these models cannot handle long-term depen-
dencies, and their predictive performance may drop sig-
nificantly when the length of the information cascade is very
long.

4.2.3. Uncertainty Modeling of New Media Information.
An information cascade C consists of a growing sequence of
participants, each of which is associated with a learned
representation that represents a specific stage of information
dissemination. In the above, for each node in the infor-
mation cascade graph and global graph, we use graph
wavelet and sparse matrix factorization to learn its em-
bedding representation Ec(ui) and Eg(ui) for the node,
respectively. In a more general sense, any other type of graph
representation learning method can be used to enhance the
learning ability of the model, for example, text and image
embeddings. Without causing ambiguity, we use Ri, (iϵ|vc|)

to represent each participant in the information cascade C,
i.e., Ri � Concat(Ec(ui), Eg(ui)).

Let Enc(∙) be the input encoder and Dec(∙) be the
reconstructed input decoder. &e deep variational
autoencoder based on neural network can be defined as
follows:

zi � Enc Ri( , Ri � Dec zi( , for i � 1, 2, · · · , M,

ui � NN Ri( , logσ2i � NN Ri( , zi～Ν ui, σ
2
i ,

(16)

where Ri is the reconstructed input and ziϵRd is the hidden
vector. &e variational autoencoder accepts high-dimen-
sional data as input and generates a compressed hidden
representation that is sampled from a conditional prior
distribution with standard deviation μ and variance log σ2.
&e original input is then reconstructed from this hidden
representation.

In order to learn an efficient probability-based repre-
sentation from the information cascade data, which captures
the variation and uncertainty of the information cascade
propagating in the network, the variational autoencoder
samples log σ2 and μ andfrom the output vector of the
encoder. &en, use the reparameterization trick to sample
the hidden vectors from the Gaussian distribution [22].

zi � ui + σiε, ε～Ν(0, 1). (17)

Given a hidden random variable ZϵRdz (in this paper, it
is referred to Z2 learned in higher-order variational
autoencoders, the regularization flow is a class of generative
models that transforms the observed vector Z into the re-
quired target hidden vector Zk. &e transformation consists
of a series of K invertible mappings (invertible mappings).
&e Jacobian matrix of the transformation is computable,
and the function is differentiable. In more detail, the reg-
ularization flow uses the mapping function f：Z⟶ Z′,
which is defined as follows:

q Z′(  � q(Z) de t
zf

−1

zZ′




� q(Z) de t

zf

zZ′





− 1
, (18)

where q(Z) is the distribution of the random vector Z and
the transfer function f is invertible. To obtain an effective
probability density qk(Z(k))from the initial density q0(Z), a
series of hierarchical transformations of K regularization
flows successively use equation (15) to calculate the target
density.
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ln qk Z
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  � ln q0(Z) − 
k

k�1

ln de t
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zZ′




� q(Z) de t

zf

zZ
(k)




. (19)

If the mapping function is appropriate, then the learned
mixture distribution of hidden random vectors more closely
matches the distribution of the real data than the simple
independent Gaussian distribution.

4.2.4. NewMedia Information Dissemination Speed and Scale
Effect Predictor. Previous studies have found that infor-
mation cascades have a time decay effect, i.e., the influence of
one node on other nodes decreases over time [57]. In this
paper, a nonparametric time decay function is used λf(T−tj),
and according to the literature [25], we get the following:

hi
′ � 

Ri(T)

j�1
λ

f T−tj( 
hj.
′ (20)

Among them, f(T − tj) � tj − t0/T/l, and RT indi-
cates the forwarding amount of hi

′ new media information,
indicating that the time decay function is considered.

&e hidden state of the number.
&e last part of the NWIDF model is composed of fully

connected layers (MLP). According to the previous calcu-
lation hi

′, it can be calculated ∆Si as follows:

∆Si � MLP hi
′( . (21)

&e final task is to predict the increment of information
dissemination within the specified time interval, introducing
MeanSquare Log-Transformed Error (MSLE), namely, the
following:

MSLE �
1
N



N

i�1
log∆Si; −log∆Si; 

2
. (22)

As the loss function loss, use the Adam optimizer to
optimize the loss value to make it optimal (minimum).

&rough the above synthesis, the following training
process can be performed as shown in Algorithm 2.

5. Experiment Setup and Results Analysis

5.1. Test Setup

5.1.1. Dataset. To evaluate the effectiveness and scalability of
NWIDF models in information cascade prediction, exper-
iments are conducted using publicly available datasets and
compared with previous studies. &e data information
statistics of the dataset are shown in Table 1.

Weibo [25]: this dataset selects all the original posts
generated by Sina Weibo on June 1, 2016, and tracks all
retweets of each post over the next 24 hours, including a
total of 119,313 posts. Figure 4(a) shows the distribution
of the cascade size; Figure 5(a) shows the prevalence of the
cascade, showing that after 24 hours, the prevalence
reaches saturation. &is paper follows a similar setup to
CasCN [26], i.e., observation time window T �1, 2, 3
hours. Finally, the stacks are sorted according to the
stacking time after preprocessing, and the top 70% of the
stacks are selected as the training set for the stacks, and the
rest are equally divided into the validation set and the test
set.

HEP-PH [27]: the HEP-PH dataset (High Energy
Physics Phenomenology Dataset) comes from the elec-
tronic version of the arXiv paper citation network. &e data
covers papers from January 1993 to April 2003 (124
months), in which there are citations for all 34,546 papers.
If paper i cites paper J, the paper citation graph contains
directed edges from i to j. If a paper cites or is cited by a
paper outside the dataset, the graph will not contain in-
formation about this. Figure 4(b) shows the distribution of
cascade sizes, and Figure 5(b) shows the prevalence of
cascades. For the observation window, T � 3, 5, and 7 years
were chosen, corresponding to the prevalence reaching
50%, 60%, and 70% of the final scale, respectively, as shown
in Figure 5(b). &en, 70% of the cascades are collected for
training, and the rest are split equally into validation and
test sets.

Step 1: for each nodeVndo
Step 2: constructing K-dimensional mixed membership vectors πn～Dirichlet(α)

Step 3: for each node pair(Vp, Vq)do
Step 4: constructor class initialization indicator variable Zp⟶q～Multinomial(πp)

Step 5: construct category indicator variable receiver Zq⟶p～Multinomial(πq)

Step 6: sample their interaction values Y(p, q)～Bernoulli(Zp⟶qBZq⟶p)

ALGORITHM 1: Generation process.
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5.1.2. Benchmark Model Selection. From traditional cause
analysis methods, hydrological statistics methods, time
series analysis methods, etc., to modern artificial neural
networks, wavelet theory, gray system and turbidity theory,
each method has its own advantages because of its different
mechanisms and applicable environments. To verify the
effectiveness of our proposed NWIDF model in predicting
the scale of information cascades, we choose three basic
models: a feature engineering-based model (Topo-LSTM
model [29]), a statistical generative model-based Deep-
Hawkes model [25], and a deep learning based model
CasCN model [26]. &e comparative model is the latest
model with high reliability in the research field, which can
supplement and improve the comparative analysis
research.

5.1.3. Parameter Setting. All experiments in this paper are
performed on Ubuntu 16 operating system, Intel Core i9-
9980XE CPU, 1286memory, and NVIDIA TiTan RTX (24G)
graphics card.

For DeepCas [28], DeepHawkes [25], Topo-LSTM [29],
and CasCN [26], refer to DeepCas to set the user’s

embedding dimension to 50. &e number of hidden units in
the fully connected layer of the recurrent neural network is
32 and 16, respectively. &e user learning rate 5 × 10− 4, and
the other learning rate is 5 × 10− 3. &e batch size of each
iteration is 32, and when there are 50 consecutive iterations,
the loss of the validation set does not drop, and the model
training process will stop. &e time interval for Weibo
dataset was set to 10minutes, and the time interval for HEP-
PH was set to 2months.

&is paper uses Tensorflow to implement the NWIDF
model and uses the Adam optimizer to optimize the pa-
rameters through gradient descent. Except that, the em-
bedding neighborhood layer of graph representation
learning adopts K� 2, and the rest of the model parameter
settings are consistent with the above models.

5.1.4. Evaluation Indicators. According to the existing work,
a standard evaluation metric, MSLE (see equation (22)), is
selected in the experiment to evaluate the linking accuracy.
Note that the smaller the MSLE, the better its prediction
performance.
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Figure 4: Cascade size distribution graph, the X-axis is the cascade size, and the Y-axis is the number corresponding to different cascade
sizes. (a) Weibo dataset. (b) HEP-PH dataset.
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Figure 5: Percent distribution between time and number of cascades. (a) Weibo dataset. (b) HEP-PH dataset.
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5.2. Result Analysis

5.2.1. Experimental Comparative Analysis

(1) Performance Comparison of the Benchmark Version. &e
benchmark version of the NWIDF model proposed in this
paper will be experimentally compared with previous cas-
cade prediction models on real datasets.

&e DeepCas model [28] is the first deep learning ar-
chitecture for information cascade prediction, which rep-
resents a cascade graph as a set of random walk paths, piped
through a bidirectional GRU neural network with an at-
tention mechanism to predict the size of the cascade. It
mainly uses the information of structure and node identity
for prediction.

&e DeepHawkes model [25] integrates the predictive
power of end-to-end deep learning into the interpretable
factors of the Hawkes process for popularity prediction. &e
combination between deep learning methods and cascade
dynamics modeling processes bridges the gap between the
prediction and understanding of information cascades. &is
method belongs to both generative and deep learning-based
methods.

&e Topo-LSTM model [29] is a directed acyclic graph
structure (DAG structure) RNN that takes a dynamic DAG
as input and generates topology-aware embeddings as
output for each node in the DAG, thereby predicting the
next node.

Pak et al. proposed a particulate matter (PM) prediction
model (CNN-LSTM) based on spatiotemporal convolu-
tional network and long short-term memory network and
applied it to the concentration prediction of PM2.5 in
Beijing. Using mutual information to analyze the spatial-
temporal correlation, considering the linear and nonlinear
correlation between the target and the observed parameters
and combining the historical air quality and meteorological
data, the spatial-temporal eigenvectors reflecting the linear

and nonlinear correlation between the parameters are
constructed. (STFV), CNN-LSTM prediction model extracts
the inherent relationship between PM2.5-related latency air
quality and meteorological input data through CNN and
reflects the long-term historical process of input time series
data through LSTM, using 384 monitoring stations across
the country for 3 years&e validity of the model is verified by
the air quality data and meteorological data. [26].

Singh et al. used deep learning for stock prediction and
proposed a stock prediction model based on 2-dimensional
principal component analysis (PCA) and deep neural net-
work (DNN), which combined the closing price, highest
price, and lowest price. 36 indicators, such as opening price,
are used as the input of the stock prediction model, and the
original data matrix is projected into the projection matrix
by (2D)2PCA.&e dimension of the input sample is reduced,
and then the dimension-reduced data is used as the input of
DNN in the prediction model. Finally, get the predicted
closing price. Compared with the radial basis function
neural network (RBFNN), in the stock forecast of Google in
Nasdaq, the network (RBFNN) rate is improved by 4.8%,
and the actual return (i.e., the correlation coefficient with the
predicted return of information dissemination) is 17.1%
higher than that of RBFNN [27].

&e CasCN model [26] combines the deep learning
framework of structure and time, uses graph convolutional
network to capture network spatial structure information,
and incorporates temporal decay function using a recurrent
neural network to achieve the more efficient use of temporal
information. &is model is a deep learning method.

Table 2 summarizes the performance comparison be-
tween the NWIDF model and other model benchmarks on
the Weibo and HEP-PH datasets. &e comparison of the
NWIDF model with the DeepCas model proves that it is not
enough to simply embed nodes as a graph representation,
and it cannot represent the graph as a set of random paths.
Because DeepCas fails to consider timing information and

input: cascade graph C, sequence of cascade graph adjacency matrices A � AT
1 , AT

2 , · · · , time window of observation
∆c � ∆c1,∆c2, · · · 

output: predicted information cascade incremental scale ∆S � S1, S2, · · · 

(1) the Laplacian matrix of the ∆c concatenated graph C;
(2) the graph wavelet φu,s for each node ui;
(3) compute the node embeddings of the information cascade graph Ec(vc);
(4) Calculate the node embedding of the global graph Eg(vg);

Calculate the global matrix Gij � Xij + Yij

(5) while not converge do
(6) Train a bidirectional gated recurrent unit to acquire h2;
(7) for |vc| each user in the pair i do
(8) calculate zi

(9) end for
(10) get Z1

�→
� z1, z1, · · · , z|vc | ;

(11) Train a cascaded variational autoencoder to obtain Z2;
(12) Obtained by K transformations Z3;
(13) Combining sums h2and Z3 sums ∆Si � MLP(hi

′) to make final scale incremental forecasts;
(14) end while

ALGORITHM 2: Learning process of the NWIFD model.
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topology of cascaded graphs, its performance is worse than
other deep learning-based methods. Topo-LSTM also lacks
the processing of timing information, resulting in its poor
performance. Although the DeepHawkes models cascades in
a generative manner, it does not perform optimally because
of its weak ability to learn structural information. CasCN
considers temporal information and spatial topology but
ignores the fusion between the two features. Finally, the
NWIDFmodel proposed in this paper performs information
cascade prediction (tweet retweets and paper citations) on
both datasets, which is significantly better than other
models. For example, in the Weibo dataset for 1, 2, and 3
hours, the MSLE values were 2.123, 2.012, and 1.776, re-
spectively. Observing in the HEP-PH dataset for 3, 5, and 7
years, the MSLE values are 0.939, 0.843, and 0.812, re-
spectively. &e data shows that a good prediction effect has
been achieved. Compared with CasCN, the prediction errors
of the NWIDF model proposed in this paper are reduced by
5.31%, 1.18%, 7.31%, and 6.47%, 8.07%, 8.46%, respectively,
thus confirming the effectiveness of the model.

5.2.2. 6e Influence of Global Graph on Information Cascade.
NWIDF-All: we removed the structure learning module in
the NWIDF model. For NWIDF-All, all nonroot nodes in
the information cascade graph are directly connected to the
root node, and we do not use global graph information.

Firstly, the validity of the bidirectional recurrent neural
network is verified, and experiments are designed. Construct
a shortened version of NWIDF-GRU, namely, BiGRU in the
benchmark version, and then compare it with CasCN, which
is equivalent to NWIDF-GRU, adding attention mechanism
on the basis of the CasCNmodel. During the experiment, the

parameters of the two are the same, and the experimental
results when the sampling neighborhood layers K� 1, 2 are
shown in Table 3.

&e performance comparison of the embedding layer
K� 1, 2 and the CasCN model K� 2 is given in Table 3.
According to Table 3, it can be seen that when K� 2, the
NWIDF model proposed in this paper is better than the
CasCN model because the node embedding of the global
graph is considered, which can couple the timing infor-
mation and the spatial structure information. When K� 1,
after observing in Weibo for 2 hours, the MSLE of NWIDF-
All is larger than that of CasCN. As K� 1, the spatial
structure information taken is insufficient, resulting in
slightly lower results.

&en, the effect of timing information on cascade pre-
diction is verified. Analyze the variant NWIDF-BiGRU of
NWIDF, i.e., remove the bidirectional recurrent neural
network from the NWIDF model proposed in this paper,
and use BiGRU to compare with CasCN, which is equivalent
to NWIDF-BiGRU, which is generated by replacing LSTM
in the CasCN model with the BiGRU model. From the data
in Table 4, it can be seen that when K� 2, the MSLE� 1.783
observed by Weibo for 3 hours and the MSLE� 0.84 ob-
served by HEP-PH for 7 years are better than the MSLE of
CasCN. &us, the importance of timing information in
information cascade is confirmed.

Finally, to verify the impact of time series information
and spatial information on cascade prediction, we use
BiGRU on the basis of CasCN, add a structure learning
mechanism, and then adjust the number of embedded
neighborhood layers K to compare with CasCN, respec-
tively. It can be seen from the data in Table 5 that whenK� 1,

Table 1: Dataset information statistics table.

Post–papers edges T

Dataset Weibo_ HEP-PH
All 119313 34546
All 8466858 421578

1 hour 2 hours 3 hours 3 years 5 years 7 years

Cascades
Train 25145 29515 31780 3458 3467 3478
Val 5386 6324 6810 837 839 848
Test 5386 6324 6810 837 839 848

Avg.nodes
Train 28.58 29.3 29.48 5.27_ 5.27_ 5.27_
Val 28.71 29.47 29.69 4.32_ 4.93_ 4.27_
Test 29.11 29.77 30.21 4.91_ 4.27_ 4.28_

Avg.nodes
Train 27.78 28.54 28.74 4.27_ 4.27_ 4.27_
Val 27.91 28.7 28.94 3.31_ 3.93_ 3.95_
Test 28.32 29.01 29.48 3.91_ 3.27_ 3.28_

Table 2: Performance comparison table (MSLE).

Data set
Weibo (hours) HEP-PH (year)

1 2 3 3 5 7
DeepCas 2.958 2.689 2.647 1.765 1.538 1.462
Topo–LSTM 2.772 2.643 2.423 1.684 1.653 1.573
Deep–Hawkes_ 2.441 2.287 2.252 1.581 1.47 1.233
CasCN 2.242 2.036 1.916 1.004 0.917 0.887
NWIDF 2.123 2.012 1.776 0.939 0.843 0.812

Table 3: Global graph for information cascade prediction per-
formance comparison table (MSLE).

Data set
Weibo (hours) HEP-PH (year)

1 2 3 3 5 7
CasCN K� 2 2.242_ 2.036_ 1.916_ 1.004_ 0.917_ 0.887_
NWIDF–All
K� 1_ 2.136_ 2.074 1.858_ 1.02_ 0.892_ 0.842_

NWIDF–All
K� 2 2.099_ 2.028_ 1.835_ 0.92_ 0.907_ 0.867_
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2 on Weibo and HEP-PH datasets, MSLE values are smaller
than those of CasCN, indicating that the model proposed in
this paper is better than CasCN in terms of time series
information and spatial topology information.&e capture is
more comprehensive, which improves the efficiency of the
model and reduces the loss rate.

&e above experiments show that time series informa-
tion and spatial structure information have an important
impact on the information cascade prediction effect. &e
combination of the two can better ensure the accuracy of
prediction. &e capture of information is also more com-
prehensive, which also makes the model more generalizable.

6. Conclusion

Under the background of the wrong public opinion ori-
entation caused by the rapid spread of new media infor-
mation and its wide spread, it is of great practical
significance to carry out the prediction of the spread of new
media information and the scale effect. Based on the fact that
the current hierarchical model of new media information
dissemination lacks global and local models, this paper starts
from the characteristics that new media information con-
forms to node dissemination and conducts prediction re-
search on the speed and scale effect of new media
information dissemination. &e main research contents are
as follows [24]:

(1) &e modeling method of local and global propa-
gation of the characteristics of new media infor-
mation propagation is proposed, and considering
the uncertainty and scale effect of information
propagation, a graph neural network-based
NWIDF model is proposed, which starts from the
information cascade structure. Graph the structure
learning for information propagation based on
locality and globality.

(2) On the two large-scale information cascade datasets
of Facebook and TikTok, the current mainstream
and advanced prediction models are applied to carry
out experimental research, and it is found that the
NWIDF model has better prediction effect and
performance. To a certain extent, it can predict the
spread and scale of new media information and
public opinion, control the rapid spread of wrong
public opinion, and quickly cut off the communi-
cation channel to provide more advanced ideas.

In this paper, the NWIDFmodel is the hotspot of current
network and graph neural network research. &e main
difference in speed is the large-scale graph and scale effect of
new media information dissemination, and other types of
features are caused by the complexity of the research con-
tent. In this paper, the NWIDF model is not extended to
other types of features, such as learning various content
features (number of user attention, h-index of authors,
historically published articles, etc.). However, it provides a
richer theoretical and practical basis for the future use of
more powerful and complex graph neural networks, such as
heterogeneous information networks with multiple node
types and edge types. &e model can be generalized to other
types of graph-based business applications, such as virus
information diffusion, interpretable information prediction,
rumor detection, epidemic control, etc.
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